Halogenated Hydrocarbon Patents (Class 203/67)
  • Patent number: 6455087
    Abstract: There is described a process for the extraction of a least one relatively polar component form a material which may be naturally occurring or a synthetic mixture, the process comprising the steps of: (a) contacting the material with a solvent mixture comprising C1 to C4 fluorinated hydrocarbon, especially 1,1,1,2-tetrafluorethan and a co-solvent having a dielectric constant (at 20° C.) of at least 6 so as to charge the solvent mixture wherein the co-solvent is selected from the group consisting of amides, sulfoxides, alcohols, ketones, organic acid, carboxylic acid derivatives, cyanide derivatives, ammonia sulfur containing molecules, inorganic acids and nitro derivatives and separating the charged solve mixture from the material to isolate the polar component.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: September 24, 2002
    Assignee: Advanced Phytonics Limited
    Inventor: Mazin Nicola
  • Patent number: 6444096
    Abstract: A process for the recovery and purification of cyclobutanone from a crude product mixture obtained from an oxidation product mixture resulting from the oxidation of cyclobutanol to cyclobutanone in the presence of water. The process provides for the recovery of cyclobutanone in a purity of at least 90 weight percent by a combination of distillation steps.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: September 3, 2002
    Assignee: Eastman Chemical Company
    Inventors: Scott Donald Barnicki, Timothy Richard Nolen, Robert Sterling Kline, Dewey Wayne Fuller, Jr., Mary Kathleen Foster, Stephen Neal Falling
  • Publication number: 20020110514
    Abstract: The method for recovering a titanium compound according to the invention comprises bringing a waste solution containing a titanium alkoxide into contact with a halogenating agent to convert at least apart of the titanium alkoxide to a titanium halide and then distilling the solution containing the titanium halide to recover the titanium halide from the solution, or comprises distilling a waste solution containing a titanium alkoxide and a titanium halide to recover at least a part of the titanium halide from the waste solution, bringing a residue in distiller given after the distillation into contact with a halogenating agent to convert at least a part of the titanium alkoxide to a titanium halide, and distilling the solution containing the titanium halide to recover the titanium halide from the solution. According to the method of the invention, a larger amount of a titanium compound can be recovered from a waste solution containing a titanium alkoxide.
    Type: Application
    Filed: November 28, 2001
    Publication date: August 15, 2002
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Takumi Kitahara, Tetsuya Nakano
  • Patent number: 6417413
    Abstract: A process for preparing halogenated ethanes, particularly pentafluoroethane, from a mixture produced by the reaction of perchloroethylene, hydrogen fluoride and a recycle stream. The preferred process utilizes phase separation techniques to ensure that less than the azzeotropic amount of HF is included in the product stream, thereby minimizing the hydrogen fluoride that is carried off with the desired products after they are separated from the reaction mixture, and at the same time prevents undesirable byproducts from being recycled to the reaction.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: July 9, 2002
    Assignee: AlliedSignal Inc.
    Inventors: Gustavo Cerri, Yuon Chiu, Biju Z. Perincheril
  • Patent number: 6383343
    Abstract: A method of separating methanol and acetone, and methanol and methyl acetate involves distilling a mixture of the components by an extractive distillation process in the presence of an extractive distillation solvent. The extractive distillation solvent may be an amine, a chlorinated hydrocarbon, a brominated hydrocarbon, a paraffin, and an alkylated thiopene.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: May 7, 2002
    Inventors: Izak Nieuwoudt, Braam van Dyk
  • Patent number: 6375807
    Abstract: A method of separating ethanol and ethyl acetate, and ethanol and water involves distilling a mixture of the components by an extractive distillation process in the presence of an extractive distillation solvent. The extractive distillation solvent may be an amine, an alkylated thiopene, and paraffins.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: April 23, 2002
    Inventors: Izak Nieuwoudt, Braam Van Dyk
  • Patent number: 6376727
    Abstract: Disclosed are azeotropic compositions comprising CF3CHFCF3 and HF. Also disclosed are compositions and a process for producing compositions comprising (c1) CF3CHFCF3, CF3CH2CF3, or CHF2CH2CF3, and (c2) at least one saturated halogenated hydrocarbon and or ether having the formula: CnH2n+2−a−bClaFbOc wherein n is an integer from 1-4, a is an integer from 0-2n+1, b is an integer from 1-2n+2a, and c is 0 or 1, provided that when c is 1 then n is an integer from 2-4, and provided that component (c2) does not include the selected component (c1) compound, wherein the molar ratio of component (c2) to component (c1) is between about 1:99 and a molar ratio of HF to component (c1) in an azeotrope or azeotrope-like composition of component (c1) with HF.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: April 23, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: V. N. Mallikarjuna Rao, Allen Capron Sievert
  • Publication number: 20020040172
    Abstract: The invention relates to the purification of pentafluoroethane (F125) containing chloropentafluoroethane (F115) by liquid/liquid extraction or by extractive distillation.
