Diaphragms Patents (Class 204/295)
  • Patent number: 10707469
    Abstract: A separator for a flowing electrolyte battery, and a method of forming such a separator, enable improved efficiency in a flowing electrolyte battery. The separator includes a sheet having a first surface and a second surface opposing the first surface. A first spacer element is disposed on the first surface, and a second spacer element is disposed on the second surface. The first spacer element is wider than the second spacer element in a direction that is both parallel to the first and second surfaces and perpendicular to longitudinal axes of the first and second spacer elements.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: July 7, 2020
    Assignee: RedFlow R&D Pty Ltd
    Inventor: Alexander Rudolf Winter
  • Patent number: 10522808
    Abstract: A cross-linked microporous polysulfone or polysulfone copolymer battery electrode separator membrane are described. Such membranes, which would otherwise be soluble above a particular, generally high temperature in selected battery electrolyte systems, once at least in part cross-linked, swell in the electrolyte at the particular higher temperature instead of dissolving. When the membrane separators are restrained between solid electrodes in a battery, the separator cannot increase in bulk volume, and the swelling occurs within the pores with the pore volume decreasing from its original bulk volume. The drop in pore volume causes the battery current density to drop, thereby reducing the heat generation within the hot area of the battery. This process provides a measure of safety against overheating and fires, and the battery is capable of continued usage if the overheating is localized.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 31, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventor: Ray L. Hauser
  • Patent number: 10457971
    Abstract: A method of making an electrochemical sensor strip that includes: depositing a first electrode on a base; depositing a second electrode on the base; applying a first layer onto the first electrode; and applying a second layer onto the second electrode. The first layer includes an oxidoreductase and a mediator. The second layer includes a soluble redox species.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 29, 2019
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Huan-Ping Wu, Greg P. Beer, Christina Blaschke
  • Patent number: 10446866
    Abstract: A proton conductor is a proton conductor represented by a composition formula of BaZr1?x?yYxInyO3, and x and y in the composition formula satisfy 0<y?0.013 and 0<x+y<0.5. A small amount of In is added to the composition in a predetermined range, whereby a resistance of the crystal grain boundary of the proton conductor can be decreased so as to compensate for or even exceed the increase in resistance in the crystal gains of the proton conductor caused by the addition of In, and as a result, the entire resistance can be decreased.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: October 15, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Tomoya Kamata, Tomohiro Kuroha, Yukimune Kani, Hiroshige Matsumoto
  • Patent number: 10260416
    Abstract: The present disclosure relates to systems and methods for power production utilizing an ion transfer membrane (ITM) unit. An air stream and a fuel stream can be passed through the ITM unit so that the fuel is at least partially oxidized or combusted to form an outlet stream comprising CO2. The CO2 stream can be compressed and expanded to generate power.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: April 16, 2019
    Assignee: 8 Rivers Capital, LLC
    Inventors: Rodney John Allam, Glenn William Brown, Jr., Benjamin Hoff
  • Patent number: 10153472
    Abstract: A microporous membrane of a polyethylene-based composite material, including high density and high crystallinity of polyethylene as a base material. The polyethylene is modified by a modifying agent accounting for 10-25 wt. % of the membrane and including a moderate molecular weight of rubber selected from polyisobutylene (PIB), ethylene-propylene methylene copolymer (EPM), or a mixture thereof, the rubber having a dynamic viscosity of between 50 and 2000 Pa·S at 100° C. and a weight average molecular weight of between 90,000 and 250,000. The modified polyethylene is dissolved in a solvent and a pore-forming agent for pore formation.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: December 11, 2018
    Assignee: TIANJIN DG MEMBRANE TECHNOLOGY CO., LTD.
    Inventors: Xin Li, Jianhua Li, Yongjun Jiao, Long Li, Wei Chen, Xinjian Deng
  • Patent number: 10084167
    Abstract: The present invention refers to a method of preparing a separator, comprising: producing a dispersion comprising inorganic particles, a polymer binder, polymer fibers and a solvent; applying the dispersion on the top surface of a substrate to form a non-woven fabric web as a layer comprising the inorganic particles, the polymer binder and the polymer fiber, in which the inorganic particles are positioned in gaps of the polymer fibers and adhered thereto by the polymer binder; and drying and compressing the non-woven fabric web to obtain a non-woven fabric substrate; a separator prepared by the method; and an electrochemical device comprising the separator.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: September 25, 2018
    Assignees: LG Chem, Ltd., TORAY INDUSTRIES, INC.
