Refractory Hard Material (rhm) Containing Electrode Patents (Class 204/247.3)
  • Patent number: 12050059
    Abstract: Methods of manufacturing a current collector assembly may include iteratively solving a model on a computer. The model may utilize received inputs including a variable number and arrangement of conductive elements to determine as an output a heat distribution within a hypothetical current collector assembly. The methods may also include identifying as a solution to the model a number and arrangement of conductive elements coupled with a current collector that produces a contained heat distribution within the hypothetical current collector assembly. The methods may also include manufacturing the current collector assembly, and the current collector assembly may include a defined plurality of apertures within a refractory base of the current collector assembly in a pattern configured to receive the number and arrangement of conductive elements identified as the solution to the model.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: July 30, 2024
    Assignee: Boston Electrometallurgical Corporation
    Inventor: Robert Wyatt Hyers
  • Patent number: 11339490
    Abstract: The invention relates to vertical or inclined electrodes of an electrolyzer for electrolytically producing aluminum from aluminum oxide. An electrode contains an electrode base and a surface coating based on refractory ceramics. According to a first variant of the invention, the electrode base is made of a composite material containing between 5% and 90% by mass of refractory ceramics, and of at least one metal having a melting temperature exceeding 1000° C., which forms refractory intermetallic compounds upon interaction with aluminum, and/or containing at least one alloy of such a metal. According to a second variant of the invention, the electrode base is made of a metal alloy, for example structural steel or another alloy, and the surface of the electrode base has applied thereto an intermediary layer consisting of a composite material having the composition described above.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: May 24, 2022
    Assignee: United Company RUSAL Engineering and Technology Centre LLC
    Inventors: Dmitriy Aleksandrovich Simakov, Aleksandr Olegovich Gusev
  • Patent number: 10855040
    Abstract: A flexible electrical connector assembly is adapted to connect a bus bar of an electrolytic cell to a collector bar of the electrolytic cell. The assembly includes an electrical connector including a plurality of conductive metal sheets, the electrical connector having a collector bar end and a bus bar end. The electrical connector may be adapted for being joined, at the collector bar end, to the collector bar and, at the bus bar end, to the bus bar. The electrical connector may be adapted to implement a change in direction, at a bend along a current-carrying path between the bus bar end and the collector bar end, the bend assisting to define the change in direction as greater than 90 degrees.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 1, 2020
    Assignee: Hatch Ltd.
    Inventors: Dale Mackenzie Pearen, Maciej Jastrzebski, Bijan Shahriari
  • Patent number: 10371446
    Abstract: A pot furnace for calcining petroleum coke at low temperature may include a pot, and a cooling water jacket and a flame path below the pot. The flame path may include eight layers. An inlet of a first flame path layer may be in communication with a volatile channel in the front wall, and is provided with a first flame path layer flashboard An eighth flame path layer may be in communication with a communication flue. Flue gas may be discharged out of the furnace body through a main flue. A furnace bottom cooling channel may be provided below the eighth flame path layer.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 6, 2019
    Assignee: CHINA ALUMINUM INTERNATIONAL ENGINEERING CORPORATION LIMITED
    Inventors: Chaodong Liu, Shanhong Zhou, Haifei Xu, Pai Lv, Yi Sun, Yinhe Cui
  • Patent number: 9624134
    Abstract: The invention relates to titanium diboride granules comprising aggregates of titanium diboride primary particles, wherein the titanium diboride granules have a rounded shape and are fracture-resistant. The invention further relates to a method for producing these titanium diboride granules, the use thereof for covering graphite cathodes in electrolytic cells in Al fused-salt electrolysis or for repairing holes in cathode bases of electrolytic cells and also a method for repairing holes in cathode bases of electrolytic cells.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: April 18, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin Engler, Georg Victor
  • Patent number: 9573850
    Abstract: A sintered product made from a starting batch containing 5 to 50% zircon and having the following average chemical composition, in weight percentages on the basis of the oxides and for a total of 100%: silica and zirconia, the zirconia content (ZrO2) being at least 64%, at least 0.2% of a dopant selected from V2O5, Nb2O5, Ta2O5, and mixtures thereof, optionally, a stabilizer selected from Y2O3, MgO, CaO, CeO2, and mixtures thereof, at a content of 6% or less, “other oxides” at a content of 6.7% or less.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 21, 2017
    Assignee: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Olivier Citti, Julien Fourcade, Michel Gaubil, Charles Nicholas McGarry, Michael J. Seaborne
  • Publication number: 20140110269
    Abstract: A process and an anode for the production of nitrogen trifluoride or fluorine where the anode in the electrolytic cell is made primarily from parallel ordered anisotropic carbon, including needle coke and/or mesocarbon microbeads. The parallel ordered anisotropic carbon anodes minimize the production of CF4 and improve the purity of the nitrogen trifluoride or fluorine gas produced. Additionally, the anodes may be molded, instead of extruded or machined, providing for improved dimensional and mechanical integrity of the anode.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 24, 2014
    Applicant: Air Products and Chemicals, Inc.