    Type: Application
    Filed: June 26, 2001
    Publication date: April 4, 2002
    Inventors: Emmanuel Guiraud, Cathy Descamps
  • Publication number: 20020001560
    Abstract: Nitrogen trifluoride (NF3) containing less than 10 parts-per-million molar impurities, e.g., tetrafluoromethane (PFC-14), is disclosed. Azeotropic and extractive distillation processes using entraining agents for separating NF3 and PFC-14 from each other and from mixtures with other electronics industry materials are disclosed.
    Type: Application
    Filed: November 9, 1998
    Publication date: January 3, 2002
    Inventors: RALPH NEWTON MILLER, BARRY ASHER MAHLER, CHIEN-PING CHAI KAO
  • Patent number: 6224781
    Abstract: A process is disclosed for producing compositions including (a) a compound selected from the group consisting of CHF2CF3, CHF2CHF2, CH2FCF3, CH3CF3, CH3CHF2, CH2FCF2CHF2 and CHF2CF2CF2CHF2 and (b) at least one saturated halogenated hydrocarbon and/or ether having the formula: CnH2n+2−a−bClaFbOc wherein n is an integer from 1 to 4, a is an integer from 0 to 2n+1, b is an integer from 1 to 2n+2−a, and c is 0 or 1, provided that when c is 1 then n is an integer from 2 to 4, and provided that component (b) does not include the selected component (a) compound, wherein the molar ratio of component (b) to component (a) is between about 1:99 and a molar ratio of HF to component (a) in an azeotrope or azeotrope-like composition of component (a) with HF.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: May 1, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Barry A. Mahler, V. N. Mallikarjuna Rao, Allen Capron Sievert, Munirpallam A. Subramanian, Edwin James Warwas
  • Patent number: 6221830
    Abstract: The disclosure relates to removing impurities from hexafluoroethane (CF3CF3), also known as Perfluorocarbon 116 (PFC-116) or Fluorocarbon 116 (FC-116), by using azeotropic distillation such that an overhead product consisting essentially of HCl-hexafluoroethane is formed, optionally combined with a phase separation step to break the HCl-hexafluoroethane azeotropic or azeotrope-like composition thereby permitting recovery of substantially pure hexafluoroethane. Unreacted hydrogen fluoride (HF) may be removed from hexafluoroethane during the above azeotropic distillation with HCl or alternatively by an azeotropic distillation wherein an HF-hexafluoroethane azeotropic or azeotrope-like composition exits overhead and substantially pure HF exits in the bottoms stream.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: April 24, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, Mark Richard Deschere, Barry Asher Mahler, Olagappan Muthu
  • Patent number: 6156161
    Abstract: A process is disclosed for removing chloropentafluoroethane (CFC-115) from a mixture comprising CFC-115, difluoromethane (HFC-32), pentafluoroethane (HFC-125), or from mixtures of these compounds, by azeotropic or extractive distillation.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: December 5, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Ralph Newton Miller
  • Patent number: 6120652
    Abstract: The invention relates to a method for purifying a crude 1,1,1,3,3-pentafluoropropane (HFC-245fa) containing HFC-245fa and 1-chloro-3,3,3-trifluoro-trans-1-propene (HCFC-1233zd(t)), by distillation. This method is characterized in that the distillation is conducted in the presence of a solvent having a boiling point which is higher than that of HCFC-1233zd(t), thereby to substantially remove HCFC-1233zd(t) from the crude HFC-245fa. This solvent may be selected from carbon chlorides, chlorohydrocarbons, fluorochlorohydrocarbons, saturated hydrocarbons, and mixtures thereof. With the use of this solvent, it becomes possible to substantially easily separate HFC-245fa from HCFC-1233zd(t).
