Workpiece Property Sensing Means (e.g., Mass, Coating Thickness, Etc.) Patents (Class 204/228.7)
  • Publication number: 20140367270
    Abstract: A system is disclosed for controlling an electrochemical process. The system has a power source that is coupled to a power amplifier. The power amplifier is configured to provide an electromotive force (emf) signal, and a plurality of electrodes apply the emf signal to an electrochemical solution. A control element is configured to control the power amplifier such that the emf signal exhibits a predetermined frequency, amplitude, and duty cycle for reducing a thickness of the Nernst diffusion layer such that an operational parameter is set to a predetermined value.
    Type: Application
    Filed: December 23, 2013
    Publication date: December 18, 2014
    Inventor: Floyd L. Williamson
  • Publication number: 20140367267
    Abstract: An electroplating reactor includes an electro-plating solution in a bath, a ring cathode in the bath and located to contact a workpiece such that only the front side of the workpiece is immersed in the solution, plural anodes immersed in the bath below the ring cathode, and plural anode voltage sources coupled to the plural anodes; plural thickness sensors at spatially separate locations on the back side of the workpiece with feedback control to the anode voltage sources.
    Type: Application
    Filed: October 29, 2013
    Publication date: December 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Todd J. Egan, Edward W. Budiarto, Robert O. Miller, Abraham Ravid, Bridger E. Hoerner, Robert W. Batz, JR., Daniel J. Woodruff
  • Patent number: 8907677
    Abstract: An electrochemical sensor allows even extremely small quantities or concentrations of a target chemical substance to be detected or quantified with a high precision in a particularly reliable manner. The novel sensor has a detector zone formed by nanoparticles which are embedded in a matrix and have a higher electric conductivity than the matrix material. The electric conductivity of the zone is determined by electron tunneling, ionization or hopping processes among the nanoparticles and by the electrochemical interaction thereof with a target substance to be detected.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: December 9, 2014
    Assignee: Nanoscale Systems, Nanoss GmbH
    Inventor: Alexander Kaya
  • Patent number: 8882986
    Abstract: A system includes an electrolytic deburring tool, which includes a first electrode configured to be positioned at a first gap away from a first edge of a workpiece, a second electrode configured to be positioned at a second gap away from a second edge of the workpiece, a first electrolyte supply configured to flow a first electrolyte through the first gap between the first electrode and the first edge of the workpiece, a second electrolyte supply configured to flow a second electrolyte through the second gap between the second electrode and the second edge of the workpiece, and a power supply configured to flow an alternating current through the first gap and the second gap to cause electrolytic dissolution through the workpiece from both the first edge and the second edge.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: November 11, 2014
    Assignee: General Electric Company
    Inventors: Yuefeng Luo, William Edward Adis, Michael Lewis Jones
  • Publication number: 20140326612
    Abstract: Provided is a method for manufacturing a solid oxide and a device therefor, capable of manufacturing a solid oxide used as an optical material without introducing damaged layers caused by machining, which does not use any polishing agent or abrasive grains including rare earth elements, or does not use any solution, such as hydrogen fluoride, for which handling is difficult and which imposes a heavy environmental burden.
    Type: Application
    Filed: December 5, 2012
    Publication date: November 6, 2014
    Inventor: Kazuto Yamauchi
  • Publication number: 20140224661
    Abstract: In some method and apparatus disclosed herein, the profile of current delivered to the substrate provides a relatively uniform current density on the substrate surface during immersion. These methods include controlling the current density applied across a substrate's surface during immersion by dynamically controlling the current to account for the changing substrate surface area in contact with electrolyte during immersion. In some cases, current density pulses and/or steps are used during immersion, as well.
    Type: Application
    Filed: January 7, 2013
    Publication date: August 14, 2014
    Inventors: Tighe A. Spurlin, Jian Zhou, Edward C. Opocensky, Jon Reid, Steven T. Mayer
  • Publication number: 20140124362
    Abstract: The present invention relates to CIGS solar cell fabrication. The invention discloses a method for fabricating CIGS thin film solar cells using a roll-to-roll apparatus. The invention discloses method to fabricate semiconductor thin film Cu(InGa)(SeS)2 by sequentially electroplating a stack of multiple precursor layers comprising of copper, indium, gallium, and selenium elements or their alloys followed by selenization at a temperature between 450° C. and 700° C.