    Inventors: James Patrick Nehlsen, Kerry Renard Berger, Reinaldo Mario Machado, Kyoung-Ho Choi
  • Patent number: 8501050
    Abstract: Composite materials comprising titanium diboride, silicon carbide and carbon-containing scavenger additions are useful in electrolytic aluminum production cells. The carbon-containing scavenger additions may include tungsten carbide, boron carbide and/or carbon. The amounts of titanium diboride, silicon carbide and carbon-containing scavenger are controlled in order to provide optimum performance. The titanium diboride/silicon carbide composite materials may be used as cathodes in electrolytic aluminum production cells and are electrically conductive, exhibit desirable aluminum wetting behavior, and are capable of withstanding exposure to molten cryolite, molten aluminum and oxygen at elevated temperatures during operation of such cells.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: August 6, 2013
    Assignee: Kennametal Inc.
    Inventors: Sean Erin Landwehr, Roberta R. Yeckley
  • Patent number: 8366891
    Abstract: A metallic oxygen evolving anode for electrowinning aluminum by decomposition of alumina dissolved in a cryolite-based molten electrolyte, and operable at anode current densities of 1.1 to 1.3 A/cm2, comprises an alloy of nickel, iron, manganese, optionally copper, and silicon. Preferably, the alloy is composed of 64-66 w % Ni; Iron; 25-27 w % Fe; 7-9 w % Mn; 0-0.7 w % Cu; and 0.4-0.6 w % Si. The weight ratio Ni/Fe is in the range 2.1 to 2.89, preferably 2.3 to 2.6, the weight ratio Ni/(Ni+Cu) is greater than 0.98, the weight ratio Cu/Ni is less than 0.01, and the weight ratio Mn/Ni is from 0.09 to 0.15. The alloy surface can comprise nickel ferrite produced by pre-oxidation of the alloy. The alloy, optionally with a pre-oxidized surface, can be coated with an external coating comprising cobalt oxide CoO.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: February 5, 2013
    Assignee: Rio Tinto Alcan International Limited
    Inventor: Thinh Trong Nguyen
  • Patent number: 8211278
    Abstract: Compositions for making wettable cathodes to be used in aluminum electrolysis cells are disclosed. The compositions generally include titanium diboride (TiB2) and metal additives. The amount of selected metal additives may result in production of electrodes having a tailored density and/or porosity. The electrodes may be durable and used in aluminum electrolysis cells.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: July 3, 2012
    Assignee: Alcoa Inc.
    Inventors: Douglas A. Weirauch, Jr., Lance M. Sworts, Brian J. Tielsch, Robert A. DiMilia
  • Patent number: 8142749
    Abstract: Additions of substitutional transition metal elements are made to improve the densifiability of titanium diboride while eliminating or minimizing the presence of deleterious grain boundary phases in the resultant bulk titanium diboride articles.
    Type: Grant
    Filed: October 4, 2009
    Date of Patent: March 27, 2012
    Assignee: Kennametal Inc.