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: September 19, 2000
    Assignee: Central Glass Company
    Inventors: Yasuo Hibino, Ryouichi Tamai
  • Patent number: 6099694
    Abstract: The invention relates to an improvement in a process in which chlorine and difluoromethane are present in a distillation column, for example, a fluorination reaction. By controlling the chlorine feed such that the concentration of chlorine relative to difluoromethane in the distillation column is maintained below about 22 weight percent (the flammability threshold for chlorine in a mixture of difluoromethane and chlorine), formation of a flammable difluoromethane/chlorine mixture may be minimized or avoided. The invention is particularly useful in a process for the preparation of difluoromethane wherein at least one distillation column separates difluoromethane from unreacted starting materials such as methylene chloride, hydrogen fluoride and monochloromonofluoromethane.
    Type: Grant
    Filed: March 23, 1998
    Date of Patent: August 8, 2000
    Assignee: AlliedSignal Inc.
    Inventors: Hang Thanh Pham, Rajiv R. Singh, Addison M. Smith, David P. Wilson, Raymond Hilton Percival Thomas, Gustavo Cerri
  • Patent number: 6043063
    Abstract: Polyhydroxyalkanoate (PHA) polyester is extracted from biomass by dissolving the PHA in a non-halogenated solvent which comprises a PHA-good solvent or a mixture thereof. Suitable PHA-good solvents can be selected from the disclosed alcohols, esters, amides and ketones. The PHA can be recovered, for example, by cooling, by solvent evaporation, or by addition of a PHA-poor solvent, wherein the PHA-poor solvent preferably dissolves less than about 1% (w/v) of the PHA at a temperature below the solvent boiling point. Preferred PHA types for use in the invention are poly (hydroxybutyrate-co-hydroxyvalerate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and polymers/copolymers of hydroxyterminated polyhydroxybutyrate.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: March 28, 2000
    Assignee: Monsanto Company
    Inventors: Devdatt L. Kurdikar, Fred E. Strauser, A. John Solodar, Mark D. Paster, Jawed Asrar
  • Patent number: 6039845
    Abstract: A process for the purification of pentafluoroethane (F125) containing chloropentafluoroethane (F115). The F125-F115 mixture to be purified is subjected to an extractive distillation, the extractant being a C.sub.5 -C.sub.8 perfluoroalkyl halide.
    Type: Grant
    Filed: January 2, 1998
    Date of Patent: March 21, 2000
    Assignee: Elf Atochem S.A.
    Inventors: Rene Bertocchio, Eric Lacroix, Sylvain Perdrieux
  • Patent number: 5928479
    Abstract: A process for the purification of pentafluoroethane by removing chloropentafluoroethane therefrom which comprises adding to the impure pentafluoroethane a component which undergoes a non-ideal interaction with chloropentafluoroethane and/or with the azeotrope of chloropentafluoroethane and pentafluoroethane such that the volatility of chloropentafluoroethane and/or the azeotrope of chloropentafluoroethane and pentafluoroethane relative to bulk pentafluoroethane is increased and distilling the mixture.
