Organic Patents (Class 204/296)
-
Patent number: 11923496Abstract: A separator for a rechargeable lithium battery and a rechargeable lithium battery, the separator including a porous substrate; and a coating layer on at least one surface of the porous substrate, wherein the coating layer includes a binder and inorganic particles, the binder including a polyurethane and a polyvinyl alcohol, and the polyurethane and the polyvinyl alcohol are included in a weight ratio of about 5:5 to about 9:1.Type: GrantFiled: March 3, 2020Date of Patent: March 5, 2024Assignees: SAMSUNG SDI CO., LTD., SAMSUNG ELECTRONICS CO., LTD.Inventors: Jungsue Jang, Minho Cho, Hana Kim, Myungkook Park, Seung Rim Yang, Byungmin Lee, Bokyung Jung, Rae Sung Kim
-
Patent number: 11411226Abstract: Disclosed are an electrode for fuel cells, a membrane electrode assembly for fuel cells including the same and a method for manufacturing the same in which the electrode is manufactured by forming an ionomer layer between an electrode layer and a catalyst layer and an antioxidant is dispersed into the catalyst layer of the electrode and an ion exchange layer of an electrolyte membrane so as to improve interfacial bonding force between the electrode and the electrolyte membrane, the electrode is bonded to the electrolyte membrane using a transfer process, and durability of the electrode and the electrolyte membrane is improved.Type: GrantFiled: October 23, 2020Date of Patent: August 9, 2022Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATIONInventors: Hee Jin Woo, Jun Woo Kim, Jun Tae Kim, Ji Seok Hwang
-
Patent number: 11400438Abstract: A composition includes an aqueous solution including at least one fluorinated organic compound; and a reaction product of a source of iron(II) and a source of sulfite in the presence of water and molecular hydrogen. A method of making a catalyst includes reacting a source of iron(II) and a source of sulfite in the presence of water and molecular hydrogen. The water may include less than or equal to 1 weight percent dissolved molecular oxygen. The catalyst may be used for degrading fluorinated organic chemicals in aqueous media.Type: GrantFiled: December 4, 2019Date of Patent: August 2, 2022Assignees: University of Cincinnati, The United States of America as Represented by the Administrator of the U.S. Environmental Protection AgencyInventors: Dionysios D. Dionysiou, Wael H. M. Abdelraheem, Mallikarjuna N. Nadagouda
-
Patent number: 11374234Abstract: The present disclosure relates to a separation membrane complex having an anion exchange membrane and a cation exchange membrane coming in face-to-face contact with each other, and the cation exchange membrane and the anion exchange membrane each having two or more concavities and convexities which interlock with each other in a reverse phase.Type: GrantFiled: September 12, 2018Date of Patent: June 28, 2022Assignees: LOTTE CHEMICAL CORPORATION, Korea Advanced Institute of Science and TechnologyInventors: Min Suk Jung, Hye Seon Kim, Sang Sun Park, Hee-Tak Kim, Jaeho Choi, Chanyoung Choi, Taehyuk Kang
-
Patent number: 11103864Abstract: An ion exchange membrane has multiple layers of ionic polymers which each contain substantially different chemical compositions. i.e. varying side chain lengths, varying backbone chemistries or varying ionic functionality. Utilizing completely different chemistries has utility in many applications such as fuel cells where for example, one layer can help reduce fuel crossover through the membrane. Or one layer can impart substantial hydrophobicity to the electrode formulation. Or one layer can selectively diffuse a reactant while excluding others. Also, one chemistry may allow for impartation of significant mechanical properties or chemical resistance to another more ionically conductive ionomer. The ion exchange membrane may include at least two layers with substantially different chemical properties.Type: GrantFiled: September 4, 2019Date of Patent: August 31, 2021Assignee: Xergy Inc.Inventors: Bamdad Bahar, John Paul Saltwick
-
Patent number: 11001511Abstract: A fluid treatment apparatus is constructed from at least one electrochemical cell including a bipolar ion exchange membrane and having a single output orifice to deliver treated fluid. The apparatus may employ a power supply transformer featuring a magnetic dispersion bridge to regulate the magnetic flux to secondary coils, thereby limiting the current delivered to the load and protecting the apparatus from over-current damage. The cell includes a membrane assembly which incorporates both the inner and outer electrodes to provide repeatable assembly and service, as well as reliable performance. The apparatus will provide continuous fluid treatment when designed with at least two stages, each stage including at least one cell, in which one stage is treating influent solution and another stage is regenerating.Type: GrantFiled: June 6, 2018Date of Patent: May 11, 2021Assignee: Erix Solutions CorporationInventors: Eric David Nyberg, Dennis Kwok, Alessandro Manigrassi, Shiang Fu
-