    Inventors: Sean E. Landwehr, Russell L. Yeckley
  • Patent number: 8097144
    Abstract: A cell for the electrowinning of aluminium has a cavity for containing electrolyte (20) and one or more non emerging active anode bodies (5) that are suspended in the electrolyte. The electrolyte's surface (21,21?) has an expanse extending over the cavity and is substantially covered by a self-formed crust (25) of frozen electrolyte. The crust is mechanically reinforced by at least one preformed refractory body (30, 30?,30?). The electrolyte crust is formed against the preformed refractory body and bonded thereto so as to inhibit mechanical failure of the crust and collapse of the crust into the cavity.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: January 17, 2012
    Assignee: Rio Tinto Alean International Limited
    Inventors: Thinh T. Nguyen, René Von Kaenel, Vittorio De Nora
  • Patent number: 7976688
    Abstract: Method for manufacturing anodes used for the production of aluminium by fused bath electrolysis, said anodes comprising an anode stem made of a conducting metal and at least one block made of carbonaceous material called an anode block, said method including at least the following steps: a) obtain an anode stem; b) obtain a new anode block; c) fix one end of the anode stem onto the anode block, so as to give good mechanical attachment and good electrical connection between said stem and said anode block; said method being characterised in that before, during or after step c), but before placement of said anode in the electrolytic cell, a protective layer with a controlled thickness, typically between 5 and 25 cm composed of a material resistant to temperature and corrosion by the medium above the electrolytic bath is at least partially deposited on the upper surface of said anode block.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: July 12, 2011
    Assignee: E.C.L.
    Inventors: Ludovic Demeulenaere, Alain Van Acker, Didier Lescarcelle
  • Patent number: 7935241
    Abstract: A slurry comprises suspended aluminum particles in a colloid having dispersed colloidal particles of a metal oxide such as a hydroxide. The metal oxide is reducible by metallic aluminum. The slurry has such a basic pH that dissolution of the aluminum particles in the slurry is inhibited so that when the slurry is subjected to a heat treatment, the undissolved aluminum particles are reactable with the colloidal particles to form an aluminum-based mixture resistant to chemical attack made of aluminum oxide, metal aluminum and the metal of the colloidal particles. The slurry can be used to form an aluminum-based protective coating on a component, in particular of an aluminum electrowinning cell or an apparatus for treating molten aluminum.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: May 3, 2011
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Thinh T. Nguyen, Vittorio De Nora
  • Patent number: 7846308
    Abstract: An anode for electrowinning of aluminium from alumina comprises a cobalt-containing metallic outer part that is covered with an integral oxide layer containing predominantly cobalt oxide CoO. The integral oxide layer can be formed by surface oxidation of cobalt from the metallic outer part before use.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: December 7, 2010
    Assignee: Riotinto Alcan International Limited
    Inventors: Vittorio De Nora, Thinh T. Nguyen
  • Patent number: 7811425
    Abstract: An anode for electrowinning aluminium comprises an electrically conductive substrate that is covered with an applied electrochemically active coating comprising a layer that contains predominantly cobalt oxide CoO. The CoO layer can be connected to the substrate through an oxygen barrier layer, in particular containing copper, nickel, tungsten, molybdenum, tantalum and/or niobium.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 12, 2010
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio De Nora, Thinh T. Nguyen
  • Publication number: 20100147678
    Abstract: Disclosed is an aluminum electrolytic cell having profiled cathode carbon blocks structures, comprising a cell case, a refractory material installed on the bottom, an anodes and a cathode. The cathode carbon blocks include a profiled structure having projections on the top surface of the carbon blocks, that is, a plurality of projections are formed on a surface of the cathode carbon blocks. The aluminum electrolytic cell having the cathode structure according to the present invention can reduce the velocity of the flow and the fluctuation of the level of the cathodal molten aluminum within the electrolytic cell, so as to increase the stability of the surface of molten aluminum, reduce the molten lose of the aluminum, increase the current efficiency, reduce the inter electrode distance, and reduce the energy consumption of the production of aluminum by electrolysis.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 17, 2010
    Applicants: NORTHEASTERN UNIVERSITY, NORTHEASTERN UNIVERSITY ENGINEERING & RESEARCH INSTITUTE CO., LTD, SHENYANG BEIYE METALLURGICAL TECHNOLOGY CO., LTD
    Inventor: Naixiang Feng
  • Publication number: 20090166215
    Abstract: Low temperature cell for electrolytic production of aluminum.