    Type: Grant
    Filed: September 19, 1996
    Date of Patent: July 27, 1999
    Assignee: Imperial Chemical Industries PLC
    Inventors: Paul Nicholas Ewing, Stuart Corr, John Stuart Martin, Michael John Watson
  • Patent number: 5902911
    Abstract: A process is disclosed for the monohydrogenolysis of 2,2-dichlorohexafluoropropane to 2-chloro-2-hydrohexafluoropropane. The process involves reacting the 2,2-dichlorohexafluoropropane with hydrogen at an elevated temperature of about 150.degree. C. or less in the presence of a catalyst containing a catalytically effective amount of palladium supported on trivalent chromium oxide in the presence of an acid of the formula HZ (where Z is Cl and/or F) to produce 2-chloro-2-hydrohexafluoropropane with a selectivity of over 70% based upon the 2,2-dichlorohexafluoropropane converted. Azeotropes of 2-chloro-2-hydrohexafluoropropane with HF are also disclosed; as are processes for producing such azeotropes.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: May 11, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Velliyur Nott Mallikarjuna Rao, Edwin James Warwas
  • Patent number: 5897750
    Abstract: Acetone cannot be separated from a mixture of isopropanol and water because of the closeness of their boiling points. Acetone can be easily separated from isopropanol and water by extractive distillation. Effective extractive agents are 1-nitropropane, 3-carene, dimethylsulfoxide and 3-pentanone.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: April 27, 1999
    Inventor: Lloyd Berg
  • Patent number: 5882485
    Abstract: A process for the separation of dimethyl ether and chloromethane in mixturesA process for the separation of dimethyl ether and chloromethane in mixtures by two distillation steps. In the first step, the mixture is subjected to an extractive distillation with water, aqueous salt solutions or organic liquids as extractant, the top product being chloromethane. In the second step, the dimethyl ether is separated from the extractant.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: March 16, 1999
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Peter Roth, Erhard Leistner, Hans Haverkamp, Wolfgang Wendel, Michael Kleiber
  • Patent number: 5879517
    Abstract: 2-Butanol cannot be sparated from t-amyl alcohol by distillation or rectification because of the closeness of their boiling points. 2-Butanol is readily separated from t-amyl alcohol by extractive distillation. Effective agents are butyl ether, benzyl acetate and 1,2,4-trimethyl benzene.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: March 9, 1999
    Inventor: Lloyd Berg
  • Patent number: 5876569
    Abstract: Methyl ethyl ketone cannot be separated from ethanol by distillation or rectification because of the closeness of their boiling points. Methyl ethyl ketone is readily separated from ethanol by extractive distillation. Effective agents are methyl benzoate, phenol, glycerol and nitroethane.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: March 2, 1999
    Inventor: Lloyd Berg
  • Patent number: 5853550
    Abstract: Disclosed is a process for the separation of tar and non-volatile reagents from a reaction mixture formed when chlorinated carbon compounds are allowed to react with anhydrous hydrogen fluoride in a liquid phase to form fluorinated carbon compounds. The disclosed process leaves tar essentially free of HF and in a form allowing for safe, easy, and economical transfer and disposal.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: December 29, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert Brent Landers, Vijay Kumar Gupta, Vinci Martinez Felix
  • Patent number: 5846388
    Abstract: There is provided an azeotropic mixture of hydrogen fluoride (HF) and 1,1-difluoroethane (HFC152a). In addition, there is provided a process for the production of HFC152a having a step of more effectively recovering HF which does not contain HFC152a or HFC152a which does not contain HF in which step an azeotropic mixture is distilled off from a column top by subjecting a mixture containing HFC152a and HF, so that HF which does not contain HFC152a or HFC152a which does not contain HF is recovered from a column bottom.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: December 8, 1998
    Assignee: Daiken Industries Ltd.
    Inventors: Takehide Tsuda, Satoshi Komatsu
  • Patent number: 5840160
    Abstract: 3-Carene is difficult to separate from limonene by conventional distillation or rectification because of the proximity of their boiling points. 3-Carene can be readily separated from limonene by extractive distillation. Effective agents are o-cresol, 2,6-dimethyl-4-heptanone and triethylene glycol.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: November 24, 1998
    Inventor: Lloyd Berg
  • Patent number: 5795447
    Abstract: 2-Butanol cannot be separated from isobutanol by distillation or rectification because of the closeness of their boiling points. 2-Butanol is readily separated from isobutanol by extractive distillation. Effective agents are propylene glycol propyl ether, 2-methoxyethanol and ethyl acetate.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 18, 1998
    Inventor: Lloyd Berg
  • Patent number: 5785822
    Abstract: The present invention provides a method for separating dichlorodifluoromethane from difluoromethane. More specifically, a process is provided for separating dichlorodifluoromethane and difluoromethane using azeotropic distillation.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: July 28, 1998
    Assignee: AlliedSignal Inc.