Patent number: 10975476Abstract: The present disclosure relates to an IrO2 electrodeposited porous titanium composite layer of a polymer electrolyte membrane water electrolysis apparatus serving as both a diffusion layer and an oxygen electrode, the apparatus including: a porous titanium (Ti) layer; and an electrodeposited iridium oxide (IrO2) layer on the porous Ti layer. The IrO2 layer may be uniformly deposited on a porous Ti layer through an electrolysis process, and the electrodeposited IrO2 layer may play multiple roles as not only a catalyst layer toward oxygen evolution reaction (OER) on the surface of the Ti layer, but also a corrosion-protection layer which prevents an inner Ti layer from corrosion.Type: GrantFiled: November 21, 2018Date of Patent: April 13, 2021Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGYInventors: Jong Hyun Jang, Seunghoe Choe, Youngseung Na, Hye Jin Lee, Ahyoun Lim, Hyoung-Juhn Kim, Dirk Henkensmeier, Sung Jong Yoo, Jin Young Kim, So Young Lee, Hyun Seo Park
-
Patent number: 10961142Abstract: The disclosure, in one aspect, relates to hybrid ion-exchange and algae photosynthesis systems and processes for algae cultivation and treatment of high NH4+ concentration wastewater. The disclosed systems and methods can be further optimized using a disclosed mathematical model that can predict the hybrid ion-exchange and algae photosynthesis process including temporal evolution of the NH4+ concentration. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.Type: GrantFiled: October 15, 2018Date of Patent: March 30, 2021Assignee: UNIVERSITY OF SOUTH FLORIDAInventors: Sarina Ergas, Meng Wang
-
Patent number: 10962522Abstract: The present invention relates to a method for predicting the physical properties of polymers. More specifically, the present invention relates to a method for predicting the processability of polymers using a molecular weight distribution curve.Type: GrantFiled: October 12, 2017Date of Patent: March 30, 2021Inventors: Yoon Ki Hong, Hyuck Ju Kwon, Eun Kyoung Song, Dae Sik Hong, Ye Jin Lee, Joong Soo Kim, Eun Young Shin, Young Suk You, Ki Soo Lee
-
Patent number: 10926227Abstract: A method for fabricating calcite channels in a nanofluidic device is described. A porous membrane is attached to a substrate. Calcite is deposited in porous openings in the porous membrane attached to the substrate. A width of openings in the deposited calcite is in a range from 50 to 100 nanometers (nm). The porous membrane is etched to remove the porous membrane from the substrate to form a fabricated calcite channel structure. Each channel has a width in the range from 50 to 100 nm.Type: GrantFiled: December 3, 2018Date of Patent: February 23, 2021Assignee: Saudi Arabian Oil CompanyInventors: Dong Kyu Cha, Mohammed Badri AlOtaibi, Sultan Muhammad Al Enezi, Ali Abdallah Al-Yousef
-
Patent number: 10930857Abstract: The present application provides a hetero-cyclic compound which may significantly improve the service life, efficiency, electrochemical stability, and thermal stability of an organic light emitting device, and an organic light emitting device in which the hetero-cyclic compound is contained in an organic compound layer.Type: GrantFiled: December 1, 2016Date of Patent: February 23, 2021Assignee: LT MATERIALS CO., LTD.Inventors: Jun-Tae Mo, Yong-Geun Jung, Won-Jang Jeong, Dae-Hyuk Choi, Joo-Dong Lee
-
Patent number: 10928699Abstract: An electrochromic device according to an embodiment comprises a transparent conductive layer, an ion storage layer, an electrolyte layer, an electrochromic layer, and a reflective layer or a transparent conductive layer, wherein the ion storage layer includes an iridium atom and a tantalum atom, wherein the electrolyte layer includes a tantalum atom, wherein the electrochromic layer includes a tungsten atom, wherein at least one of the tungsten atom of the electrochromic layer and the iridium atom and the tantalum atom of the ion storage layer is hydrogenated, wherein the reflective layer is non-porous.Type: GrantFiled: June 13, 2018Date of Patent: February 23, 2021Assignee: LeapHigh Inc.Inventors: Sang Hyun Park, Byoung Dong Kim
-
Patent number: 10873117Abstract: A protective layer can be deposited on a surface of an porous polymer separator placing on a Li-metal electrode to protect against adverse electrochemical activity in a battery. The protective layer can be a multilayered structure including graphene oxide.Type: GrantFiled: December 30, 2013Date of Patent: December 22, 2020Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: Paula T. Hammond, Sun Hwa Lee
-
Method for manufacturing a polymer electrolyte separator and polymer electrolyte separator therefrom
Patent number: 10840542Abstract: The invention pertains to a process for manufacturing a polymer electrolyte separator based on a fluoropolymer hybrid organic/inorganic composite, said process comprising: (i) providing a mixture of: —at least one fluoropolymer comprising recurring units derived from at least one (meth)acrylic monomer [monomer (MA)] of formula (I): wherein each of R1, R2, R3, equal or different from each other, is independently a hydrogen atom or a C1-C3 hydrocarbon group, and ROH is a C1-C5 hydrocarbon moiety comprising at least one hydroxyl group [polymer (F)]; —at least one metal compound [compound (M)] of formula: X4-mAYm wherein m is an integer from 1 to 4, A is a metal selected from the group consisting of Si, Ti and Zr, Y is a hydrolysable group, X is a hydrocarbon group, optionally comprising one or more functional groups; and —at least one electrolyte (E); and —at least one liquid plasticizer (S); (ii) reacting at least a fraction of hydroxyl groups of the ROH groups of said monomer (MA) of said polymer (F) with at lType: GrantFiled: November 6, 2012Date of Patent: November 17, 2020Assignee: SOLVAY SPECIALTY POLYMERS ITALY S.P.A.Inventors: Julio A. Abusleme, Riccardo Pieri, Paolo Fossati -