    Type: Application
    Filed: December 26, 2007
    Publication date: July 2, 2009
    Inventor: Theodore R. Beck
  • Publication number: 20090152104
    Abstract: A molten salt electrolyzer for reducing metal comprises an electrolytic cell filled with a molten salt composed of a reducing metal chloride, an anode immersed in the molten salt of the electrolytic cell and surrounded by a first wall at the periphery thereof, and a cathode immersed in the molten salt of the electrolytic cell and surrounded by a second wall at the periphery thereof.
    Type: Application
    Filed: June 21, 2006
    Publication date: June 18, 2009
    Inventors: Yuichi Ono, Masanori Yamaguchi
  • Patent number: 7504010
    Abstract: The present invention relates to a dimensionally stable oxygen-evolving anode for use in an electrolytic cell for the production of aluminium. The anode comprises of a container made from an alloy comprising aluminium and at least one metal more noble than aluminium; a fluid bath in the bottom of the container having the ability to dissolve aluminium, said fluid having a density that is higher than the density of molten aluminium at the operating temperature of the cell, a pool of molten aluminium floating on top of the fluid bath in the bottom of the container; a refractory layer arranged on the inner sidewalls of the container at least in the area of the pool of molten aluminium, said refractory layer protecting the molten aluminium from contacting the inner sidewalls of the container.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 17, 2009
    Assignee: Elkem AS
    Inventors: Jan Arthur Aune, Georg Frommeyer, Kai Johansen, Donald R. Sadoway, Gro Soleng, Elke William Thisted
  • Patent number: 7470354
    Abstract: A method for electrolytic production of aluminium metal from an electrolytic (3) including aluminium oxide, by performing electrolysis, with at least one inert anode (1) and at least one cathode (2) thus forming part of an electorwinning cell. The anode evolves oxygen gas and the cathode has aluminium discharged onto it in the electrolysis process, where the oxygen gas enforces an electrolyte flow pattern. The oxygen gas is directed to flow into anode grooves and is drained away from the interpolar room, thereby establishing an electrolyte flow pattern between the electrodes (1) and (2) and between over the anodes (1). The invention also concerns and anode assembly and an electrowinning cell.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: December 30, 2008
    Assignee: Norsk Hydro ASA
    Inventors: Odd-Arne Lorentsen, Ole-Jacob Siljan, Stein Julsrud
  • Patent number: 7192508
    Abstract: Device (1) to conduct current to or from the electrodes of an electrolysis cell, which device in the direction towards the electrolysis cell comprises three types of segments; at least one outer segment (2) joined with at least one intermediate segment (3) which again is joined with at least one inner segment (4); where the outer segment (2) has at least one end (5) which is to/shall extend out from an electrode body (6) towards an outer current circuit, and the outer segment is coupled to at least one intermediate segment (3) which again is coupled to at least one inner segment with at least one section (4) or end (7) in the electrode body; where the inner segment (4) is manufactured from steel, the intermediate segment is manufactured with a steel lining (8) over an inner core of a material (9) with better electrical and thermal conductivity than steel, and the outer segment is manufactured from a material (9) with better electrical and thermal conductivity than steel.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: March 20, 2007
    Assignee: Servico A.S.
    Inventor: Johnny Torvund
  • Patent number: 7033469
    Abstract: Ceramic inert anodes useful for the electrolytic production of aluminum are disclosed. The inert anodes comprise oxides of Ni, Fe and Al. The Ni—Fe—Al oxide inert anode materials have sufficient electrical conductivity at operation temperatures of aluminum production cells, and also possess good mechanical stability. The Ni—Fe—Al oxide inert anodes may be used to produce commercial purity aluminum.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: April 25, 2006
    Assignee: Alcoa Inc.
    Inventors: Douglas A. Weirauch, Jr., Joseph M. Dynys, Robert A. DiMilia, Siba P. Ray, Xinghua Liu, Frankie E. Phelps
  • Patent number: 6977031
    Abstract: An anode assembly for conducting electrical energy to an electrolytic smelting cell including an anode of high electrically conductive material connected to a yoke, the ends of the yoke being receivable within anodes, the yoke including a core of highly electrically conductive material and an outer structural sheath extending substantially the length of the yoke, the anode rod being in electrical contact with the core of the yoke and provided with a protective structural collar secured to the outer structural sheath of the yoke. In order for the electrical and thermal contact between the core and sheath to be maintained, the differential coefficient of thermal expansion over the operating temperature range of the assembly is preferably substantially the same or within 4×10?6 m/mk.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: December 20, 2005
    Assignee: SRA Technologies Pty Ltd.