    Type: Application
    Filed: December 18, 2012
    Publication date: May 8, 2014
    Applicant: Soltrium Technology, LTD. Shenzhen
    Inventor: Delin Li
  • Patent number: 8715468
    Abstract: The invention relates to a machine for machining a part by micro-electrical discharge machining, said machine comprising a mechanism (44, 45, 46, 48) for modifying the configuration of the machine so as to alternatively and reversibly switch from a machining configuration to a sharpening configuration in which the tip of a same etching electrode (20) and another electrode (64) are dipped in an electrolyte bath in order to sharpen the tip of the etching electrode by electrochemnical corrosion.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: May 6, 2014
    Assignees: Universite de Lyon I Claude Bernard, Centre National de la Recherche, Ecole Centrale de Lyon
    Inventor: Michel Cabrera
  • Publication number: 20140026493
    Abstract: [Object] To provide a method and device for manufacturing an abrasive grain-fixed saw wire that realize homogeneous distribution of abrasive grains adhered to the outer surface of a wire while suppressing variations in the amount of abrasive grains adhered to the outer surface of the wire, even in a high-efficiency wire feeding mode with a high density of abrasive grains, back-and-forth running of the wire, and the like.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 30, 2014
    Applicant: NAKAMURA CHOKO CO., LTD.
    Inventors: Atsushi Okimura, Takashi Nakanishi, Takeshi Nishiguchi, Masahiko Iwakura, Hiroshi Sakai
  • Publication number: 20130126337
    Abstract: An apparatus for use in the electro-production of metals, comprising a plurality of anodes and a plurality of cathodes in an interleaved configuration, wherein each anode and cathode pair forms a cell; a plurality of power supplies, each cell associated with one or more respective power supplies; and the power supplies are arranged to control a direct current in the one or more cells to a predetermined value.
    Type: Application
    Filed: August 4, 2011
    Publication date: May 23, 2013
    Inventor: Duncan Grant
  • Publication number: 20120222968
    Abstract: A system includes an electrolytic deburring tool, which includes a first electrode configured to be positioned at a first gap away from a first edge of a workpiece, a second electrode configured to be positioned at a second gap away from a second edge of the workpiece, a first electrolyte supply configured to flow a first electrolyte through the first gap between the first electrode and the first edge of the workpiece, a second electrolyte supply configured to flow a second electrolyte through the second gap between the second electrode and the second edge of the workpiece, and a power supply configured to flow an alternating current through the first gap and the second gap to cause electrolytic dissolution through the workpiece from both the first edge and the second edge.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 6, 2012
    Applicant: General Electric Company
    Inventors: Yuefeng Luo, William Edward Adis, Michael Lewis Jones
  • Publication number: 20120175259
    Abstract: The present invention relates to electrochemical machining (ECM) of conductive materials and can be used for manufacturing stamps, mould tools and other workpieces of complex shape at the finishing stage of the machining process. Method for electrochemical machining with an oscillating machining electrode comprises the step of applying rectangular microsecond current pulses synchronized with the moment when a machining electrode and workpiece electrode are moved to a minimum distance towards each other. During the machining process, the amplitude of current pulses is increased and the pulse duration is adjusted in such a manner that the trailing edge of each pulse corresponds to the moment of maximum electrical conductivity of the interelectrode gap, the amplitude being increased until a predetermined roughness of the surface to be machined is achieved.
    Type: Application
    Filed: April 29, 2011
    Publication date: July 12, 2012
    Applicant: PECM INDUSTRIAL, LLC
    Inventors: Maksim Sergeevich SMIRNOV, Timur Rashitovich IDRISOV, Vyacheslav Alexandrovich ZAYTSEV
  • Publication number: 20120085653
    Abstract: A method for producing a conductive polymer film using an apparatus comprising a prism having a working electrode, a light-emitting means, a light probe disposed on both sides of the prism, a container having an electrolytic solution containing a conductive-polymer-forming monomer and a dopant, a counter electrode immersed in the electrolytic solution, a power supply connected to a working electrode and the counter electrode, and a controller connected to the light probe and the power supply means. The method comprises determining an absorption spectrum from light reflected by the conductive polymer film, storing the relation between the absorbance of the conductive polymer film obtained from the absorption spectrum and a parameter of the conductive polymer film in the controller, and controlling current supply to the electrodes based on the relation of the absorbance and the parameter to obtain a desired parameter.