    Inventors: Joo-Sung Lee, Bo-Kyung Ryu, Jong-Hun Kim
  • Patent number: 10022706
    Abstract: A composite material type oxygen transport membrane and its preparation method are disclosed. The composite material that is an ionic-electronic mixed conducting material having high ionic conductivity is stirred into slurry and formed into a thin strip-shaped green tape substrate through tape casting to obtain a predetermined half-finished substrate, and then sintered to form the half-finished substrate into a conductive function type oxygen ion conducting substrate, followed by choosing small particle shaped highly catalyzed ionic-electronic mixed conducting material to be evenly adhered to at least one side surface of the conductive function type oxygen ion conducting substrate to form a reductive function type oxygen ion conducting layer. The reductive function type oxygen ion conducting layer and the conductive function type oxygen ion conducting substrate are then bonded to produce a composite material type oxygen transport membrane element.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: July 17, 2018
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Ming-Wei Liao, Tai-Nan Lin, Wei-Xin Kao, Chun-Yen Yeh, Hong-Yi Kuo, Yu-Ming Chen
  • Patent number: 10008731
    Abstract: Disclosed is a ceria electrolyte for a solid oxide fuel cell, which is a ceria (CeO2) electrolyte configured such that either gadolinium (Gd) or samarium (Sm) is co-doped with ytterbium (Yb) and bismuth (Bi), wherein Bi is doped in an amount of 0.5 to 5 mol %, thus exhibiting low-temperature sintering properties.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: June 26, 2018
    Assignee: KCERACELL CO., LTD.
    Inventors: Kyoung Tae Lim, Hee Lak Lee, Hyeong Cheol Shin, Choong Hwan Lee, Byung Sub Kim, Jae Hwa Choi, Su Jeong Lee
  • Patent number: 9972450
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a capacitor. A representative liquid or gel separator comprises a plurality of particles selected from the group consisting of: diatoms, diatomaceous frustules, diatomaceous fragments, diatomaceous remains, and mixtures thereof; a first, ionic liquid electrolyte; and a polymer or, in the printable composition, a polymer or a polymeric precursor. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 15, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 9951432
    Abstract: An electrolysis method of preventing the voltage of an electrolytic bath from rising over time without halting electrolysis and an electrolysis device for executing the method are provided such that: in operation of a two-compartment electrolytic bath, which has a membrane partitioning an anode compartment from a cathode compartment and in which a sulfide ion-containing white liquor for use in a pulp production process is fed into the anode compartment while direct current is supplied to the electrolytic bath to produce polysulfide in the anode compartment through electrolysis, and a sulfide ion-containing white liquor for use in a pulp production process that contains at least one of a scale cleaning agent and a scale inhibitor is fed to the anode compartment.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 24, 2018
    Assignees: NIPPON PAPER INDUSTRIES CO., LTD., PERMELEC ELECTRODE LTD.
    Inventors: Kenichiro Suyama, Kazuhiro Kurosu, Masaaki Kato, Hideo Otsu
  • Patent number: 9896774
    Abstract: A three-compartment cell for production of oxidising disinfectant solutions is provided. The intermediate compartment of the cell is separated from the anodic compartment by a fibrous diaphragm in intimate contact with an anion-exchange membrane.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 20, 2018
    Assignee: INDUSTRIE DE NORA S.P.A.