    Inventors: Gustavo Cerri, Kin Ching Kong, Charles Francis Swain, Rajat Subhra Basu
  • Patent number: 5779862
    Abstract: 2-Methyl-1-butanol and 3-methyl-1-butanol are difficult to separate from 1-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-butanol and 3-methyl-1-butanol can be easily separated from 1-pentanol by azeotropic distillation. Effective agents are toluene, methyl acetate and tetrahydrofuran.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: July 14, 1998
    Inventor: Lloyd Berg
  • Patent number: 5772852
    Abstract: A process for separating HCl from pentafluoroethane, chloropentafluoroethane, chlorotrifluoroethane, trifluoromethane, and other fully saturated and unsaturated fluorocarbons, chlorofluorocarbons and chlorocarbons.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: June 30, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Barry Asher Mahler, Vinci Martinez Felix, Ralph Newton Miller
  • Patent number: 5738763
    Abstract: 2-Methyl-1-propanol is difficult to separate from 2-methyl-1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-propanol can be readily separated from 2-methyl-1-butanol by extractive distillation. Effective agents are hexyl formate, 2-heptanone and dipropyl amine.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: April 14, 1998
    Inventor: Lloyd Berg
  • Patent number: 5720857
    Abstract: 1,2,4-Trimethylbenzene is difficult to sepparate from 1,2,3-trimethylbenzene because of the proximity of their boiling points. They are readily separated by azeotropic distillation. Effective agents are 1-propanol, methyl formate and 1-nitropropane.
    Type: Grant
    Filed: January 2, 1997
    Date of Patent: February 24, 1998
    Inventor: Lloyd Berg
  • Patent number: 5718807
    Abstract: The disclosure relates to removing impurities from hexafluoroethane (CF.sub.3 CF.sub.3), also known as PerFluoroCarbon 116 (PFC-116) or FluoroCarbon 116 (FC-116), by using azeotropic distillation such that an overhead product containing an HCl-hexafluoroethane is formed, optionally combined with a phase separation step to break the HCl-hexafluoroethane azeotropic or azeotrope-like composition thereby permitting recovery of substantially pure hexafluoroethane. Unreacted hydrogen fluoride (HF) may be removed from hexafluoroethane during the above azeotropic distillation with HCl or alternatively by an azeotropic distillation wherein an HF-hexafluoroethane azeotropic or azeotrope-like composition exits overhead and substantially pure HF exits in the bottoms stream.
    Type: Grant
    Filed: September 20, 1994
    Date of Patent: February 17, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, Mark Richard Deschere, Barry Asher Mahler, Olagappan Muthu
  • Patent number: 5716499
    Abstract: 2-Methyl-1-propanol is difficult to separate from 1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-propanol can be easily separated from 1-butanol by azeotropic distillation. Effective agents are isobutyl acetate, methyl cyclohexane and 2-nitropropane.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: February 10, 1998
    Inventor: Lloyd Berg
  • Patent number: 5709781
    Abstract: 1-Butanol is difficult to separate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 1-Butanol can be easily separated from 2-pentanol by extractive distillation. Effective agents are anisole, ethyl nonanate and butyl ether.
