Internal Battery Patents (Class 204/196.07)
  • Patent number: 11525603
    Abstract: A sacrificial anode for a water heater system is provided. The anode may comprise a proximal end, a distal end, and a passage running longitudinally between the distal and proximal end. A first current carrying lead and a first voltage lead may be connected to the distal end of the anode, while a second current carrying lead a second voltage lead may be connected to the proximal end of the anode. The first current carrying lead and first voltage lead may be connected to the distal end of the anode in such a manner that the leads may be fed through the passage of the anode and protrude from the proximal end of the anode. A method of determining the health of a sacrificial anode is further provided, which involves utilizing the resistance drop across the anode to determine the radius of the anode during use.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: December 13, 2022
    Assignee: Radtech, LLC
    Inventor: Ross Lambert
  • Patent number: 11085908
    Abstract: The graphitization of a sample having a sample surface and bulk material adjacent to the sample surface is determined with a housing holding a potentiometer and a processor connected to the potentiometer. The processor receives electric potential measurements from the potentiometer at the sample surface and uses the electric potential measurements to quantify the graphitization of the bulk material adjacent to the sample surface to generate graphitization data for output.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: August 10, 2021
    Assignee: Matergenics, Inc.
    Inventors: Mehrooz Zamanzadeh, Carolyn Tome, Anil Kumar Chikkam
  • Patent number: 10837673
    Abstract: The metal tank portion of an electric water heater is protected against corrosion utilizing a corrosion protection system that detects a voltage potential between the sheath portion of a tank water-immersed electric heating element and the tank. In one embodiment of the corrosion protection system the sensed sheath/tank potential is utilized to enable a user of the water heater to accurately gauge the necessity of replacing a sacrificial anode extending into the tank. In another corrosion protection system, the sensed sheath/tank potential is utilized to provide impressed current cathodic protection of the tank and also to prevent dry firing of the electric water heater.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 17, 2020
    Assignee: Rheem Manufacturing Company
    Inventors: Jozef Boros, Raheel A. Chaudhry, Yan Hong, Troy E. Trant
  • Patent number: 10240313
    Abstract: Techniques and devices to assist an offshore unit in going on location and coming off location. A device may include an interface configured to receive a signal indicative of motions of an offshore unit. The device may also include a memory configured to store a set of values corresponding to acceptable motions of the offshore unit, as well as a processor configured to determine if a measured motion of the offshore unit exceeds at least one value of the set of values and generate an indication that going on location by the offshore unit can be undertaken when the processor determines that the measured motion of the offshore unit is less than or equal to the at least one value.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: March 26, 2019
    Assignee: Ensco Services Limited
    Inventors: Mason Corey Melkowits, Barton D. Grasso, Frank Strachan, Jose H. Vazquez
  • Patent number: 9803887
    Abstract: The metal tank portion of an electric water heater is protected against corrosion utilizing a corrosion protection system that detects a voltage potential between the sheath portion of a tank water-immersed electric heating element and the tank. In one embodiment of the corrosion protection system the sensed sheath/tank potential is utilized to enable a user of the water heater to accurately gauge the necessity of replacing a sacrificial anode extending into the tank. In another corrosion protection system, the sensed sheath/tank potential is utilized to provide impressed current cathodic protection of the tank and also to prevent dry firing of the electric water heater.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: October 31, 2017
    Assignee: RHEEM MANUFACTURING COMPANY
    Inventors: Jozef Boros, Raheel A. Chaudhry, Yan Hong, Troy E. Trant
  • Publication number: 20150107989
    Abstract: Provided is an apparatus in which an electrode insulation inactivating layer on the basis of charge and discharge which is a cause for deterioration of storage capacity of a rechargeable battery is regenerated by thermo-mechanical effects caused by dielectric relaxation loss, individual frequencies of dielectric relaxation loss of rechargeable batteries in general are automatically searched by an increase in high-frequency dependent charging current, the insulation layer is selectively decomposed, termination of charge of the storage battery is additionally known by connecting or disconnecting a frequency of dielectric relaxation loss, and electric current conductance at a frequency of dielectric relaxation loss gives a storage quantity which is a state of charge.