    Inventors: Mariachiara Benedetto, Yoshinori Nishiki
  • Patent number: 9793551
    Abstract: The present invention relates to a cermet body composition for the preparation of novel cermet materials to be used in solid oxide fuel cells. The cermet body composition comprises a ceramic component and a metallic component, wherein the ceramic component is in the range of 5% to 95% by wt of the cermet body.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: October 17, 2017
    Assignee: Universiti Brunei Darussalam
    Inventors: Peter Hing, Lim Chee Ming, Khan Muhammad Naeem
  • Patent number: 9791401
    Abstract: A device utilizing biosensors to enable rapid electrochemical sensing of one or more analytes in a container. The device comprises a holder which incorporates at least one reference electrode and at least one sensing electrode. The sensing electrode comprising an electrically conductive substrate which is coated in a first layer of a suitable electron acceptor and subsequently with a second layer incorporating a biorecognition molecule adsorbed or within a suitable electropolymer matrix or carrier.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: October 17, 2017
    Assignee: SARISSA BIOMEDICAL LIMITED
    Inventors: Nicholas Dale, Faming Tian
  • Patent number: 9722227
    Abstract: A cross-linked microporous polysulfone or polysulfone copolymer battery electrode separator membrane are described. Such membranes, which would otherwise be soluble above a particular, generally high temperature in selected battery electrolyte systems, once at least in part cross-linked, swell in the electrolyte at the particular higher temperature instead of dissolving. When the membrane separators are restrained between solid electrodes in a battery, the separator cannot increase in bulk volume, and the swelling occurs within the pores with the pore volume decreasing from its original bulk volume. The drop in pore volume causes the battery current density to drop, thereby reducing the heat generation within the hot area of the battery. This process provides a measure of safety against overheating and fires, and the battery is capable of continued usage if the overheating is localized.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 1, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Ray L. Hauser
  • Patent number: 9534159
    Abstract: The present invention relates to the use of an ionic fluoropolymer in its H-form for the formation of an antistatic coating on a non-conductive substrate, and to a cable comprising an outermost non-conductive layer with a coating thereon which comprises an ionic fluoropolymer in its H-form.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: January 3, 2017
    Assignee: W. L. Gore & Associates GmbH
    Inventor: Wolfgang Bürger
  • Patent number: 9023902
    Abstract: Highly energy efficient electrodialysis membranes having low operating costs and a novel process for their manufacture are described herein. The membranes are useful in the desalination of water and purification of waste water. They are effective in desalination of seawater due to their low electrical resistance and high permselectivity. These membranes are made by a novel process which results in membranes significantly thinner than prior art commercial electrodialysis membranes. The membranes are produced by polymerizing one or more monofunctional ionogenic monomers with at least one multifunctional monomer in the pores of a porous substrate.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: May 5, 2015
    Assignee: Evoqua Water Technologies Pte. Ltd
    Inventors: Juchui Ray Lin, George Y. Gu
  • Patent number: 8999119
    Abstract: The hydrogen production device of the present invention includes: a first electrode including a conductive substrate and a photocatalytic semiconductor layer; a second electrode that is electrically connected to the first electrode and disposed in a second region opposite to a first region relative to the first electrode; the first region is defined as a region on a side of a surface of the first electrode in which the photocatalytic semiconductor layer is provided; a water-containing electrolyte solution; and a housing containing these. The first electrode is provided with first through-holes and the second electrode is provided with second through-holes; and the first through-holes and second through-holes form a communicating hole for allowing the first region and the second region to communicate with each other. An ion exchange membrane having substantially the same shape as the communicating hole is disposed in the communicating hole to close the communicating hole.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kenichi Tokuhiro, Takaiki Nomura, Kazuhito Hato, Noboru Taniguchi, Takahiro Suzuki, Satoru Tamura
  • Patent number: 8969424
    Abstract: Embodiments of the present invention provide for anion exchange membranes and processes for their manufacture. The anion exchange membranes described herein are made the polymerization product of at least one functional monomer comprising a tertiary amine which is reacted with a quaternizing agent in the polymerization process.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 3, 2015
    Assignee: Evoqua Water Technologies LLC
    Inventor: Jenny Lin
  • Patent number: 8961750
    Abstract: The invention relates to the production of different chemical products by the electrochemical processing of electrolyte solutions of different concentrations. A cylindrical electrochemical cell for processing solutions comprises an inner, hollow, tubular anode, an outer, cylindrical cathode, and a permeable, tubular, ceramic diaphragm that is arranged between said anode and cathode and divides the interelectrode space into anode and cathode chambers so that a working section of the cell is formed. The cell comprises units for mounting, securing and sealing the electrodes and the diaphragm, which are located at the end sections of the cell, and devices for supplying and removing the processed solutions. The cathode and anode of the cell are made of titanium tubes; furthermore, the ratio of the cross-sectional area of the cathode chamber to the total cross-sectional area of the anode chamber and the diaphragm ranges from 0.9 to 1.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: February 24, 2015
    Inventors: Vitold Mikhailovich Bakhir, Yury Georgievich Zadorozhny, Yury Ivanovich Komolikov, Vadim Gennadievich Panichev, Taras Borisovich Barabash
  • Publication number: 20140367249
    Abstract: Composite electrolyte materials comprising at least one component from fully stabilized zirconia (such as 10Sc1CeSZ) and at least one component from partially stabilized zirconia (such as 6SclCeSZ) as the electrolyte material for solid state electrochemical devices.