    Type: Application
    Filed: September 16, 2011
    Publication date: April 12, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Pu QIAN, Kazuhiro KAGAWA, Masatoshi OSAWA
  • Patent number: 8101050
    Abstract: A system electroplates the interior or exterior cylindrical surfaces of an elongated workpiece, such as a pipe or shaft. The workpiece is continuously electroplated with metallic solutions via a traveling anode that gradually plates along the axial length of the workpiece instead of plating the entire part or large portions of the part at one time.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 24, 2012
    Assignee: Vetco Gray Inc.
    Inventors: Fife B. Ellis, Charles E. Jennings
  • Patent number: 8070933
    Abstract: The invention is an electrolytic microfinishing process which utilizes a conductive tool as a cathode and a conductive workpiece as an anode both connected to a power supply. Electrolytic fluid is pumped between the tool and workpiece, creating a decomposition of the workpiece surface allowing the surface of the workpiece to be removed or wiped away by the interaction of the flowing electrolyte and rotation of the tool without generating any heat at a rate significantly faster than any other known machining process. The tool has no contact with the workpiece and accordingly, requires very low clamping loads to hold the workpiece in the spindle during the finishing operation. Due to the low clamping loads, the distortion of the workpiece is completely eliminated. Modulating the power supply during the work cycle allows the use of a single tool for both roughing and finishing as a continuous cycle to significantly provide surface finishes previously unobtainable.
    Type: Grant
    Filed: May 6, 2006
    Date of Patent: December 6, 2011
    Assignee: Thielenhaus Microfinishing Corp.
    Inventor: Manfred G. Becker
  • Patent number: 7998334
    Abstract: The invention relates to a method, an apparatus and a computer program for electrochemical machining where a removal of cathode depositions is performed in a fully automated way by means of an application of optimal pulses of a suitable polarity.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: August 16, 2011
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Alexandr Nikolaevich Zajcev, Nasich Zijatdinovich Gimaev, Natalya Markelova, Viktor Nikolaevich Kucenko, Aleksandr Leonidovich Belogorsky, Rafail Ramzisovich Muchutdinov, Igor Leonidovich Agafonov
  • Patent number: 7914657
    Abstract: Embodiments of the present invention pertain to controlling thickness of wafers during electroplating process. Information pertaining to an old current used during an electroplating process of a previous wafer is received. Information pertaining to the thickness of the previous wafer is received. A new current is automatically determined. The new current is to be used during an electroplating process for a new wafer. The new current is determined based on the information pertaining to the old current and the information pertaining to the thickness of the previous wafer.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: March 29, 2011
    Assignee: Hitachi Global Storage Technologies, Netherlands B.V.
    Inventors: Wai B. Fu, Hieu Lam, Shahram Y. Mehdizadeh, Yeak-Chong Wong
  • Patent number: 7854824
    Abstract: A method of manufacturing a semiconductor device includes measuring the reflectance at the surface of a semiconductor substrate provided with concave portions and deciding a deposition parameter that represents a deposition condition corresponding to the measured reflectance. Then, a metal film is formed on the semiconductor substrate under a condition corresponding to the deposition parameter.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: December 21, 2010
    Assignee: Renesas Electronics Corporation
    Inventor: Akira Furuya
  • Patent number: 7837839
    Abstract: The invention relates to an apparatus for galvanically depositing an electrically conductive layer onto a carrier on which, at least in some regions, a starter layer suitable for electroplating is disposed. The apparatus has an electroplating bath in which an electrolyte for depositing conductive material is provided, at least two contact rollers which are disposed outside of the electroplating bath and which can be connected as cathode and/or anodes, and at least one deflection roller which is connected between the contact rollers, the position of the deflection roller being changeable between two contact rollers such that by changing the position of the deflection roller a distance to be covered by the carrier and which is formed between two contact points of two adjacent contact rollers corresponds to the extension of the starter layer to be coated.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: November 23, 2010
    Assignee: BCT Coating Technologies AG