    Type: Application
    Filed: February 16, 2012
    Publication date: April 23, 2015
    Applicant: JSV CO., LTD.
    Inventor: Hiroto Tateno
  • Patent number: 8372260
    Abstract: A marine drive cathodic protection control circuit and method controls ohmic current from a power source to an anode according to electrical reference potential sensed by a reference electrode. The ohmic current is interrupted for an interruption interval, and reference potential is sensed during the interruption interval. The ohmic current is controlled according to reference potential sensed during the interruption interval.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 12, 2013
    Assignee: Brunswick Corporation
    Inventors: Richard E. Staerzl, Michael M. Blackwood
  • Patent number: 8317996
    Abstract: A method is provided for corrosion protection in a marine construction, such as a marine surface vessel or a marine structure, the marine construction including at least one metal element and a sacrificial anode adapted to be at least partly immerged in an electrolyte in the form of water, in which the marine construction is at least partly immerged, the at least one metal element including a metal part, the sacrificial anode being provided for corrosion protection of the metal part. The method includes connecting at least one of the at least one metal element and the sacrificial anode to a DC electrical power outlet so as to allow an electric de-passivation current through an electrical circuit including the sacrificial anode, the metal element and the electrolyte.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 27, 2012
    Assignee: AB Volvo Penta
    Inventors: Carl Nelvig, Petter Igede
  • Patent number: 8298397
    Abstract: A method for corrosion protection in a marine construction including a plurality of metal elements and at least one reference electrode at least partly immerged in water, the metal elements including an anode and a metal part, the anode being provided for corrosion protection of the metal part includes measuring an electric potential of the metal part with the reference electrode as a ground reference. At least one of the metal elements and at least one of the at least one reference electrode are connected to a DC electrical power outlet so as to allow an electrical regeneration current through an electrical circuit including the at least one of the metal elements, the at least one of the at least one reference electrode and the electrolyte so that the reference electrode is anodized.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: October 30, 2012
    Assignee: AB Volvo Penta
    Inventor: Carl Nelvig
  • Patent number: 8268134
    Abstract: According to various embodiments, a system includes a turbine engine component that includes a first material having a surface exposed to a fluid flow path and a sacrificial anode layer disposed on the surface. The sacrificial anode layer includes a second material that is electrochemically more active than the first material and the second material is configured to preferentially corrode to protect the first material from corrosion.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: George Albert Goller, Paul Stephen Dimascio, Rebecca Evelyn Hefner
  • Patent number: 8226812
    Abstract: A method in a corrosion protection system for protecting a first and a second metal part of a marine construction is provided. The method includes controlling electrical currents through electrical circuits, including respective anodes, the respective metal parts and an electrolyte, at least partly based on measured electrical potentials of the respective metal parts with an reference electrode as a ground reference. The method further includes repetitively performing the steps of controlling the electrical currents so as to be reduced or eliminated, measuring the electrical potentials while the electrical currents are maintained reduced or eliminated, and, after measuring the first and second electrical potentials, controlling the electrical currents so as to be increased or reestablished.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: July 24, 2012
    Assignee: AB Volvo Penta
    Inventors: Carl Nelvig, Lennart Arvidsson
  • Patent number: 8118983
    Abstract: A corrosion inhibiting system is provided with the ability to allow both primary and secondary portions of the circuit to be used in the alternative without having the primary and secondary systems interfere with each other by operating at the same time. By incorporating a continuity controller, such as a switch or a diode to selectively disconnect the sacrificial anode from the circuit, the primary and secondary systems can both be provided on a marine vessel, but used independently from each other. In that way, the primary and secondary corrosion inhibiting systems are prevented from interfering with each other during normal operation.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: February 21, 2012
    Assignee: Brunswick Corporation
    Inventors: Kevin R. Anderson, Christopher J. Misorski, Gregory L. Fugar, Steven J. Gonring
  • Publication number: 20110089048
    Abstract: A method is provided for corrosion protection in a marine construction, such as a marine surface vessel or a marine structure, the marine construction including at least one metal element and a sacrificial anode adapted to be at least partly immerged in an electrolyte in the form of water, in which the marine construction is at least partly immerged, the at least one metal element including a metal part, the sacrificial anode being provided for corrosion protection of the metal part. The method includes connecting at least one of the at least one metal element and the sacrificial anode to a DC electrical power outlet so as to allow an electric de-passivation current through an electrical circuit including the sacrificial anode, the metal element and the electrolyte.