Patent number: 10800870Abstract: Disclosed herein are copolymers comprising at least one block comprising C8-C12 olefin-derived units, at least one block comprising C4-C6 olefin-derived units, and at least one block comprising C5/C10 olefin-derived units, wherein each block has a number average molecular weight of at least 300 g/mole and two glass transition temperatures (Tg). The olefin block copolymers are formed by combining a first olefin with a catalyst at least a first stage to form a first olefin block, and combining a second olefin with the same or different catalyst in at least a separate stage to form a second block. The copolymers are useful as tackifiers in adhesive compositions and in films.Type: GrantFiled: December 19, 2017Date of Patent: October 13, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventor: Ranjan Tripathy
-
Patent number: 10781522Abstract: To provide a production method whereby an ion exchange membrane for alkali chloride electrolysis can be obtained which has high current efficiency, little variation in current efficiency and high alkaline resistance. This is a method for producing an ion exchange membrane 1 having a layer (C) 12 containing a fluorinated polymer (A) having carboxylic acid type functional groups, by immersing an ion exchange membrane precursor film having a precursor layer (C?) containing a fluorinated polymer (A?) having groups convertible to carboxylic acid type functional groups, in an aqueous alkaline solution comprising an alkali metal hydroxide, a water-soluble organic solvent and water, and converting the groups convertible to carboxylic acid type functional groups to carboxylic acid functional groups, wherein the concentration of the water-soluble organic solvent is from 1 to 60 mass % in the aqueous alkaline solution (100 mass %); the temperature of the aqueous alkaline solution is at least 40° C. and less than 80° C.Type: GrantFiled: March 1, 2018Date of Patent: September 22, 2020Assignee: AGC Inc.Inventors: Tamaki Chinsoga, Takuo Nishio, Yasushi Yamaki, Takayuki Kaneko
-
Patent number: 10775339Abstract: A membrane is provided, as well as membrane electrode assemblies and sensors utilizing the membrane of the present technology. The membrane includes a membrane material with a top surface and a bottom surface; and a protonic ionic liquid disposed at least between the top surface and the bottom surface of the membrane material where the protonic ionic liquid is of Formula I.Type: GrantFiled: November 19, 2015Date of Patent: September 15, 2020Assignee: GENTEX CORPORATIONInventor: Joel C. Nemes
-
Patent number: 10680246Abstract: Provided is a binder for a nonaqueous electrolyte secondary battery electrode. The binder contains a crosslinked polymer having a carboxyl group, or salt thereof, a use therefor, and a method for manufacturing a carboxyl group-containing crosslinked polymer or salt thereof for use in the binder. The crosslinked polymer contains a structural unit derived from an ethylenically unsaturated carboxylic acid monomer in the amount of 50 to 100 mass % of total structural units, and after the crosslinked polymer neutralized to a degree of a neutralization of 80 to 100 mol % has been subjected to water swelling in water and then dispersed in a 1 mass % NaCl aqueous solution, the particle diameter thereof is 0.1 to 7.0 ?m in a volume-based median diameter.Type: GrantFiled: October 26, 2016Date of Patent: June 9, 2020Assignee: TOAGOSEI CO., LTD.Inventors: Hideo Matsuzaki, Naohiko Saito, Kinuko Ogura, Atsushi Nishiwaki, Akitsugu Shibata
-
Patent number: 10648090Abstract: The present invention relates to the extraction of lithium from liquid resources, such as natural and synthetic brines, leachate solutions from clays and minerals, and recycled products.Type: GrantFiled: March 27, 2019Date of Patent: May 12, 2020Assignee: LILAC SOLUTIONS, INC.Inventors: David Henry Snydacker, Alexander John Grant, Ryan Ali Zarkesh
-
Patent number: 10596527Abstract: Membranes having a permselective active layer of a copolymerized perfluorinated monomer and an non-fluorinated alkylvinylester monomer demonstrate superior selective permeability performance for separating gas mixtures compared to membranes of exclusively perfluorinated polymers. Preferred active layer compositions are copolymers of perfluoro-2,2-dimethyl-1,3 dioxole (PDD) copolymerized with an alkylvinyl ester such as vinyl acetate, and vinyl pivalate, and with alkylvinyl esters that are substantially hydrolyzed to provide copolymerized vinyl alcohol functionality. The membranes can have a thin, high diffusion rate, “gutter layer” of a fluorinated polymer highly permeable to nitrogen positioned between the active layer and a porous support layer. A novel copolymer effective in selectively permeable membranes is a copolymer of PDD and an alkylvinyl ester compound having the formula H2C?CHOC(O)R1 in which R1 is a linear or branched alkyl group of from 2 to 5 carbon atoms.Type: GrantFiled: June 10, 2016Date of Patent: March 24, 2020Assignee: COMPACT MEMBRANE SYSTEMS, INC.Inventors: Ning Shangguan, Andrew Edward Feiring, Sudipto Majumdar