    Inventors: Peter Fleissner, Johannes Fleissner
  • Patent number: 7820964
    Abstract: A composition adapted for mass spectral analysis is disclosed as are methods of its use in mass spectral analyses. A contemplated composition contains a mass spectrally-determinable amount of each of (i) at least one analyte to be assayed and (ii) a standard compound. Each of the molecules of the standard compound contains one or the other of a pair of two stable isotopes of the same element that differ in molecular weight by at least two atomic mass units. Those two isotopes are present in the molecules of the standard compound in a predetermined ratio that is other than the naturally occurring ratio of those isotopes.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: October 26, 2010
    Assignee: Metabolic Analyses, Inc
    Inventor: Christopher William Ward Beecher
  • Patent number: 7794581
    Abstract: Components which are subject to operating loads can often be passed for refurbishment by means of an acid treatment. The time for which the components remain in the acid has hitherto been determined empirically, which means that individual loads are not taken into account. The process according to the invention for the surface treatment of a component proposes that at least repeatedly a measurement voltage be applied to the component, resulting in the flow of a current, the time profile of which represents the state of the surface treatment and is used to decide upon when to terminate or interrupt the acid treatment.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: September 14, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Jan Steinbach, Gabriele Winkler
  • Patent number: 7790015
    Abstract: Method for process control of electro-processes is provided. In one embodiment, the method includes processing a conductive layer formed on a wafer using a target endpoint, detecting breakthrough of the conductive layer to expose portions of an underlying layer, and adjusting the target endpoint in response to the detected breakthrough. In another embodiment, the target endpoint is adjusted relative to an amount of underlying layer exposed through the conductive layer.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yan Wang, Antoine P. Manens, Siew S. Neo, Alain Duboust, Liang-Yuh Chen
  • Publication number: 20100025261
    Abstract: An apparatus, system, method and computer program product directed to controlling corrosion, particularly space weather induced corrosion, of a conductive structure in contact with a corrosive environment and coated with a semiconductive coating, where the corrosion is controlled by a controllable filter and a corresponding electronic control unit configured to process and adjust the controllable filter in response to at least one measured parameter associated with space weather effects on the conductive structure.
    Type: Application
    Filed: November 18, 2008
    Publication date: February 4, 2010
    Applicant: APPLIED SEMICONDUCTOR INTERNATIONAL LTD.
    Inventors: David B. DOWLING, Farshad Khorrami, Joseph G. Michels, Mikhail I. Panasyuk
  • Publication number: 20090242409
    Abstract: A plating film is formed by the steps of applying a direct current between a cathode and an anode (S10); superimposing an alternating current component on the direct current between the cathode and the anode and detecting a displacement current flowing between the cathode and the anode (S12 to S16); calculating a variation of a surface area of the plating film based on the displacement current (S18 and S20); and controlling the value of the direct current based on the variation of the surface area of the plating film so that the local area current density for the surface area does not change (S22 and S24). Consequently favorable film properties are provided to the plating film.
    Type: Application
    Filed: March 30, 2009
    Publication date: October 1, 2009
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Akira Furuya
  • Publication number: 20090078583
    Abstract: A composite electrolytic processing method makes it possible to remove a conductive film without leaving it in an electrically-insulated state on an underlying barrier film, thereby exposing the barrier film. The electrochemical mechanical polishing method includes: applying a voltage between a first electrode connected to one pole of a power source and a second electrode, connected to the other pole of the power source, for feeding electricity to a conductive film of a polishing object; filling an electrolytic liquid into a space between the first electrode and the conductive film of the polishing object; and pressing and rubbing the conductive film against a polishing surface of a polishing pad to polish the conductive film in such a manner that a barrier film underlying the conductive film becomes gradually exposed from the center toward the periphery of the polishing object.