    Type: Application
    Filed: February 1, 2013
    Publication date: December 18, 2014
    Applicant: Carleton Life Support Systems, Inc.
    Inventors: Zhonglin Wu, Courtney J. Mnonzyk
  • Patent number: 8845784
    Abstract: The present disclosure relates to a system for carbon dioxide seperation and capture. The system includes a porous metal membrane comprising Ni, Ag, or combinations thereof and having molten carbonate within the pores. A CO2 containing flue gas input stream is separated from a reactant gas input stream by the membrane. The CO2 is removed from the flue gas input stream as it contacts the membrane resulting in a CO2 free flue gas output stream and a CO2 containing reactant gas output stream.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 30, 2014
    Assignee: University of South Carolina
    Inventor: Kevin Huang
  • Publication number: 20140262762
    Abstract: Provided herein is a facilitated olefin transport membrane, including: a porous support film; and a polymer electrolyte layer formed on the porous support film and including a polymer, a silver salt and an aluminum salt. The polymer has a repetitive unit including a nitrogen atom and includes an amide group.
    Type: Application
    Filed: November 18, 2013
    Publication date: September 18, 2014
    Applicant: SANGMYUNG UNIVERSITY SEOUL INDUSTRY ACADEMY COOPERATION FOUNDATION
    Inventors: Yong-Soo KANG, Sang-Wook KANG
  • Publication number: 20140227613
    Abstract: The present invention relates to a production method for a support type ceramic membrane using tape casting, wherein, when producing a multifunctional membrane comprising a membrane structure such as a general electrochemical device or electrolysis cell or fuel cell, a dense-structure coating membrane or porous functional (separation) membrane is produced on one or more surfaces of a porous support.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 14, 2014
    Applicant: KOREA ELECTRIC POWER CORPORATION
    Inventors: Young-Sung Yoo, Mi-Hwa Choi, Tae-Hee Lee
  • Patent number: 8795482
    Abstract: Methods and apparatus are provided for planar metal plating on a workpiece having a surface with recessed regions and exposed surface regions; comprising the steps of: causing a plating accelerator to become attached to said surface including the recessed and exposed surface regions; selectively removing the plating accelerator from the exposed surface regions without performing substantial metal plating on the surface; and after removal of plating accelerator is at least partially complete, plating metal onto the surface, whereby the plating accelerator remaining attached to the surface increases the rate of metal plating in the recessed regions relative to the rate of metal plating in the exposed surface regions.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: August 5, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Marshall R. Stowell, John S. Drewery, Richard S. Hill, Timothy M. Archer, Avishai Kepten
  • Patent number: 8784620
    Abstract: Described is a method for improving the operation of an electrolytic cell having an anolyte compartment, a catholyte compartment and a synthetic diaphragm separating the compartments, wherein liquid anolyte is introduced into the anolyte compartment and flows through the diaphragm into the catholyte compartment, which method involves introducing particulate material comprising halocarbon polymer short fiber, e.g., fluorocarbon polymer short fiber, into the anolyte compartment in amounts sufficient to lower the flow of liquid anolyte through the diaphragm into the catholyte compartment. In the case of an electrolytic cell wherein aqueous alkali metal chloride, e.g.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: July 22, 2014
    Assignee: Axiall Ohio, Inc.