    Inventors: Vjekoslav Jakovac, Vladimir Kanovnik, Drago Juric
  • Patent number: 6855234
    Abstract: A sintered electrode assembly is made of an inert electrode (15) containing a sealed metal conductor (20) having a surface feature (30) such as a coating or wrapping which aids in bond formation with the inert electrode (15) at their interface (45), where the metal conductor (20) is directly contacted by and is substantially surrounded by the inert electrode (15) without the use of metal foam or metal powders.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: February 15, 2005
    Assignee: Alcoa Inc.
    Inventor: Leroy E. D'Astolfo, Jr.
  • Publication number: 20040089558
    Abstract: Ceramic inert anodes useful for the electrolytic production of aluminum are disclosed. The inert anodes comprise oxides of Ni, Fe and Al. The Ni—Fe—Al oxide inert anode materials have sufficient electrical conductivity at operation temperatures of aluminum production cells, and also possess good mechanical stability. The Ni—Fe—Al oxide inert anodes may be used to produce commercial purity aluminum.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Douglas A. Weirauch, Joseph M. Dynys, Robert A. DiMilia, Siba P. Ray, Xinghua Liu, Frankie E. Phelps
  • Patent number: 6692620
    Abstract: A drained cathode cell for the electrowinning of aluminium comprises a cell bottom (20) arranged to collect product aluminium and thermic insulating sidewalls (55,55′) lined with a molten electrolyte resistant sidewall lining (50) which is made of material liable to react with molten aluminium, in particular containing silicon carbide, silicon nitride or boron nitride. The thermic insulating sidewalls (55,55′) inhibit formation of an electrolyte crust on the lining (50), whereby the lining (50) is exposed to molten electrolyte. The cell bottom (20) has a peripheral surface from which the insulating sidewalls (55,55′) extend generally vertically to form, with the cell bottom, a trough for containing molten electrolyte and aluminium produced on at least one drained cathode (32).
    Type: Grant
    Filed: April 27, 2002
    Date of Patent: February 17, 2004
    Assignee: Moltech Invent S.A.
    Inventors: Jean-Jacques Duruz, Vittorio De Nora, Georges Berclaz
  • Patent number: 6682643
    Abstract: A cell for the electrowinning of aluminium comprises a plurality of metal-based anodes facing and spaced part from an aluminium-wettable drained cathode surface on which aluminium is produced. The drained cathode surface is formed along the cell by upper surfaces of juxtaposed carbon cathode blocks, the cathode blocks extending across the cell. The drained cathode surface is divided into quadrants by a longitudinal aluminium collection groove along the cell and by a central aluminium collection reservoir across the cell. Pairs of quadrants across the cell are inclined in a V-shape relationship, the collection groove being located along the bottom of the V-shape and arranged to collect molten aluminium draining from the drained cathode surface and evacuate it into the aluminium collection reservoir during cell operation.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: January 27, 2004
    Assignee: Moltech Invent S.A.
    Inventor: Vittorio de Nora
  • Patent number: 6638412
    Abstract: A method of inhibiting dissolution of a transition metal alloy anode (40) of an aluminium electrowinning cell comprises providing a sodium-inert layer (11,20,50,50′) on a sodium-active cathodic cell material (15), such as carbon, and electrolysing alumina dissolved in a sodium ion-containing molten electrolyte (30). Aluminium ions rather than sodium ions are cathodically reduced on the sodium-inert layer to inhibit the presence in the molten electrolyte (30) of soluble cathodically-produced sodium metal that constitutes an agent for chemically reducing the anode's transition metal oxides and anodically evolved oxygen, thereby inhibiting reduction of the anode's transition metal oxides by sodium metal and maintaining the evolved oxygen at the anode at a concentration such as to produce at the alloy/oxide layer interface stable and coherent transition metal oxides having a high level of oxidation.