    Type: Application
    Filed: June 25, 2008
    Publication date: April 21, 2011
    Applicant: AB Volvo Penta
    Inventors: Carl Nelvig, Petter Igede
  • Patent number: 7909982
    Abstract: A single anode system used in multiple electrochemical treatments to control steel corrosion in concrete comprises a sacrificial metal that is capable of supporting high impressed anode current densities with an impressed current anode connection detail and a porous embedding material containing an electrolyte. Initially current is driven from the sacrificial metal [1] to the steel [10] using a power source [5] converting oxygen and water [14] into hydroxyl ions [15] on the steel and drawing chloride ions [16] into the porous material [2] around the anode such that corroding sites are moved from the steel to the anode restoring steel passivity and activating the anode. Cathodic prevention is then applied. This is preferably sacrificial cathodic prevention that is applied by disconnecting the power source and connecting the activated sacrificial anode directly to the steel.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: March 22, 2011
    Inventors: Gareth Glass, Adrian Roberts, Nigel Davison
  • Patent number: 7905992
    Abstract: An electrically conductive surface of a submerged object comprises a polymer matrix, such as a resin, with a plurality of electrically conductive nanoparticles suspended within the polymer. The nanoparticles are preferably smaller than 100 nanometers in their minimum dimension. In addition, large electrically conductive particles can be suspended in the polymer. The larger particles are typically greater than 300 nanometers in minimum dimension. The larger particles can comprise carbon powder or fibers. The electrically conductive nanoparticles, which can be nanotubes or ferrules, for example, and the larger particles, which can be carbon powder or fibers, are suspended homogeneously within the polymer matrix for best results and most uniform electrical conduction through the thickness of the composite layer.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: March 15, 2011
    Assignee: Brunswick Corporation
    Inventors: Christopher J. Misorski, Kevin R. Anderson, Erica D. Blizil, Scott M. Olig
  • Patent number: 7901546
    Abstract: The present invention includes systems, methods and apparatus for continuously, independently and in some cases remotely monitoring the operation of a current interrupter used to test a cathodic protection system, or the cathodic protection system itself, for verification of proper operation. Embodiments of the invention include electronic devices that may be temporarily attached to a current interrupter that is being used to test a cathodic protection system, or directly to the cathodic protection system itself. Embodiments of the invention monitor the activity of an interrupter by sampling the output (voltage and time) to identify the cycle(s) of the interrupter. The invention provides truly independent verification since it does not need to know in advance the sequence or cycle times of the current interrupter being monitored. The information obtained by the invention is output so that it may be provided to a user, displayed, downloaded or stored for future reference.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: March 8, 2011
    Assignee: M.C. Miller Co.
    Inventors: Melvin C. Miller, Marcelo Jakubzick, Juan Pablo Gutierrez
  • Patent number: 7897031
    Abstract: An apparatus, system, method and computer program product directed to controlling corrosion, particularly space weather induced corrosion, of a conductive structure in contact with a corrosive environment and coated with a semiconductive coating, where the corrosion is controlled by a controllable filter and a corresponding electronic control unit configured to process and adjust the controllable filter in response to at least one measured parameter associated with space weather effects on the conductive structure.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: March 1, 2011
    Assignee: Applied Semiconductor International Ltd.