    Inventors: Henry W. Schussler, David R. Bush, Craig R. Long
  • Publication number: 20140110274
    Abstract: A method of producing porous ionic conducting material, comprising the step of positioning an ionic substance into cellulosic material to form a continuous web or at least one individual sheet of porous ionic cellulosic based material, comprising the steps of first producing a web or sheet shaped cellulosic based substrate and thereafter applying liquid comprising room temperature ionic liquids. The porous ionic conducting material is used in flexible electronic device, by using the material as a substrate and applying a conducting material. A sensor assembly for sensing a property of an object, comprising at least one sensor wherein said sensor assembly comprises a flexible web or sheet shaped material. An authentication device for verifying the authenticity of an object. The device comprising at least one flexible electronic device.
    Type: Application
    Filed: May 14, 2012
    Publication date: April 24, 2014
    Inventors: Magnus Lestelius, Elson Montibon, Lars Järnström
  • Patent number: 8703831
    Abstract: Highly energy efficient electrodialysis membranes having low operating costs and a novel process for their manufacture are described herein. The membranes are useful in the desalination of water and purification of waste water. They are effective in desalination of seawater due to their low electrical resistance and high permselectivity. These membranes are made by a novel process which results in membranes significantly thinner than prior art commercial electrodialysis membranes. The membranes are produced by polymerizing one or more monofunctional ionogenic monomers with at least one multifunctional monomer in the pores of a porous substrate.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 22, 2014
    Assignee: Evoqua Water Technologies Pte. Ltd.
    Inventors: Juchui Ray Lin, George Y. Gu
  • Publication number: 20140038019
    Abstract: A bipolar ion exchange membrane suitable for use in ZnBr batteries, LiBr batteries, and electrolyzers. The membrane is produced by hot pressing or extruding a mixture of an anion exchange ionomer powder, a cation exchange ionomer powder, and a non-porous polymer powder.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: GAS TECHNOLOGY INSTITUTE
    Inventor: Qinbai FAN
  • Publication number: 20130337368
    Abstract: An ion-permeable web-reinforced separator, said ion-permeable web-reinforced separator comprising two separator elements separated by an (optionally integrated) substantially hollow by-pass channel, wherein the separator elements each comprise a binder and a metal oxide or hydroxide dispersed therein and the separator elements have a bubble point of at least 1 bar (0.1 MPa) and a back-wash resistance of at least 1 bar (0.1 MPa) and optionally have a specific resistance less than 4 ?-cm at 30° C. in 6M potassium hydroxide solution; an electrochemical cell involving the production or consumption of at least one gas, said electrochemical cell comprising said ion-permeable web-reinforced separator; and the use thereof in an electrochemical cell involving the production or consumption of at least one gas.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 19, 2013
    Applicant: VITO NV
    Inventors: Willy DOYEN, Yolanda Alvarez Gallego
  • Publication number: 20130256122
    Abstract: A system includes an electrochemically functional membrane, and a support structure constructed and arranged so as to support the membrane while leaving within the membrane a chemically active area having an area utilization of at least about 50%. In some embodiments, the support structure may include a plurality of grids that are sized and shaped so that the contact area between the grids and the membrane is reduced to less than about 40%. In some embodiments, the support structure may include aerogels, for example PVA-reinforced CNT aerogels having a conductivity that is increased by pyrolysis. The system may be a gas separation system; a gas production system; a gas purification system; or an energy generation system such as an SOFC.