-
Patent number: 10490796Abstract: The use of ion-conducting materials to protect electrodes is generally described. The ion-conducting material may be in the form of a layer that is adjacent to a polymeric layer, such as a porous separator, to form a composite. At least a portion of the pores of the polymer layer may be filled or unfilled with the ion-conducting material. In some embodiments, the ion-conducting layer is sufficiently bonded to the polymer layer to prevent delamination of the layers during cycling of an electrochemical cell.Type: GrantFiled: February 19, 2014Date of Patent: November 26, 2019Assignee: Sion Power CorporationInventors: Michael G. Laramie, Yuriy V. Mikhaylik, Tracy Earl Kelley, David Child, Chariclea Scordilis-Kelley, Veronika G. Viner, Bala Sankaran
-
Patent number: 10446865Abstract: The present invention relates to a liquid composition comprising a polymer bearing —SO3H groups and a perfluoroelastomer, a method for manufacturing said liquid composition and an article manufactured by using said composition. Preferably, said article is a proton exchange membrane, which shows at the same time good mechanical resistance and electrochemical properties and is useful for example as separator in fuel cells.Type: GrantFiled: October 14, 2015Date of Patent: October 15, 2019Assignee: SOLVAY SPECIALTY POLYMERS ITALY S.P.A.Inventors: Luca Merlo, Stefano Tonella, Martina Corasaniti, Claudio Oldani
-
Patent number: 10439143Abstract: An additive for a light-emitting layer contains a compound represented by formula (1): where X is P, C, or S; A is a cyclic hydrocarbon group that may have H, a direct bond, a chain hydrocarbon group, or a heteroatom; R is H or an alkyl group, and a plurality of R may link together to form a ring, and if said ring is formed, at least one R is an alkyl group; m is 0 or 1; r is 1 when X is a phosphorous atom or a carbon atom and 2 when X is a sulfur atom; n is a number represented by 3-m when X is a phosphorous atom, and a number represented by 2-m if X is a carbon atom or a sulfur atom; and p is 1 when m is 0, at least 1 when m is 1, and is a substitutable number in A.Type: GrantFiled: July 22, 2016Date of Patent: October 8, 2019Assignee: NIPPON CHEMICAL INDUSTRIAL CO., LTD.Inventors: Fumihiro Yonekawa, Yohei Mizuguchi
-
Patent number: 10370275Abstract: A system includes an ion exchange softener fluidly coupled to a wastewater treatment system. The first ion exchange softener may receive a first brine stream from the wastewater treatment system and to remove a plurality of minerals from the first brine stream to generate a second brine stream including the plurality of minerals and a third brine stream. The system also includes a mineral removal system disposed downstream from the ion exchange softener and that may receive the second brine stream and to generate a sodium chloride (NaCl) brine stream and an acid and caustic production system disposed downstream from and fluidly coupled to the mineral removal system. The acid and caustic production system includes a first electrodialysis (ED) system that may receive the NaCl brine stream from the mineral removal system and to generate hydrochloric acid (HCl) and sodium hydroxide (NaOH) from the NaCl brine stream.Type: GrantFiled: November 24, 2014Date of Patent: August 6, 2019Assignee: Enviro Water Minerals Company, Inc.Inventor: Paul Steven Wallace
-
Patent number: 10349627Abstract: A detection device is retained in the rumen of a cow by being orally administered to the cow, and detects the state of the inside of the rumen. The detection device wirelessly transmits measured values of the rumen pH as detection results. A monitoring unit (receiver and monitoring server) acquires information transmitted from the detection device, and monitors the state of the inside of the rumen. The detection device is configured to be recoverable orally from the rumen of the cow. The operating conditions of the detection device are recorded in the detection device ahead of time, and can be updated by means of a wireless signal transmitted from a setting unit to the detection device.Type: GrantFiled: June 17, 2010Date of Patent: July 16, 2019Assignee: INCORPORATED NATIONAL UNIVERISTY IWATE UNIVERSITYInventors: Shigeru Sato, Hitoshi Mizuguchi, Kazunori Ito, Yasuo Okita
-
Patent number: 10300478Abstract: The present invention relates to a bipolar ion exchange sheet and a manufacturing method therefor, the bipolar ion exchange sheet comprising: a cation exchange film comprising a cation adsorption sheet and a cation exchange coating layer formed on one side of the cation adsorption sheet; and an anion exchange film comprising an anion adsorption sheet and an anion exchange coating layer formed on one side of the anion adsorption sheet, wherein the cation exchange film and the anion exchange film are bonded so that the cation exchange coating layer and the anion exchange coating layer face each other.Type: GrantFiled: September 16, 2015Date of Patent: May 28, 2019Assignee: Coway co., LtdInventors: Sung-Min Moon, Jun-Young Lee, Sun-Beom Choi, Sang-Hyeon Kang, Kyung-Seok Kang, Won-Keun Son