    Inventors: David B. Dowling, Farshad Khorrami, Joseph G. Michels, Mikhail Panasyuk
  • Patent number: 7761198
    Abstract: Methods and systems for energy management system for a vehicle are provided. The system includes a first power source configured for cranking an engine wherein the first power source includes a switch configured to electrically couple the first power source to a starter for the engine and wherein the first power source is electrically isolated from auxiliary onboard loads. The system further includes a second power source configured for supplying auxiliary on board loads, a charging subsystem electrically coupled to the first and the second power sources. The charging subsystem is configured to supply charging current to the first and the second power sources. The system further includes a controller configured to maintain the first power source in a substantially fully charged condition and supply the auxiliary loads from the second power source.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: July 20, 2010
    Assignee: General Electric Company
    Inventor: Ramesh Chandra Bhardwaj
  • Patent number: 7425249
    Abstract: Apparatus 10 discloses a subsea monitoring station using solar cells to energize at least one electronic circuit incorporating at least one node having a determinable circuit value or other parameter test station providing a full time voltage readout, powered by the lights 16 on an ROV/AUV 14 or diver's lamp. An additional element of the apparatus is a subsea cathodic protection test station 18 incorporating a plurality of banks of solar cells 28 powering DC voltage test circuits having some form of parameter display, such as voltmeter readout 30, deriving voltage from ambient light 16 provided by outside sources, such as an ROV 14 or diver's lamp. The apparatus's cathodic protection test system includes four integral voltmeters 30 of which are powered with independent solar panels 28. The solar panels 28 are powered by artificial light 16 delivered by diver or submersible vehicle 14.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: September 16, 2008
    Assignee: Deepwater Corrosion Services, Inc.
    Inventor: James N Britton
  • Patent number: 7318889
    Abstract: An apparatus, system, method and computer program product directed to controlling corrosion of a conductive structure in contact with a corrosive environment and electrically connected to one or more anodes, wherein the anodes are less noble than the conductive structure, where the corrosion is controlled by a controllable filter and a corresponding electronic control unit configured to process at least one stored or measured parameter, and wherein the apparatus, system and method serve to prolong the lifetime of the one or more anodes by reducing, minimizing or substantially eliminating their sacrificial character.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: January 15, 2008
    Assignee: Applied Semiconductor International, Ltd.
    Inventor: David B. Dowling
  • Patent number: 7264697
    Abstract: A sacrificial marine anode with a water proof encased current tester to alert an operator of proper connectivity, current status of the cathodic protection system for an associated marine structure, and status of current tester power supply is disclosed.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: September 4, 2007
    Assignee: California Corrosion Concepts, Inc.
    Inventors: Mohammed Ali, J. Darby Howard, Jr., Chris Lisson
  • Patent number: 7238263
    Abstract: A portable, handheld, automatic protection level interpreting cathodic protection meter for testing the level of protection being afforded to metallic structures protected by either sacrificial anode or impressed current cathodic protection systems, or both. The meter is suitable over a variety of environments including salt water, freshwater, and soil. The operator can select both the type of metal to be tested as well as the type of reference electrode that is being used. The meter automatically calibrates data interpretation of the level of protection based on the operator's selections and eliminates any voltage drop error existing between a reference electrode and the structure being protected.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: July 3, 2007
    Assignee: California Corrosion Concepts, Inc.
    Inventors: J. Darby Howard, Jr., Mohammed Ali, Chris Lisson
  • Patent number: 7189319
    Abstract: First and second axial current meters (ACM) are mechanically connected to a well casing just above and below a corrosive zone and a master axial current meter (MACM) is connected to the casing at the earth's surface, the MACM periodically obtaining measurements of axial current from the ACMs to determine how much cathodic protection current is to be applied to the casing to avoid corrosion.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: March 13, 2007
    Assignee: Saudi Arabian Oil Company
    Inventors: Husain M. Al-Mahrous, Darrell R. Catte
  • Patent number: 7141150
    Abstract: A method and test apparatus for carrying out testing on a variety of samples of polymer bonded to metal wherein the samples are subjected to an accelerated cathodic reaction causing cathodic delamination of the samples. In particular, the method and test apparatus include a closed vessel that is partially filled with synthetic ocean water. An impressed current system is employed to protect the metal component of the samples. The synthetic ocean water is heated with an external band heater raising the temperature of the synthetic ocean water to thermal levels exceeding normal ocean temperatures in order to accelerate the reaction. Pure oxygen is then introduced into the closed vessel at a desired pressure to dissolve the oxygen into the synthetic ocean water to further simulate natural ocean conditions.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: November 28, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: John R. Welch, Thomas S. Ramotowski, Gerald J. Roche
  • Patent number: 7029569
    Abstract: An apparatus, system, method and computer program product directed to controlling corrosion of a conductive structure in contact with a corrosive environment and coated with a semiconductive coating, where the corrosion is controlled by a controllable filter and a corresponding electronic control unit configured to process at least one stored or measured parameter.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: April 18, 2006
    Assignee: Applied Semiconductor International Ltd.