    Type: Application
    Filed: August 31, 2011
    Publication date: October 3, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Shriram Ramanathan, Daniel V. Harburg, Masaru Tsuchiya, Alexander C. Johnson
  • Patent number: 8506790
    Abstract: Disclosed are electrolytic cells for making solutions of metal alcoholates in their corresponding alcohols using an electrolytic process. In one embodiment, sodium methylate in methanol is made from methanol and sodium hydroxide solution. The sodium hydroxide solution is placed in the anolyte compartment and the methanol is placed in the catholyte compartment, and the two compartments are separated by a ceramic membrane that selectively transports sodium under the influence of current. In preferred embodiments, the process is cost-effective and not environmentally harmful.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: August 13, 2013
    Inventors: Shekar Balagopal, Vigod Matheda
  • Patent number: 8465629
    Abstract: A membrane for use with an electrochemical apparatus is provided. The electrochemical apparatus may include a fuel cell or electrolyzer, for example, an electrolyzer adapted to produce hydrogen. The membrane comprises a fabric made from a synthetic fiber such as nylon where the nylon, in an exemplary embodiment, is woven into ripstop nylon fabric. The electrochemical apparatus is constructed with frames comprising high-density polyethylene (HDPE) which provide support and structure to the membranes as well as to internal electrodes. A method of making an electrochemical apparatus, such as an electrolyzer, containing a membrane comprising ripstop nylon is also disclosed, as is a method for producing hydrogen gas with an electrolyzer containing a membrane comprising ripstop nylon.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: June 18, 2013
    Inventors: Christopher M. McWhinney, David C. Erbaugh
  • Patent number: 8460432
    Abstract: The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite structure with a crystal size of about 1 to 100 nm, and a method for producing same.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 11, 2013
    Assignee: Technical University of Denmark
    Inventors: Peter Vang Hendriksen, Mogens Mogensen, Wei Guo Wang, Bjarke Thomas Dalslet
  • Publication number: 20130118908
    Abstract: An electro-catalytic membrane system for preparing fuel gas from water operates at normal levels of pressure and temperature. The system includes a high frequency power source, a power supply system, a programmable control unit, an electro-catalytic membrane module, and a module for processing the fuel gas. The electro-catalytic membrane module includes metallic electrodes in a concentric arrangement. The space between the concentric electrodes includes granular carbon and metallic particles. A fixed membrane is arranged at a lower end of the space while a mobile membrane is arranged at an upper end of the space. The electro-catalytic membrane module is further provided with sensors for measuring process parameters, conduits, and valves for supplying and removing liquids. A system for cooling the metallic electrodes is also provided.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 16, 2013
    Applicant: S.C. CENTRUL DE CERCETARE PENTRU MATERIALE MACROMOLECULARE SI MEMBRANE S.A. (S.C. CCMMM S.A.)
    Inventors: Marin Radu, Florica Radu, Valentin Radu, Daniela Radu, Florian Cioroianu, Mariana Cioroianu
  • Publication number: 20130068615
    Abstract: A membrane, especially for application in a sensor, which membrane includes a biocidal effect. The membrane comprises one or more components of the group consisting of: silver nano particles encapsulated in amphiphilic, core, shell structures, antimicrobial silanes, polymers with an antimicrobial end group, polyquads with modified end groups, and biocidally acting block copolymers. The membrane is resistant against aggressive agents, for example, corrosive or oxidizing cleaning agents, in the case of sterilizing, in the case of autoclaving, in the case of thermal loading and/or in the case of mechanical loading.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 21, 2013
    Applicants: Technische Universität Dortmund, Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventors: Thomas Endl, Jörg Tiller, Thilo Trapp
  • Patent number: 8349155
    Abstract: A cation exchange membrane which shows suppressed deterioration of the strength of the membrane in the upper portion of an electrolytic cell when the membrane is employed in the electrolytic cell and used for a long term, which can perform electrolysis with good production efficiency, and which can be produced simply with low cost; its production process and; such an electrolytic cell; are provided.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: January 8, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuo Umemura, Hiromitsu Kusano
  • Publication number: 20120312695
    Abstract: The present invention relates generally to conducting polymer composites for use in electrochemical applications and electrolysis applications, and methods of making the same. A composite material is provided that includes a conducting polymer; and a silsesquioxane compound. The composite material is used to prepare ion conducting membranes and membrane electrode assemblies (MEA).