-
Patent number: 10252257Abstract: The ion exchange membrane according to the present invention comprises a layer A comprising a fluorine-containing polymer having a sulfonic acid group and a layer B comprising a fluorine-containing polymer having a carboxylic acid group, wherein a ratio of an ion cluster diameter of the layer B after electrolysis under the following electrolysis conditions to the ion cluster diameter of the layer B before the electrolysis [(the ion cluster diameter of the layer B after the electrolysis)/(the ion cluster diameter of the layer B before the electrolysis)] is 0.83 to 0.95: (Electrolysis Conditions) in a zero-gap base electrolytic cell where the ion exchange membrane is disposed between an anode chamber to which a 3.5 N aqueous sodium chloride solution is supplied and a cathode chamber to which a 10.8 N aqueous sodium hydroxide solution is supplied, electrolysis is performed for 7 days under conditions having a temperature of 85° C. and a current density of 6 kA/m2.Type: GrantFiled: May 16, 2016Date of Patent: April 9, 2019Assignee: ASAHI KASEI KABUSHIKI KAISHAInventors: Atsushi Nakajima, Naoki Sakamoto, Takuya Morikawa
-
Patent number: 10252223Abstract: To make membranes, a plurality of membrane substrates are each wetted with a curable liquid mixture, arranged in a stack such that every pair of substrates are separated by at least one film, and moved simultaneously through a common curing region. Each wetted substrate sheet may be sandwiched between two films. After curing, the stack comprises two or more membranes with each pair of membranes separated by a film. An apparatus for making membranes comprises at least two substrate feeding devices, at least one film feeding device, one or more chemical wetting devices, a curing region, optionally, a stack separating region, and, optionally, a membrane binding or fusing region. Membrane production rate may be increased while the curing energy required per unit area of membrane is decreased. The method can make, for example, ion exchange membranes.Type: GrantFiled: July 19, 2013Date of Patent: April 9, 2019Assignee: BL Technologies, Inc.Inventor: Harikrishnan Ramanan
-
Patent number: 10256494Abstract: A solid polymer fuel cell has a plurality of stacked single battery modules having an electrolyte membrane, electrode layers disposed on both surfaces of the electrolyte membrane, and a pair of separators provided with a gas flow paths disposed on the inside surface so as to sandwich the electrode layer. The electrolyte membrane is provided with electrolyte material and a nonwoven fabric which is embedded in the electrolyte material. The nonwoven fabric is provided with a plurality of fused parts that are provided in a linear shape or spotted on a part of the nonwoven fabric that is a part corresponding to of the solid polymer fuel cell. Two or more nonwoven fibers are fused to each other, and the thickness thereof is thinner than the membrane thickness of the unwoven fabric.Type: GrantFiled: July 20, 2012Date of Patent: April 9, 2019Assignee: Panasonic Intellectual Property Management Co. Ltd.Inventors: Masahiro Mori, Shinya Kikuzumi
-
Patent number: 10236527Abstract: Provided are a method for preparing a Nafion membrane having a through-pore free monolithic porous structure throughout the bulk of the membrane through a one-step process very easily and a Nafion membrane having a through-pore free monolithic porous structure obtained from the method. The Nafion membrane having such a porous structure may have an increased surface area, and thus may improve the membrane/catalyst interfacial area and transport characteristics.Type: GrantFiled: December 29, 2015Date of Patent: March 19, 2019Assignee: Korean Institute of Science and TechnologyInventors: Dirk Henkensmeier, Dickson Joseph, Jong Hyun Jang, Jin Young Kim, Hyoung-Juhn Kim, Jonghee Han, Suk Woo Nam, Sung Pil Yoon
-
Patent number: 10194528Abstract: A composite material, a high-frequency circuit baseboard made therefrom and a production method thereof. The composite material comprises: a dispersed emulsion of fluoropolymer with a low dielectric loss; a porous, expanded polytetrafluoroethylene film; and a powdery packing. The high-frequency circuit baseboard made from the composite material comprises: several laminated sheets of prepreg made from the composite material, and copper foils pressed over the two properties sides thereof. The baseboard uses a porous ePTFE film with excellent dielectric as a carrier material, which can lower the dielectric constant and dielectric loss angle tangent of the composite material and high-frequency circuit baseboard. The dielectric constant of the high-frequency circuit baseboard and prepreg is isotropic in both X and Y directions. The thickness of the prepreg can be regulated by employing porous ePTFE films with a different thickness, which avoids cracking.Type: GrantFiled: September 14, 2011Date of Patent: January 29, 2019Assignee: GUANGDONG SHENGYI SCI. TECH CO., LTD.Inventor: Minshe Su
-