    Inventors: David B. Dowling, Farshad Khorrami
  • Patent number: 6896779
    Abstract: A system using tank corrosion sensors to provide for an overall assessment and monitoring of the electro-chemical corrosion and coatings condition in ships' tanks, and particularly in ships' seawater or compensated fuel tanks. The system includes reference half-cells mounted along a suspended cable and one instrumented sacrificial anode at the end of the cable to provide optimal sensing capability within a tank structure. The reference half-cells and the sacrificial anode measure a potential and current output, respectively. Together the measurements provide objective information that can be used to predict corrosion damage and coating deterioration occurring throughout the structure of the tank. The system may be used for an overall assessment and monitoring of the electro-chemical corrosion and coatings condition. In a preferred embodiment, the measurements are stored in a datalogger that is optimally contained within an associated instrument housing.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: May 24, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Elvin D. Thomas, III, Keith E. Lucas, Paul Slebodnick, Elizabeth A. Hogan
  • Patent number: 6881306
    Abstract: Re-usable, energy-efficient apparatus for the restoration of corrosion-damaged reinforced concrete and a method for controlling the same. The apparatus includes a combination electrode device in a sandwich construction that includes a dimensionally stable electrode, a reusable electrolyte reservoir, an ion exchanger element, a reference electrode, a power-switching device for anodic regulation, and a measuring system for determining the capacity of the ion exchanger element to take up ions. Use of this combination electrode device prevents the formation of active chlorine during extraction of chlorine from reinforced concrete.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 19, 2005
    Inventors: Ulrich Schneck, Thomas Winker, Hagen Grünzig
  • Patent number: 6824702
    Abstract: The invention relates to an apparatus and a process for the preparation of salt melts, and mixtures thereof, by means of a stirred reactor and a tubular reactor, in which the starting materials are melted and brought to reaction, and the reaction products are subsequently passed through columns or towers for purification.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: November 30, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Leonhard Ohrem, Susanne Brzezinski
  • Publication number: 20040222084
    Abstract: An apparatus for indicating when a predetermined portion of a sacrificial anode has been corroded comprises a detector embedded within the interior of the sacrificial anode initially at a predetermined distance from an exposed exterior surface of the sacrificial anode. The detector detects the absence of sacrificial anode material when the predetermined portion has corroded and generates a detection signal. A monitoring system communicates with the detector for receiving detection signals and generates an indicator signal when a detection signal is received. An indicator in communication with the monitoring system receives indicator signals and generates an alarm when an indicator signal is received.
    Type: Application
    Filed: May 4, 2004
    Publication date: November 11, 2004
    Applicant: Performance Metals, Inc.
    Inventors: Martin Wigg, Henry Leipert, James Elder, Kelvin P. Dixon
  • Patent number: 6811681
    Abstract: An apparatus, system, method and computer program product directed to controlling corrosion of a conductive structure in contact with a corrosive environment and coated with a semiconductive coating, where the corrosion is controlled by a controllable filter and a corresponding electronic control unit configured to process at least one stored or measured parameter.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: November 2, 2004
    Assignee: Applied Semiconductor International Ltd.