    Type: Application
    Filed: December 3, 2010
    Publication date: December 13, 2012
    Applicant: OHIO UNIVERSITY
    Inventor: Anima B. Bose
  • Patent number: 8323463
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 4, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Gervase Maxwell Christie, Jamie Robyn Wilson, Bart Antonie van Hassel
  • Publication number: 20120276468
    Abstract: The invention provides a composition having the formula (I): xXO2.yY2O5, (wherein: 0.5<x<0.7; 0.3<y<0.5; X comprises one or more of silicon, titanium, germanium and zirconium; and Y comprises one or more of phosphorus, vanadium arsenic and antimony), or a hydrate thereof, in which the composition comprises more than 50 wt % or more of crystalline material.
    Type: Application
    Filed: November 29, 2010
    Publication date: November 1, 2012
    Applicant: University Court of the University of St Andrews
    Inventors: Pierrot Sassou Attidekou, John Thomas Sirr Irvine
  • Patent number: 8293083
    Abstract: Provided are fabrication, characterization and application of a nanodisk electrode, a nanopore electrode and a nanopore membrane. These three nanostructures share common fabrication steps. In one embodiment, the fabrication of a disk electrode involves sealing a sharpened internal signal transduction element (“ISTE”) into a substrate, followed by polishing of the substrate until a nanometer-sized disk of the ISTE is exposed. The fabrication of a nanopore electrode is accomplished by etching the nanodisk electrode to create a pore in the substrate, with the remaining ISTE comprising the pore base. Complete removal of the ISTE yields a nanopore membrane, in which a conical shaped pore is embedded in a thin membrane of the substrate.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: October 23, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Henry S White, Bo Zhang, Ryan J White, Eric N Ervin, Gangli Wang
  • Patent number: 8282811
    Abstract: Disclosed are methods and systems for generating hydrogen gas at pressures high enough to fill a hydrogen storage cylinder for stationary and transportation applications. The hydrogen output of an electrochemical hydrogen gas generating device, a hydrogen-producing reactor, or a diluted hydrogen stream is integrated with an electrochemical hydrogen compressor operating in a high-differential-pressure mode. The compressor brings the hydrogen produced by the hydrogen generating device to the high pressure required to fill the storage cylinder.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: October 9, 2012
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: John A. Kosek, José Giner, Anthony B. LaConti
  • Publication number: 20120234674
    Abstract: A cation exchange membrane includes: a membrane body containing a fluorine-based polymer having an ion-exchange group; and two or more reinforcing core materials arranged approximately in parallel within the membrane body. The membrane body is provided with two or more elution holes formed between the reinforcing core materials adjacent to each other. A distance between the reinforcing core materials adjacent to each other is represented by a, a distance between the reinforcing core materials and the elution holes adjacent to each other is represented by b, a distance between the elution holes adjacent to each other is represented by c, and the number of the elution holes formed between the reinforcing core materials adjacent to each other is represented by n.
    Type: Application
    Filed: October 25, 2010
    Publication date: September 20, 2012
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Hiroyuki Kameyama, Manabu Sugimoto, Yoshifumi Kado
  • Patent number: 8268140
    Abstract: The invention relates to a synthetic diaphragm for chlor-alkali cells with improved energy consumption and gas separation characteristics. The diaphragm comprises a network of polymer fibers bound to a hydrophilic ceramic material containing zirconium chemically bound to hydroxyl groups. The ceramic material is obtained starting from ZrO2 by a process of hydration under vacuum which can be carried out directly in the cell by means of suitable equipment.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: September 18, 2012
    Assignee: Industrie de Nora S.p.A.