Patent number: 10135085Abstract: A flow battery includes a cell that has a first electrode, a second electrode spaced apart from the first electrode and an electrolyte separator layer arranged between the first electrode and the second electrode. A supply/storage system is external of the at least one cell and includes first and second vessels that are fluidly connected with the at least one cell. First and second fluid electrolytes are located in the supply/storage system. The electrolyte separator layer includes a hydrated ion-exchange membrane of a polymer that has a carbon backbone chain and side chains extending from the carbon backbone chain. The side chains include hydrophilic chemical groups with water molecules attached by secondary bonding to form clusters of water domains. The clusters have an average maximum cluster size no greater than 4 nanometers, with an average number of water molecules per hydrophilic chemical group, ? (lambda), being greater than zero.Type: GrantFiled: May 16, 2013Date of Patent: November 20, 2018Assignee: UNITED TECHNOLOGIES CORPORATIONInventors: Robert Mason Darling, Michael L. Perry, Wei Xie
-
Patent number: 10125036Abstract: Provided is an ion exchange membrane including an ionic vinyl alcohol polymer having a cation exchange group or an anion exchange group. The ion exchange membrane 1 includes a porous support 3 and the ionic vinyl alcohol polymer. The porous support is provided, in a thickness direction from one surface thereof, with an impregnated layer 2 at least a part of which is impregnated with the ionic vinyl alcohol polymer. The ionic vinyl alcohol polymer includes an ionic vinyl alcohol polymer having an ion exchange group selected from a cation exchange group or an anion exchange group. The ion exchange membrane has a zeta potential value (?1) at one surface and a zeta potential value (?2) at the other surface, which are represented by the formula (1). (|?1|)?|?2|)/|?1|<0.Type: GrantFiled: June 23, 2015Date of Patent: November 13, 2018Assignees: KURARAY CO., LTD., YAMAGUCHI UNIVERSITYInventors: Atsushi Jikihara, Kenichi Kobayashi, Takahiro Nakashima, Mitsuru Higa
-
Patent number: 10093761Abstract: Described herein is a composition having a fluoropolymer derived from the polymerization of a monomer and a sulfinate-containing molecule, wherein the sulfinate-containing molecule is selected from the group consisting of Formula (I), Formula (II); and combinations thereof, wherein X1, X2, and X3 are each independently selected from H, F, Cl, a C1 to C4 alkyl group, and a C1 to C4 fluorinated alkyl group; R is a linking group; Z1 and Z2 are independently selected from F, CF3, and a perfluoroalkyl group; R1 and R2 are end-groups; p is 0 or 1; m is at least 1; and M is a cation. Also disclosed are methods of making and articles thereof.Type: GrantFiled: December 16, 2011Date of Patent: October 9, 2018Assignee: 3M Innovative Properties CompanyInventors: Gregg D. Dahlke, Denis Duchesne, Tatsuo Fukushi, Werner M. Grootaert, Miguel A. Guerra, Harald Kaspar, Larry A. Last, Peter J. Scott, Zai-Ming Qiu
-
Patent number: 9919271Abstract: The disclosure relates to efficient methods of controlling biological conversions while simultaneously removing and converting some of the generated products. More specifically, and, for example, the disclosure discloses electrochemical processes to remove and capture potentially toxic ammonium during anaerobic digestions and to remove and capture carboxylic acids during bioethanol production. The disclosure can, thus, be used to enhance bioproduction processes via controlling pH and/or reduction/oxidation, in combination with in situ product recovery.Type: GrantFiled: January 30, 2013Date of Patent: March 20, 2018Assignee: UNIVERSITEIT GENTInventors: Korneel Rabaey, Christian Stevens
-
Patent number: 9922773Abstract: The present invention provides an ionic polymer membrane prepared by irradiating the compound represented by formula 1 and an ionic polymer. The ionic polymer membrane of the present invention has the advantage of excellent processability, low production costs, high ion exchange capacity and high durability. Also, the method for preparing the ionic polymer membrane of the invention not only facilitates the production of the ionic polymer membrane in a 3-dimensional network structure which has high ion exchange capacity and high dimensional stability but also makes it easy to produce membranes in various forms and sizes by using the composition itself as a coating solution with using the commercialized inexpensive ionic polymer without additional high-risk multi-step introduction process of ionic exchange group.Type: GrantFiled: June 10, 2016Date of Patent: March 20, 2018Assignee: Korea Atomic Energy Research InstituteInventors: Chan Hee Jung, Junhwa Shin, In Tae Hwang, Joon Yong Sohn, Chang-Hee Jung
-
Patent number: 9917331Abstract: Provided are a secondary battery having a configuration with which localized metal contaminant precipitation at the negative electrode can be reliably inhibited in less time, and a method for producing a secondary battery that allows reliable deactivation of metal contaminant in less time. The battery comprises a positive electrode, a negative electrode, and a separator placed between the two electrodes. The separator has an air resistance Rp?100 sec in an in-plane direction vertical to its thickness direction and an air resistance Rt>Rp in the thickness direction. The method comprises a minimal charging step where the cell is charged to 0.01% to 0.5% capacity over at least one hour to obtain a state of charge where the positive and negative electrode potentials are at or above the oxidation and reduction potentials of a probable metal contaminant, respectively; and a step of performing initial conditioning charging.Type: GrantFiled: October 2, 2013Date of Patent: March 13, 2018Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Hisataka Fujimaki, Hiroshi Kawadu