    Type: Application
    Filed: January 17, 2008
    Publication date: March 26, 2009
    Inventors: Itsuki Kobata, Akira Kodera, Yasushi Toma, Tsukuru Suzuki, Takayuki Saito, Yuji Makita, Hirokuni Hiyama
  • Publication number: 20080314756
    Abstract: Presented are methods and systems for fabricating three-dimensional integrated circuits having large diameter through-hole vias. One embodiment of the present invention provides a method of processing a wafer having holes for through-hole vias. The method comprises plating a gapfill metal on the wafer. The method also comprises chemically or electrochemically deplating a portion of the overburden metal. The method further comprises using chemical mechanical planarization to planarize the gapfill metal and to remove the remaining overburden metal. Another embodiment of the present invention is an integrated system comprising a process chamber for containing the wafer, a plating component integrated with the process chamber, and a deplating component integrated with the process chamber. The plating component is configured to electrochemically plate a gapfill metal onto the wafer to a least partially fill the holes.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 7368042
    Abstract: An electro-chemical plating system includes an upper rotor assembly for receiving and holding a wafer; an electroplating reactor vessel for containing plating solution in which the wafer is immersed; an anode array including a plurality of concentric anode segments provided inside the electroplating reactor vessel; a power supply system including power supply subunits for controlling electrical potentials of the anode segments, respectively; and a plurality of sensor devices mounted inside the upper rotor assembly, wherein the sensor devices are substantially arranged in corresponding to the anode segments, and during operation, the plurality of sensor devices are utilized for in-situ feeding back a deposition profile to a control unit in real time.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: May 6, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Chia-Lin Hsu, Kun-Hsien Lin, Wen-Chieh Su
  • Patent number: 7161689
    Abstract: A processing apparatus for processing a microelectronic workpiece includes a metrology unit and a control, signal-connected to the metrology unit. The control can modify a process recipe or a process sequence of the processing apparatus based on a feed forward or a feed back signal from the metrology unit. A seed layer deposition tool, a process layer electrochemical deposition tool, and a chemical mechanical polishing tool, arranged for sequential processing of a workpiece, can be controlled as an integrated system using one or more metrology units. A metrology unit can be located at each tool to measure workpiece parameters. Each of the metrology units can be used as a feed forward control and/or a feed back control at each of the tools.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: January 9, 2007
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh
  • Patent number: 7156975
    Abstract: A polishing method for electropolishing a metal film formed on a wafer surface so as to fill concave portions formed on the wafer surface comprises a step of determining an electropolishing end point of the metal film on the basis of a change of a current waveform resulting from electropolishing the metal film. An electropolishing apparatus comprising a current detector for detecting a current waveform resulting from electropolishing a metal film and an end point determination part for determining an electropolishing end point of the metal film on the basis of the change of a current detected with the current detector is used to realize the polishing method.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 2, 2007
    Assignee: Sony Corporation
    Inventors: Shuzo Sato, Takeshi Nogami, Zenya Yasuda, Masao Ishihara
  • Patent number: 6916413
    Abstract: Electroplating station S has a head 1 with anode 2, to one side of which there is located an electrically neutral wall 3. The width of anode 2 is provided to accommodate the width of web 6. Serrations 9 are provided on the anode 2, especially in the area of top surface 8. A passageway 4 for electrolyte 5 is between anode 2 and wall 3. Mesh 11 is located at a throat section 12 of passageway 4 shortly before the start of the guide 7. In addition, mesh 13 is located further upstream in passageway 4 as an alternative and/or as an addition to mesh 11. Guide 7 of wall 3, serrations 9, and meshes 11 and 13 enhance and maximize the production of stream-wise vortices. These vortices cause a substantial increase in the ion flow, which overcomes boundary layers and results in additional deposition of copper onto the web 6.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 12, 2005
    Assignee: TDAO Limited
    Inventor: John Michael Lowe
  • Patent number: 6884333
    Abstract: The invention relates to the analysis of the performance and properties of electrochemical processes, and specifically, to electrolytic solutions and electrode processes. The invention discloses a device and a method for obtaining qualitative and quantitative information for the kinetics of the electrode reactions, the transport processes, the thermodynamic properties of the electrochemical processes taking place in the cell. When a deposition reaction takes place, the device provides also valuable information about the relationship between the current density and deposit properties including but not limited to the deposit color, luster, and other aspects of its appearance. The device disclosed herein typically is comprised of a multiplicity of cathodic or anodic regions where one or more electrochemical reactions take place simultaneously, but at a different rate.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: April 26, 2005
    Inventor: Uziel Landau
  • Publication number: 20040231794
    Abstract: A substrate processing apparatus (10) has a substrate holder (12) for detachably holding a substrate (W) so that a surface, to be processed, of the substrate faces downward, and a sealing ring (18) for sealing a peripheral portion of the surface, to be processed, of the substrate (W) held by the substrate holder (12). The substrate processing apparatus (10) also has a plurality of ejection nozzles (40) disposed below the substrate holder (12) for ejecting a treatment solution toward the surface, to be processed, of the substrate (W) held by the substrate holder (12), and a mechanism for rotating and vertically moving the substrate holder (12) and the ejection nozzles (40) relative to each other.