    Type: Grant
    Filed: February 11, 1997
    Date of Patent: January 20, 1998
    Inventor: Lloyd Berg
  • Patent number: 5658436
    Abstract: 2-Methyl-1-butanol is impossible to separate from 3-methyl-l-butanol because they both boil at 130.degree. C. 2-Methyl-1-butanol can be readily separated from 3-methyl-1-butanol by extractive distillation. Effective agents are o-xylene, 3-carene and 1-methoxy-2-propanol.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: August 19, 1997
    Inventor: Lloyd Berg
  • Patent number: 5636957
    Abstract: A method of making a personalized children's storybook using preprinted books and inserting stickers containing personalized data to create a personalized book.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: June 10, 1997
    Inventor: John B. Hefty
  • Patent number: 5607912
    Abstract: A hydrochlorofluorocarbon azeotropic or azeotropic-like mixture comprising at least one member selected from the group consisting of hydrogen-containing fluoropropanes of the formula I:CH.sub.a Cl.sub.b F.sub.c CF.sub.2 CH.sub.x Cl.sub.y F.sub.z (I)wherein a+b+c=3, x+y+z=3, a+x.gtoreq.1, b+y.gtoreq.1, and 0.ltoreq.a,b,c,x,y,z.ltoreq.3, and at least one member selected from the group of compounds II consisting of halogenated hydrocarbons having a boiling point of from 20.degree. to 85.degree. C. other than said hydrochlorofluoropropanes, hydrocarbons having a boiling point of from 20.degree. to 85.degree. C. and alcohols having from 1 to 4 carbon atoms.
    Type: Grant
    Filed: September 9, 1992
    Date of Patent: March 4, 1997
    Assignee: Asahi Glass Company Ltd.
    Inventors: Shunichi Samejima, Kenroh Kitamura, Naohiro Watanabe, Teruo Asano, Toru Kamimura, Yoko Usami
  • Patent number: 5560899
    Abstract: The invention relates to a process for separating HF contained in liquid mixtures comprising HCFC 123 and/or 124. The mixtures, enriched in C.sub.2 Cl.sub.4 up to a content of such compound of 20-75% by weight, is subjected to a treatment for separating liquid phases, thereby obtaining an acid phase very rich in Hf and an organic phase impoverished in HF, which is subjected to a flash, so obtaining a liquid phase containing 123, 124 and C.sub.2 Cl.sub.4, having a very low HF content, and a gas phase enriched in HF. As an alternative to flash, a separation in a distillation column can be carried out.
    Type: Grant
    Filed: February 20, 1996
    Date of Patent: October 1, 1996
    Assignee: Ausimont S.p.A.
    Inventors: Giampaolo Solinas, Giampiero Basile
  • Patent number: 5558747
    Abstract: An improved process for azeotropic distillation of chloral to anhydrous chloral containing as little as 0.1% water. An azeotropic mixture is used which contains chloral in at least a 1.4:1 ratio with the concentration (% of weight) of a azeotropic agent (preferably ethylene dichloride). The feed stream may contain other components, but will contain at least 60% chloral and less than 40% water. Preferably, the feed stream is substantially free of components other than choral and water. Water is removed from the overhead product of the azeotropic and EDC separation distillations periodically or continuously throughout the process. The azeotropic agent is preferably separated from the anhydrous chloral product. This separation may be performed in the azeotropic distillation column or in a separate distillation column.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: September 24, 1996
    Assignee: AMVAC Chemical Corporation
    Inventors: Kevin Brady, Lester Friedmann
  • Patent number: 5532283
    Abstract: Azeotropic compositions made up of from about 64 to about 80% by weight of 1,1,1,4,4,4-hexafluorobutane and from about 20 to about 36% by weight of 2-methyl butane have been found to be particularly useful as blowing agents for the production of polyurethane foams.
    Type: Grant
    Filed: March 24, 1995
    Date of Patent: July 2, 1996
    Assignee: Bayer Corporation
    Inventors: Joachim Werner, Scott A. Kane, Eric F. Boonstra, Herman P. Doerge
  • Patent number: 5514251
    Abstract: The invention relates to binary azeotropic compositions between water and 1,1-dichloro-1-fluoroethane, 1-chloro-1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane or trifluoroethylene, to a process for the removal of water from solutions by azeotropic distillation using these compositions, as well as to a process for the production of a hydrofluoroalkane in which water is removed from the mixture of reaction products by azeotropic distillation using these compositions.