    Type: Grant
    Filed: March 30, 2002
    Date of Patent: October 28, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio De Nora, Jean-Jacques Duruz
  • Patent number: 6607657
    Abstract: Carbon-containing components of cells for the production of aluminium by the electrolysis of alumina dissolved in a cryolite-based molten electrolyte are protected from attack by liquid and/or gaseous components of the electrolyte in the form of elements, ions or compounds, by a refractory boride coating applied from a slurry composed of pre-formed particulate refractory boride in a colloidal carrier which is dried and heated to consolidate the coating.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: August 19, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Publication number: 20030102228
    Abstract: A cell of advanced design for the production of aluminium by the electrolysis of an aluminium compound dissolved in a molten electrolyte, has a cathode (30) of drained configuration, and at least one non-carbon anode (10) facing the cathode both covered by the electrolyte (54). The upper part of the cell contains a removable thermic insulating cover (60) placed just above the level of the electrolyte (54). Preferably, the cathode (30) comprises a cathode mass (32) supported by a cathode carrier (31) made of electrically conductive material which serves also for the uniform distribution of electric current to the cathode mass (32) from current feeders (42) which connect the cathode carrier (31) to the negative busbars.
    Type: Application
    Filed: June 4, 2002
    Publication date: June 5, 2003
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Patent number: 6558525
    Abstract: A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900° C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: May 6, 2003
    Assignee: Northwest Aluminum Technologies
    Inventors: Donald R. Bradford, Robert J. Barnett, Michael B. Mezner
  • Patent number: 6551476
    Abstract: This invention is an inert, non-consumed, anode for use in electrolytic production of aluminum from the ore, consisting of a plurality of parallel vertical wires, or rods, attached to a suspended support structure which is also connected to an electrical power source. The wires are made of a high-temperature corrosion-resistant alloy and are durably surface-coated with a noble metal such as platinum, typically deposited by the SCX sputter coating process. In operation the coated wires are immersed in a fused fluoride electrolyte bath at 900 C., but remain structurally intact at that temperature. Moreover, the catalytic noble-metal surface dissociates the oxides formed in the electrolysis, avoiding generation of greenhouse gases. To suit the dimensions of the electrolytic furnace, the inert anode can be expanded in the form of linear or circular modules of the coated wires or rods. The power consumption with the inert anode of the invention is half that with a carbon anode.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: April 22, 2003
    Inventor: Emil S. Scherba
  • Patent number: 6540887
    Abstract: A cell for the electrowinning of aluminium comprises at least one non-carbon metal-based anode (10) having an electrically conductive metallic structure (12, 13, 15) which is suspended substantially parallel to a facing cathode (20, 21, 22). Such metallic structure (12, 13, 15) comprises a series of parallel horizontal anode members (15), each having an electrochemically active surface (16) on which during electrolysis oxygen is anodically evolved. The electrochemically active surfaces (16) are in a generally coplanar arrangement to form the active anode surface. The anode members are spaced apart from one another by inter-member gaps forming flow-through openings (17) for the circulation of electrolyte (30) driven by the escape of anodically-evolved oxygen. The electrolyte (30) may circulate upwardly and/or downwardly in the flow-through openings (17) and possibly around the anode structure (12, 13, 15).
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: April 1, 2003
    Assignee: Moltech Invent SA
    Inventor: Vittorio de Nora
  • Patent number: 6537438
    Abstract: The present invention is directed to methods for applying a protective layer (42) to the cathode (40) of an electrolysis cell (10), where the cell also contains inert anodes (50) and the protective layer (42) can comprise a plurality of layers (70, 72, 74) with an inner layer (70) of TiB2 being preferred, and the protective layer (42) protects the cathode (40)from hot gases (64) used to pre-heat the cell (10).
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: March 25, 2003
    Assignee: Alcoa Inc.
    Inventor: Roy A. Christini
  • Patent number: 6521115
    Abstract: An anode of a cell for the electrowinning of aluminium comprises an iron-nickel alloy body or layer whose surface is oxidised to form a coherent and adherent outer iron oxide-based layer, in particular hematite, the surface of which is electrochemically active for the oxidation of oxygen ions and which reduces diffusion of oxygen from the electrochemically active surface into the iron-nickel alloy body or layer. The anode may be kept dimensionally stable during cell operation by maintaining a sufficient amount of dissolved alumina and iron species in the electrolyte to prevent dissolution of the outer oxide layer of the or each anode and by reducing the electrolyte operating temperature to limit dissolution of iron and by reducing the electrolyte operating temperature to limit dissolution of iron species in the electrolyte.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: February 18, 2003
    Assignee: Moltech Invent S. A.