    Type: Application
    Filed: May 18, 2004
    Publication date: November 25, 2004
    Inventors: Akihisa Hongo, Xinming Wang
  • Publication number: 20040178059
    Abstract: A process for selectively removing a conductive layer from a wafer that includes sub-micron sized noble metal interconnect features is disclosed, the method including placing the wafer into an electrolyte solution. Also immersed in the electrolyte solution are a counter electrode, a reference electrode, and a working electrode. The wafer is coupled to the working electrode terminal on a potentiostat. The counter electrode is connected to the counter electrode terminal on a potentiostat, and the reference electrode is connected to a reference electrode terminal on the potentiostat. The potentiostat adjusts the electrical current flowing between the wafer and the counter electrode to maintain a constant voltage between the wafer and the reference electrode as the conductive layer is removed. The removal of the conductive layer is finished when the current that maintains the constant voltage between the wafer and the reference electrode drops to a residual level.
    Type: Application
    Filed: March 24, 2004
    Publication date: September 16, 2004
    Inventor: Kevin J. Lee
  • Publication number: 20040173453
    Abstract: The invention relates to the improvement in the quality of cathodes produced in an electrolysis process. The surface of a cathode lifted from the cell during the cathode cycle is photographed and the physical quality of the cathode can be investigated in real time by means of equipment based on image-analysis. On the basis of the quality of the cathode surface, it is possible to monitor and control the electrolysis conditions in order to improve the quality of the cathode. The method is extremely suitable for the electrolytic purification of copper.
    Type: Application
    Filed: December 17, 2003
    Publication date: September 9, 2004
    Inventors: Ari Rantala, Henri Virtanen
  • Publication number: 20040163948
    Abstract: A plating apparatus comprises a plating unit having a plating bath for holding a plating liquid therein, and a plating liquid monitoring unit having a liquid chromatography device and an arithmetical unit. The liquid chromatography device serves to separate and quantify an additive in a sample of the plating liquid. The arithmetical unit serves to compare a quantified value of the additive with a given concentration predetermined for the additive and to produce an output signal representing the compared result. The plating apparatus further comprises an additive replenishing unit for adding a solution including the additive from an additive tank to the plating liquid in the plating bath based on the output signal from the arithmetical unit in the plating liquid monitoring unit.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 26, 2004
    Inventors: Akira Fukunaga, Hiroshi Nagasawa
  • Patent number: 6755946
    Abstract: The present invention includes apparatus and methods for measuring impedance of a layer of deposited metal on a substrate and controlling deposition uniformity during electroplating. A first circuit delivers plating current to a metal layer on the substrate, and a second circuit, electrically isolated from the first, measures the impedance. Methods of the invention provide multi-point sheet resistance measurements before and during an electroplating process on a substrate. In a specific example, resistance is measured via a copper seed layer during electroplating.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: June 29, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Evan E. Patton, Jonathan D. Reid, Jeffrey A. Hawkins, Dinesh S. Kalakkad, Steven T. Mayer
  • Patent number: 6736952
    Abstract: An electrochemical planarization apparatus for planarizing a metallized surface on a workpiece includes a polishing pad and a platen. The platen is formed of conductive material, is disposed proximate to the polishing pad and is configured to have a negative charge during at least a portion of a planarization process. At least one electrical conductor is positioned within the platen. The electrical conductor has a first end connected to a power source. A workpiece carrier is configured to carry a workpiece and press the workpiece against the polishing pad. The power source applies a positive charge to the workpiece via the electrical conductor so that an electric potential difference between the metallized surface of the workpiece and the platen is created to remove at least a portion of the metallized surface from the workpiece.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: May 18, 2004
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Ismail Emesh, Saket Chadda, Nikolay N. Korovin, Brian L. Mueller
  • Patent number: 6693417
    Abstract: A micro-electronic bond degradation sensor includes a sensor substrate having sensor circuitry and a sensor stud and a power stud extending therefrom. The sensor circuitry includes a voltage-to-current amplifier having an input coupled to sensor stud and an output coupled to the power stud. The voltage-to-current amplifier is operable to convert a voltage signal occurring along the sensor stud to a current signal output along the power stud.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: February 17, 2004