    Type: Grant
    Filed: March 22, 1994
    Date of Patent: May 7, 1996
    Assignee: Solvay (Societe Anonyme)
    Inventors: Dominique Balthasart, Andre Jacquemart
  • Patent number: 5466345
    Abstract: o-Xylene cannot be separated from p-xylene and m-xylene by conventional distillation or rectification because of the proximity of their boiling points. o-Xylene can be readily separated from mixtures of p-xylene and m-xylene by azeotropic distillation. Effective agents are 3-methyl-1-butanol, methyl propionate and 3-pentanone.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: November 14, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5453167
    Abstract: p-Xylene cannot be separated from m-xylene by distillation or rectification because of the proximity of their boiling points. p-Xylene can be separated from m-xylene by means of extractive distillation. Effective agents are 3-ethylphenol and isopropyl palmitate. Effective agents for separating mixtures of p-xylene, m-xylene and o-xylene are 2-butoxyethyl acetate and 1,1,1-trichloroethane.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: September 26, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5453166
    Abstract: Ethanol is impossible to separate from 2-butanone by conventional distillation or rectification because of the minimum boiling azeotrope between these two. Ethanol can be readily separated from 2-butanone by extractive distillation. Effective agents are dipromyl amine, phenol and dimethylsulfoxide.
    Type: Grant
    Filed: November 7, 1994
    Date of Patent: September 26, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5445716
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by extractive distillation. Effective agents are dipentene, anisole and ethyl benzene.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: August 29, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5441659
    Abstract: Compositions of N(CF.sub.3).sub.a (CHF.sub.2).sub.b (CH.sub.2 F).sub.c, where a, b and c are integers from 0 to 3 and a+b+c=3, and C.sub.n F.sub.m H.sub.2n+2-m, where n is an integer from 1 to 3 and m is an integer from 1 to 8, are disclosed. Also disclosed are compositions of N(CF.sub.3).sub.3 and butane, cyclopropane, dimethyl ether or isobutane. These compositions are useful as refrigerants, cleaning agents, expansion agents for polyolefins and polyurethanes, aerosol propellants, heat transfer media, gaseous dielectrics, fire extinguishing agents, power cycle working fluids, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, and displacement drying agents.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: August 15, 1995
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Barbara H. Minor
  • Patent number: 5441608
    Abstract: p-Xylene cannot be separated from m-xylene by distillation or rectification because of the proximity of their boiling points. p-Xylene can be separated from m-xylene by means of extractive distillation. Effective agents are 3-ethylphenol and 1,1,2-trichloroethane. Effective agents for separating mixtures of p-xylene, m-xylene and o-xylene are 2-butoxyethyl acetate and 1,1,1-trichloroethane.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: August 15, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5439561
    Abstract: 3-Methyl-2-butanol is difficult to separate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 3-Methyl-2-butanol can be readily separated from 2-pentanol by azeotropic distillation. Effective agents are 2,2-dimethyl butane, ethyl acetate and dioxane.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: August 8, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5436211
    Abstract: The invention concerns a process for the recovery of a solvent adsorbed in an adsorber, or other substances which are condensable. The adsorber (3) is, at first, heated to a temperature which is below the decomposition temperature of the solvent, then the adsorber chamber (2) is sealed off from the surroundings and a high negative pressure is applied to the adsorber chamber (2), as a result of which the solvent is desorbed. During a portion of the time when this high negative pressure is applied, the temperature of the adsorber (3) is brought to a value which is above the decomposition temperature of the solvent. In spite of this, there is no decomposition under the noted conditions, however, the high temperature does enable an almost complete desorption of the solvent. Finally, the desorbed solvent is drawn off from the adsorber chamber (2) and condensed.
    Type: Grant
    Filed: February 1, 1993
    Date of Patent: July 25, 1995
    Assignee: Pero KG
    Inventor: Horst Erbel
  • Patent number: 5429720
    Abstract: A distillation process for separating spent organic solvents such as trichloroethane or d-limonene from their contaminants such as oil is improved by the addition of a perfluorinated alkane or mixture of such alkanes to permit more efficient separation of the solvents from the oil.
    Type: Grant
    Filed: January 26, 1994
    Date of Patent: July 4, 1995
    Assignee: The Dow Chemical Company
    Inventors: James A. Mertens, Felipe A. Donate