-
Patent number: 9899653Abstract: An alkaline storage battery includes a spiral electrode group with a positive plate and a negative plate spirally wound with a separator interposed therebetween. The separator includes a plurality of sulfone group-containing regions. The plurality of sulfone group-containing regions are separated from one another in a winding direction, and disposed to face the positive plate or the negative plate.Type: GrantFiled: September 25, 2014Date of Patent: February 20, 2018Assignee: GS Yuasa International Ltd.Inventors: Manabu Kanemoto, Tadashi Kakeya, Mitsuhiro Kodama
-
Patent number: 9893374Abstract: Disclosed is a composite electrolyte membrane comprising a microporous polymer substrate and a sulfonated polymer electrolyte.Type: GrantFiled: April 3, 2015Date of Patent: February 13, 2018Assignee: LG CHEM, LTD.Inventors: Eun Ju Kim, Chong Kyu Shin, Bong Keun Lee, Seong Ho Choi
-
Patent number: 9875853Abstract: An electrical storage device includes an electrical storage element and an electrolytic solution. The electrical storage element is formed of an anode body, a cathode body facing the anode body, and a separator interposed between the anode body and the cathode body. The separator includes a separator substrate and a conductive polymer adhering to the separator substrate. The electrical storage element is impregnated with the electrolytic solution. The separator includes a first surface layer having a first surface facing the anode body and a second surface layer having a second surface facing the cathode body. The first surface layer includes a first region that is not provided with the conductive polymer, and the second surface layer includes a second region provided with the conductive polymer.Type: GrantFiled: February 22, 2016Date of Patent: January 23, 2018Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Daisuke Kubo, Masayuki Takahashi, Yukihiro Shimasaki, Tomoyuki Tashiro, Tatsuji Aoyama
-
Patent number: 9765443Abstract: An electroplating processor has a head including a wafer holder, with the head movable to position a wafer in the wafer holder into a vessel holding a first electrolyte and having one or more anodes. A thief electrode assembly may be positioned adjacent to a lower end of the vessel, or below the anode. A thief current channel extends from the thief electrode assembly to a virtual thief position adjacent to the wafer holder. A thief electrode in the thief electrode assembly is positioned within a second electrolyte which is separated from the first electrolyte by a membrane. Alternatively, two membranes may be used with an isolation solution between them. The processor avoids plating metal onto the thief electrode, even when processing redistribution layer and wafer level packaging wafers having high amp-minute electroplating characteristics.Type: GrantFiled: September 2, 2015Date of Patent: September 19, 2017Assignee: Applied Materials, Inc.Inventors: Gregory J. Wilson, Paul R. McHugh
-
Patent number: 9755271Abstract: The present disclosure provides a cell and a preparation method thereof. The cell comprises a positive electrode plate (1); a negative electrode plate (2) and a composite solid electrolyte membrane (3) positioned between the positive electrode plate (1) and the negative electrode plate (2). The composite solid electrolyte membrane (3) comprises inorganic solid electrolyte layers (31) and structure supporting layers (32) which are alternately laminated along a laminating direction (D), and has abutted surfaces (S1) respectively abutting against the positive electrode plate (1) and the negative electrode plate (2), an angle between the laminating direction (D) and the abutted surface (S1) is defined as ?, and 0°??<90°.Type: GrantFiled: June 2, 2015Date of Patent: September 5, 2017Assignee: NINGDE AMPEREX TECHNOLOGY LIMITEDInventors: Xiang Hong, Jiewei Zhang, Kaifu Zhong
-
Patent number: 9738733Abstract: Vulcanizates with desirable properties can be obtained from compounds incorporating polymers that include hydroxyl group-containing ?-methylstyrene functionalities. The functionalities can be incorporated by using any or all of appropriate initiators, monomers and optional terminating compounds. Such polymers exhibit excellent interactivity with both conventional and non-conventional fillers.Type: GrantFiled: September 14, 2016Date of Patent: August 22, 2017Assignee: Bridgestone CorporationInventors: Zengquan Qin, Yuan-Yong Yan, Xiao-Dong Pan
-