    Inventors: Jean-Jacques Duruz, Vittorio de Nora, Olivier Crottaz
  • Patent number: 6521116
    Abstract: A cell for the electrowinning of aluminium comprising one or more anodes (10), each having a metal-based anode substrate, for instance comprising a metal core (11) covered with an metal layer 12, an oxygen barrier layer (13), one or more intermediate layers (14; 14A, 14B) and an iron layer (15). The anode substrate is covered with an electrochemically active transition metal oxide layer, in particular an iron oxide-based outside layer (16) such as a hematite-based layer, which remains dimensionally stable during operation in a cell by maintaining in the electrolyte a sufficient concentration of iron species and dissolved alumina. The cell operating temperature is sufficiently low so species and dissolved alumina.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: February 18, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Jean-Jacques Duruz, Vittorio de Nora, Olivier Crottaz
  • Patent number: 6475358
    Abstract: A method of treating a carbonaceous cell component of an electrolyte cell for the production of aluminum, to impart protection against deterioration during operation of the cell. A liquid suspension of a refractory material dispersed in a lignosulfonate binder solution is prepared and applied as a protective coating to the surface of carbonaceous cell components and allowed to dry.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: November 5, 2002
    Assignee: Alcan International Limited
    Inventors: Amir A. Mirtchi, Jules Bergeron
  • Publication number: 20020125126
    Abstract: A cermet inert anode having a reduced level of contaminating surface metal is disclosed. Methods for preparing cermet inert anodes and methods for treating cermet inert anodes are also disclosed. The methods generally use an oxidizing agent to convert metals on the surface of the anode to inert oxides and/or to otherwise remove the metal contaminants. The inert anodes of the present invention may be used in electrolytic reduction cells for the production of commercial purity aluminum, as well as other metals.
    Type: Application
    Filed: December 28, 2000
    Publication date: September 12, 2002
    Inventors: Dennis R. De Capite, Gary P. Tarcy
  • Patent number: 6440293
    Abstract: An electrode for electrolyzing an electrolyte comprising an ammonium fluoride (NH4F)-hydrogen fluoride (HF)-containing molten salt and having a composition ratio (HF/NH4F) of 1 to 3 to prepare a nitrogen trifluoride (NF3) gas and an electrolyte for use in the preparation of NF3 gas, and a preparation method of the NF3 gas by the use of the electrode and the electrolyte. The electrode comprises nickel having 0.07 wt % or less of Si content and containing a transition metal other than nickel. The electrolyte also contains a transition metal other than nickel.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: August 27, 2002
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Tatsuma Morokuma, Hiromi Hayashida, Akio Kikkawa
  • Patent number: 6440279
    Abstract: A cermet inert anode having a reduced level of contaminating surface metal is disclosed. Methods for preparing cermet inert anodes and methods for treating cermet inert anodes are also disclosed. The methods generally use an oxidizing agent to convert metals on the surface of the anode to inert oxides and/or to otherwise remove the metal contaminants. The inert anodes of the present invention may be used in electrolytic reduction cells for the production of commercial purity aluminum, as well as other metals.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: August 27, 2002
    Assignee: Alcoa Inc.
    Inventors: Dennis R. De Capite, Gary P. Tarcy, Susanne M. Opalka, Don R. Careatti
  • Patent number: 6436272
    Abstract: A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: August 20, 2002
    Assignee: Northwest Aluminum Technologies
    Inventors: Craig W. Brown, Patrick B. Frizzle
  • Patent number: 6436274
    Abstract: A non-carbon, metal-based slow-consumable anode of a cell for the electrowinning of aluminium self-forms during normal electrolysis an electrochemically-active oxide-based surface layer (20). The rate of formation (35) of the layer (20) is substantially equal to its rate of dissolution (30) at the surface layer/electrolyte interface (25) thereby maintaining its thickness substantially constant, forming a limited barrier controlling the oxidation rate (35). The anode (10) usually comprises an alloy of iron with at least one of nickel, copper, cobalt or zinc which during use forms an oxide surface layer (20) mainly containing ferrite.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: August 20, 2002
    Inventors: Vittorio De Nora, Jean-Jacques Duruz
  • Patent number: 6425992
    Abstract: A non-carbon, metal-based, high temperature resistant, electrically conductive and electrochemically active anode of a cell for the production of aluminum has a metal-based oxidation-resistant substrate to which an adherent multi-layer coating is applied prior to its immersion into the electrolyte and start up of the electrolysis by connection to the positive current supply. The multi-layer coating is obtainable from one or more applied layers selected from: a liquid solution, a dispersion in a liquid or a paste, a suspension in a liquid or a paste, and a pasty or non-pasty slurry, and combinations thereof, with or without heat treatment between two consecutively applied layers. At least one layer of the multi-layer coating contains a polymeric and/or a colloidal carrier. The coating is after final heat treatment electrically conductive and has during operation in the cell an electrochemically active surface for the oxidation of oxygen ions present at the surface of the anode.