    Assignee: Commonwealth of Australia
    Inventor: Alan Wilson
  • Patent number: 6620307
    Abstract: A method for on-line removal of cathode depositions during electrochemical process. The process control unit (30) is arranged to alternate the unipolar machining voltage pulses U1 with the voltage pulses of opposite polarity U2 to the work piece (2) and the cathode (3). The process control unit comprises an arrangement to determine the amount of cathode depositions on-line based on the operational parameter. Only in case the operational parameter exceeds the allowable level, the process control unit (30) alternates the unipolar machining voltage pulses U1 with the voltage pulses of opposite polarity U2. In this case the cathode wear is minimized.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: September 16, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Alexandr Zaitsev, Nasich Zijatdinovich Gimaev, Voctor Kutsenko, Nailya A. Amirchanova, Aleksandr Leonidovich Belogorsky, Natalya Markelova, Rafail Ramzisovich Muchutdinov, Maarten Brussee
  • Publication number: 20030155231
    Abstract: An electric field adjusting apparatus for adjusting electric field distribution inside an electroplating bath is provided. The electric field adjusting apparatus has a regulation plate with a plurality of evenly distributed through holes. A plurality of evenly distributed through holes with a smaller total through hole area is formed in the regulation plate that corresponds to an area of a plated film on a wafer that conducts a larger current during an electroplating process (close to the edge of the wafer). Meanwhile, a plurality of evenly distributed through holes with a larger total through hole area is formed in the regulation plate that corresponds to an area of the plated film on the wafer that conducts a smaller current during an electroplating process (close to the central region of the wafer). Furthermore, the total area of through holes around a particular location is inversely proportional to the current density in the plated film over the plating object.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 21, 2003
    Inventor: Chao-Fu Weng
  • Publication number: 20030146101
    Abstract: The plating method comprises the steps of dividing a region, to be plated, into a group of mesh-like zones, measuring a plating area of each of the zones, comparing the measurement values of the plating areas and judging whether or not the plating area has any variance, and conducting a design change, on patterns contained in this zone, to eliminate the variance.
    Type: Application
    Filed: October 2, 2002
    Publication date: August 7, 2003
    Applicant: FUJITSU LIMITED
    Inventor: Motoharu Nii
  • Patent number: 6517689
    Abstract: The present invention is to provide a conduction detection device that can detect electrical conductivity (contact condition) of feeding contacts with conductive layers of a substrate. The present invention also provides an electroplating apparatus, which is able to produce uniform currents to flow through each of feeding contacts. The apparatus has a plating vessel, in which an electrode is disposed opposite to a substrate which is affixed to a plating jig electrically through a plurality of feeding contacts for applying a specific voltage between the electrode and conductive layers provided on a plating surface of the substrate. Plating current flows from the plating jig through the feeding contacts to the substrate. A conduction detection device is provided to detect electrical conductive states between the plurality of feeding contacts and the conductive layer on the substrate.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: February 11, 2003
    Assignee: Ebara Corporation
    Inventors: Akihisa Hongo, Kenichi Suzuki, Atsushi Chono, Mitsuo Tada, Akira Ogata, Satoshi Sendai, Koji Mishima
  • Patent number: 6500317
    Abstract: The present invention provides a conductivity sensing device capable of detecting the conductivity (contact state) of the plurality of feeder contacts contacting the conductive area of the substrate, and a plating apparatus capable of forming a plating film of uniform thickness by supplying a uniform plating current through a plurality of feeder contacts.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: December 31, 2002
    Assignee: Ebara Corporation
    Inventors: Junichiro Yoshioka, Satoshi Sendai, Atsushi Chono, Mitsuo Tada, Akihisa Hongo, Yoshitaka Mukaiyama, Kenya Tomioka, Akira Ogata, Kenichi Suzuki, Naomitsu Ozawa
  • Patent number: 6447668
    Abstract: An apparatus for detecting the end-point of an electropolishing process of a metal layer formed on a wafer includes an end-point detector. The end-point detector is disposed adjacent the nozzle used to electropolish the wafer. In one embodiment, the end-point detector is configured to measure the optical reflectivity of the portion of the wafer being electropolished.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: September 10, 2002
    Assignee: ACM Research, Inc.