    Inventors: David B. Dowling, Farshad Khorrami
  • Publication number: 20040031695
    Abstract: The invention provides methods and devices for the electrochemical generation of nitrogen from organic nitrogen compounds, such as hydrazides (RCONHNH2), the corresponding organic hydrazino-carboxylates (RCO2NHNH2) and amino-guanidine salts (e.g. aminoguanide bicarbonate H2NNHC(NH)NH2.H2CO3). A variety of organic hydrazides and hydrazino-carboxylates may be used, and empirically tested for performance. For example, in the hydrazides and hydrazino-carboxylates “R” may be an alkyl, alkenyl, alkynyl or aryl group, in some embodiments methyl, ethyl, or benzyl. The alkyl, alkenyl and alkynyl groups may be branched or unbranched, substituted or unsubstituted. The utility of such compounds may be routinely assayed in accordance with the guidance provided herein, including the Examples set out herein in which alternative nitrogen compounds may be substituted for routine test purposes.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 19, 2004
    Inventors: Colin Oloman, Jiujun Zhang, Jielin Song
  • Publication number: 20030085117
    Abstract: A corrosion protection device (“CPD”) for inhibiting corrosion of an air compressor collection tank, and relieving the pressure in the tank when excessive condensate accumulates within the tank. A relief passage extends through the plug, and an anode seals the relief passage near the interior volume of the tank. The tank, plug and anode are all coupled in an electrically conductive relationship, and a galvanic circuit is formed when condensate collects near the bottom of the tank. The anode has a lower redox potential than steel, and is preferably made from magnesium. The anode loses electrons with less resistance than the steel tank, so the anode will be consumed through the oxidation process before the steel tank corrodes. Once the anode is consumed so that it no longer seals the relief passage, the condensate and air are discharged from the tank through the relief passage.
    Type: Application
    Filed: November 7, 2001
    Publication date: May 8, 2003
    Applicant: Ingersoll-Rand Company
    Inventors: Charles Tillman Keller, William M. Lewis
  • Patent number: 6540886
    Abstract: A cathodic protection system for corrosion protection of metallic structures in contact with aqueous solutions such as salt water and calcium chloride brine. The system employs anode chambers containing hydroxide anolytes segregated from the electrolyte containing chloride by an ion-exchange membrane. The anode and the structures to be protected are coupled to voltage and current sources impressing current at the immersed surfaces of metallic structures to maintain these surfaces close to an equipotential and covered with a bound layer of polarized hydroxide. The preferred embodiment is used in connection with stainless steel holding tanks and associated equipment used to circulate calcium chloride brine to freeze whole muscle turkeys. When the brine and the anolyte contact the membrane, a bi-ionic potential forms across the membrane that drives the counter-directed transport of ions through the membrane, thereby preventing the anodic production of Cl2.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: April 1, 2003
    Inventor: Gordon I. Russell
  • Patent number: 6506295
    Abstract: A main anode and a pilot anode are mounted on a coating film of a metal structure, a cathode is mounted on a metal based material of the metal structure, a predetermined voltage is applied from the pilot anode to the metal structure, a magnitude of corrosion protection current of the metal structure is read from a current value of the pilot anode varying with variation of corrosion environment of the metal structure, the application voltage of the main anode is increased or decreased in accordance with the current value, whereby providing a cathodic protection method and apparatus for a metal structure capable of expanding protectable area by a single anode to a maximum without causing over-corrosion protection.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: January 14, 2003
    Assignee: Jonan Co., Ltd.
    Inventors: Masahiro Takahashi, Eisuke Wada, Yasuhiko Takahashi
  • Publication number: 20020195353
    Abstract: A semiconductor system is provided that uses semiconductive organic polymers, electronics and semiconductor technology to provide a wide array of semiconductor components and a system of preventing corrosion of a surface of a metal structure in contact with a corrosive environment involving:
    Type: Application
    Filed: June 25, 2001
    Publication date: December 26, 2002
    Applicant: APPLIED SEMICONDUCTOR, INC.
    Inventor: David B. Dowling
  • Patent number: 6331243
    Abstract: An apparatus for prevention of corrosion in metal objects uses a capacitively coupled fastener or pad attached to a metal body being protected from corrosion. The metal body and the negative terminal of a source of DC voltage (battery) are grounded. The positive terminal of the source of DC voltage is connected to electronic circuitry that imparts pulses of low voltage DC through the capacitor to the fastener. These pulses of electrical current inhibit the oxidation of the metal object by providing a source of electrons to the oxidizing chemicals in contact with the metal. The electronic circuitry includes a reverse voltage protector to prevent the application of reverse source voltage. The circuitry also includes a power conditioner to supply a constant DC voltage to a microprocessor. The microprocessor generates pulses of DC signals that are amplified by a pulse amplifier and imparted to the conductive facing of the pad. The invention also includes a battery voltage monitor and a power indicator.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: December 18, 2001
    Assignee: Red Swan, Inc.
    Inventor: Michael E. Lewis