    Type: Grant
    Filed: July 15, 2000
    Date of Patent: July 30, 2002
    Assignee: Moltech Invent S.A.
    Inventor: Vittorio de Nora
  • Patent number: 6423204
    Abstract: A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe2O3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: July 23, 2002
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Xinghua Liu, Douglas A. Weirauch
  • Patent number: 6423195
    Abstract: An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe2O3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe2O3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe2O3; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni—Fe—Co—O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: July 23, 2002
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Douglas A. Weirauch, Jr., Xinghua Liu
  • Publication number: 20020092774
    Abstract: A cermet anode of an electrolytic cell is protected from thermal shock during cell start-up by coating an outer surface portion of the anode with a coating composition comprising carbon or aluminum or a mixture thereof. A particularly preferred coating composition includes an aluminum underlayer adjacent the outer surface portion of the anode, and a carbon overlayer overlying the underlayer. A support structure assembly supporting the cermet anode includes a high alumina ceramic material. In a preferred embodiment, the high alumina ceramic material is protected from thermal shock and corrosion by the coating composition of the invention.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventors: Calvin Bates, Patricia A. Stewart, Larry F. Wieserman
  • Patent number: 6416649
    Abstract: A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: July 9, 2002
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Xinghua Liu, Douglas A. Weirauch, Robert A. DiMilia, Joseph M. Dynys, Frankie E. Phelps, Alfred F. LaCamera
  • Patent number: 6413406
    Abstract: A non-carbon, metal-based high temperature resistant anode of a cell for the production of aluminum has a highly conductive metal-based substrate coated with one or more electrically conductive adherent intermediate protective layers and an outer layer which is electrically conductive and electrochemically active. The electrochemically active layer contains one or more electrocatalysts fostering the oxidation of oxygen ions as well as fostering the formation of biatomic molecular gaseous oxygen from the monoatomicnascent oxygen obtained by the oxidation of the oxygen ions present at the surface of the anode in order to inhibit ionic and/or monoatomic oxygen penetration. The intermediate layer(s) constitute(s) a substantially impermeable barrier to ionic, monoatomic and/or biatomic gaseous oxygen to prevent attack of the metal-based substrate. The electrocatalyst can be iridium, palladium, platinum, rhodium, ruthenium, silicon, tin, zinc, Mischmetal oxides and metals of the Lanthanide series.
    Type: Grant
    Filed: July 15, 2000
    Date of Patent: July 2, 2002
    Assignee: Moltech Invent S.A.
    Inventor: Vittorio de Nora
  • Patent number: 6379526
    Abstract: A non-carbon metal-based anode of a cell for the electrowinning of aluminium comprising an electrically conductive metal substrate resistant to high temperature, the surface of which becomes passive and substantially inert to the electrolyte, and a coating adherent to the metal substrate making the surface of the anode electrochemically active for the oxidation of oxygen ions present at the electrolyte interface. The substrate metal may be selected from nickel, cobalt, chromium, molybdenum, tantalum and the Lanthanide series. The active constituents of the coating are for example oxides such as spinels or perovskites, oxyfluorides, phosphides or carbides, in particular ferrites. The active constituents may be coated onto the substrate from a slurry or suspension containing colloidal material and the electrochemically active material.
    Type: Grant
    Filed: July 15, 2000
    Date of Patent: April 30, 2002
    Assignee: Moltech Invent SA
    Inventors: Vittorio de Nora, Jean-Jacques Duruz