    Inventor: Hui Wang
  • Patent number: 6428673
    Abstract: An electrochemical processing apparatus for processing a microelectronic workpiece includes a metrology unit and a control, signal-connected to the metrology unit. An electrochemical deposition unit provides a space to receive said microelectronic workpiece to deposit a subsequent film layer onto a prior layer, wherein a condition signal from the metrology unit influences the process control of the electrochemical deposition unit. The signal can also be used to transfer the microelectronic workpiece to a layer stripping unit, or a layer enhancement unit, or to a non-compliance station. The apparatus is particularly useful in measuring seed layer thickness and adjusting the operating control of a computational fluid dynamic reactor, which electroplates a process layer onto the seed layer.
    Type: Grant
    Filed: July 8, 2000
    Date of Patent: August 6, 2002
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh
  • Patent number: 6391166
    Abstract: An apparatus for plating a conductive film directly on a substrate with a barrier layer on top includes anode rod (1) placed in tube (109), and anode rings (2), and (3) placed between cylindrical walls (107) and (105), (103) and (101), respectively. Anodes (1), (2), and (3) are powered by power supplies (13), (12), and (11), respectively. Electrolyte (34) is pumped by pump (33) to pass through filter (32) and reach inlets of liquid mass flow controllers (LMFCs) (21), (22), and (23). Then LMFCs (21), (22) and (23) deliver electrolyte at a set flow rate to sub-plating baths containing anodes (3), (2) and (1), respectively. After flowing through the gap between wafer (31) and the top of the cylindrical walls (101), (103), (105), (107) and (109), electrolyte flows back to tank (36) through spaces between cylindrical walls (100) and (101), (103) and (105), and (107) and (109), respectively.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: May 21, 2002
    Assignee: ACM Research, Inc.
    Inventor: Hui Wang
  • Publication number: 20010009226
    Abstract: An electroplating apparatus is provided with a metal target and a device for supporting a semiconductor wafer (or other workpiece) in an electroplating solution. The target (anode) may be located relatively far from the wafer surface (cathode) at the beginning of the plating process, until a sufficient amount of metal is plated. When an initial amount of metal is built up on the wafer surface, the target may be moved closer to the wafer for faster processing. The movement of the target may be controlled automatically according to one or more process parameters.
    Type: Application
    Filed: March 21, 2001
    Publication date: July 26, 2001
    Inventor: Scott E. Moore
  • Patent number: 6238539
    Abstract: The dominant physical parameter that affects the internal stress of electroplated metals on substrates have been identified and their effects have been systematically studied. Thin electroplated metals have very high internal stresses, even though the substrate displacements are small. Increasing the electroplated metal's thickness greatly reduces the magnitude of the stress, which can be either tensile or compressive depending on the plating conditions, but it may not necessarily reduce the displacement of the substrate. Based on the research done in connection to this application, the relationship between the plating temperatures and the current density needed to obtain near-zero-stress state for electroplated nickel on silicon substrate can be deduced.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: May 29, 2001
    Assignee: Hughes Electronics Corporation
    Inventors: Richard J. Joyce, Ronghua Wei, Randall L. Kubena, Robert E. Doty
  • Patent number: 6235178
    Abstract: A method for coating a metal strip using a coating metal, in particular for coating a steel strip using zinc or a zinc/nickel compound, by means of at least one electroplating cell through which current flows and which contains an electrolyte through which the metal strip is passed, the current effecting the deposition of a layer of coating metal on the metal strip, and the current being controlled by a so-called monitor controller that has a process model and a controller part. The current is controlled in such a way that a layer of a desired thickness is deposited on the metal strip, the controller part being adjusted to the altered state of the coating plant in the event of changes in the state of the coating plant, in particular when a new metal strip enters or the coating falls below a minimum intended layer thickness.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: May 22, 2001
    Assignee: Siemens Aktiengesellschaft
    Inventor: Wilfried Tautz
  • Patent number: 6200450
    Abstract: A method is described for electrodepositing an alloy of Ni-Fe-W-P. The alloy has good corrosion and wear resistance and hence is a possible replacement for hard chromium. The electrodeposition solution contains nickel ions, iron ions, tungsten ions and phosphorous ions, and a reducing agent. The solution yields high iron content, bright level alloy deposits containing up to 40 percent iron. In another aspect of the invention, electrodeposition is carried out on a surface containing a geometric error. A sensor determines the surface topography of the surface. This is compared in a microprocessor to the desired topography. A corrective signal is sent to an electric current source to cause electrodeposition of a quantity of leveling agent sufficient to at least partially correct the geometric error.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: March 13, 2001
    Inventor: Wen Hua Hui