Patent number: 9670586Abstract: The present invention provides solid oxide fuel cells, solid oxide electrolyzer cells, solid oxide sensors, components of any of the foregoing, and methods of making and using the same. In some embodiments, a solid oxide fuel cell comprises an air electrode (or cathode), a fuel electrode (or anode), an electrolyte interposed between the air electrode and the fuel electrode, and at least one electrode-electrolyte transition layer. Other embodiments provide novel methods of producing nano-scale films and/or surface modifications comprising one or more metal oxides to form ultra-thin (yet fully-dense) electrolyte layers and electrode coatings. Such layers and coatings may provide greater ionic conductivity and increased operating efficiency, which may lead to lower manufacturing costs, less-expensive materials, lower operating temperatures, smaller-sized fuel cells, electrolyzer cells, and sensors, and a greater number of applications.Type: GrantFiled: November 30, 2013Date of Patent: June 6, 2017Assignee: FCET, Inc.Inventors: Mark A. Deininger, Leonid V. Budaragin, Paul D. Fisher, Mikhail Pozvonkov, D. Morgan Spears, II
-
Patent number: 9666852Abstract: An ionically conductive composite separator for a rechargeable battery and methods for producing the same are provided. The separator may include a bulk material having an anode side and a cathode side and a thickness extending therebetween and a region of aligned particles extending across the bulk material thickness. The aligned particles may be formed as a particle chain and the particles may be formed of a solid electrolyte material. The ionically conductive separator may be formed by providing a plurality of particles within a bulk material and applying an AC electric field to the particles and the bulk material while the bulk material is in a liquid state to align the particles into at least one ionically conductive aligned particle region within the bulk material.Type: GrantFiled: October 2, 2014Date of Patent: May 30, 2017Assignee: Ford Global Technologies, LLCInventors: Venkataramani Anandan, Andrew Robert Drews, John Matthew Ginder
-
Patent number: 9627673Abstract: An object of the present invention is to provide a secondary battery that is able to inhibit the growth of a dendrite that can generate from an electrode comprising alkali metal and a separator used therein. A secondary battery, comprising: a positive electrode; a negative electrode comprising alkali metal; a separator comprising a layer of tetrafluoroethylene (TFE) polymer or copolymer that reacts with a dendrite of the alkali metal, the separator being hydrophilized at a rate of not less than 10% and not more than 80%; and a layer that does not react with a dendrite of the alkali metal located between the separator and the negative electrode, and a separator used therein.Type: GrantFiled: November 14, 2013Date of Patent: April 18, 2017Assignee: W. L. Gore & Associates, Co., Ltd.Inventor: Kotaro Kobayashi
-
Patent number: 9511327Abstract: This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion®, over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.Type: GrantFiled: June 27, 2016Date of Patent: December 6, 2016Assignee: Paragon Space Development CorporationInventors: Taber K. MacCallum, Laura Kelsey
-
Patent number: 9469661Abstract: Vulcanizates with desirable properties can be obtained from compounds incorporating polymers that include hydroxyl group-containing ?-methylstyrene functionalities. The functionalities can be incorporated by using any or all of appropriate initiators, monomers and optional terminating compounds. Such polymers exhibit excellent interactivity with both conventional and non-conventional fillers.Type: GrantFiled: May 20, 2015Date of Patent: October 18, 2016Assignee: Bridgestone CorporationInventors: Zengquan Qin, Yuan-Yong Yan, Xiao-Dong Pan
-
Patent number: 9457323Abstract: A carbon dioxide separation member is disclosed, which includes: a hydrophobic porous membrane that has heat resistance to a temperature of 100° C. or higher; and a polymer compound layer that is formed on a surface of the porous membrane, the polymer compound layer including moisture, and at least one carbon dioxide carrier selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates, and alkali metal hydroxides, and having a cross-linked structure that is formed with a specific single crosslinkable group and includes a specific hydrolysis-resistant bond, wherein the carbon dioxide separation member selectively allows a carbon dioxide gas in a mixture of the carbon dioxide gas and a hydrogen gas to permeate therethrough under temperature conditions of from 100° C. to 250° C.Type: GrantFiled: January 24, 2014Date of Patent: October 4, 2016Assignee: FUJIFILM CorporationInventors: Yoshihiro Aburaya, Kazuki Yamazaki
-
Patent number: 9379398Abstract: Disclosed herein are catalyst degradation detection assemblies and methods of catalyst degradation detection that can be performed in-situ. One embodiment of an in-situ fuel cell catalyst degradation detection assembly comprises a humidified hydrogen supply configured to supply humidified hydrogen to an anode of a fuel cell, a humidified nitrogen supply configured to supply humidified nitrogen to a cathode of the fuel cell, a collection cell containing a liquid, the collection cell configured to receive either cathode exhaust from the fuel cell through a cathode exhaust line or anode exhaust from the fuel cell through an anode exhaust line and means for detecting a gas.Type: GrantFiled: December 20, 2011Date of Patent: June 28, 2016Assignee: Nissan North America, Inc.Inventors: Ellazar V. Niangar, Taehee Han, Nilesh Dale, Kevork Adjemian