    Inventor: Giovanni Meneghini
  • Patent number: 8202406
    Abstract: A porous sheet which has good balance between electrolytic solution permeability and dry-up resistance, is superior in high-rate property, and is suitable for a separator for an electrochemical element, and a manufacturing method thereof are provided. The present invention relates to a porous sheet comprising a porous substrate containing non-fibrillar fibers having an average fiber diameter of 0.01-10 ?m and a net-like structural body composed of a polymer, the net-like structural body having penetrating pores with a pore diameter of 0.01-10 ?m, wherein the net-like structural body is present at the surface and at the internal of the porous substrate and the non-fibrillar fibers having an average fiber diameter of 0.01-10 ?m and the net-like structural body are entangled; to a separator for an electrochemical element comprising the porous sheet; and to a method for manufacturing the porous sheet.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: June 19, 2012
    Assignee: Mitsubishi Paper Mills Limited
    Inventors: Takahiro Tsukuda, Masatoshi Midorikawa, Tomohiro Sato
  • Patent number: 8182658
    Abstract: An anode 20 of an electrochemical device 10 is connected to the cathode of a battery 30, and a cathode 22 of the electrochemical device 10 is connected to the anode of the battery. An electrolyte layer 24 containing electrolytes is arranged between the anode 20 and the cathode 22. Electrolyte layer 24 is formed by alternately laminating two types of electrolytes formed in the shape of plates. A first electrolyte is a proton conductor 26, and a second electrolyte is an oxygen ion conductor 28. A purification apparatus 120 includes a plurality of electrochemical devices 10.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Naotaka Koide, Nami Ikeda, Hiroyasu Kawauchi, Yoshifumi Kato
  • Publication number: 20120090988
    Abstract: The present invention relates an antifouling electrocatalytic composite membrane and a membrane reactor. The electrocatalytic composite membrane (3) consists of a substrate and a catalytic coating, wherein the substrate is selected from a conductive substrate or a nonconductive substrate coated with a conductive coating, and the substrate is a porous support having supporting, conducting and separating functions. The catalytic coating is supported or coated on the surface and in the pores of the conductive substrate or the conductive coating so as to increase the electrocatalytic activity of the substrate.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 19, 2012
    Applicant: DALIAN HUAXINYUAN TECHNOLOGY DEVELOPMENT LIMITED COMPANY
    Inventors: Jianxin Li, Tonghua Wang, Jun Ma, Xiaoping Liang, Yang Yang, Hong Wang
  • Patent number: 8147663
    Abstract: A scaffold holding one or more ion-conductive ceramic membranes for use in an electrochemical cell is described. Generally, the scaffold includes a thermoplastic plate defining one or more orifices. Each orifice is typically defined by a first, second, and third aperture, wherein the second aperture is disposed between the first and third apertures. The diameter of the second aperture can be larger than the diameters of the first and third apertures. While at an operating temperature the diameter of the ceramic membrane is larger than the diameters of the first and third apertures, heating the scaffold to a sufficient temperature and for a sufficient time causes the third aperture's diameter to become larger than the membrane's diameter. Thus, heating the scaffold may allow the membrane to be inserted into the orifice. Cooling the scaffold can then cause the third aperture's diameter to shrink and trap the membrane within the orifice.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 3, 2012
    Assignee: Cekamatec, Inc
    Inventors: Scott Suarez, Steven Matthew Quist
  • Publication number: 20120024697
    Abstract: Process for manufacturing a composite membrane comprising a porous support and a polymeric separation layer having acidic or basic groups comprising the steps of: (i) applying a composition to a porous support; and (ii) curing the composition to form the polymeric separation layer thereon; wherein the composition comprises the components (a) a compound having one ethylenically unsaturated group; and (b) a crosslinking agent having an acrylamide group; and wherein the curing is achieved by irradiating the composition for less than 30 seconds. The membranes are useful in reverse electrodialysis e.g. for generating blue energy and have good resistance to deterioration, even under hot and high pH conditions.
    Type: Application
    Filed: March 16, 2010
    Publication date: February 2, 2012
    Applicant: Fujifilm Manufacturing Europe B.V.
    Inventors: Harro Antheunis, Dana Manuela Sterescu
  • Patent number: 8075749
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising: a containment vessel configured for pressurization; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a first gas, wherein the first gas is formed during electrolysis at or near the first electrode; a second gas, wherein the second gas is formed during electrolysis at or near the second electrode; a separator; a first gas collection vessel; and a second gas collection vessel, wherein the separator includes a first inclined surface to direct flow of the electrolyte and the first gas due to a difference between density of the electrolyte and combined density of the electrolyte and the first gas such that the gas substantially flows in a direction distal the second electrode and towards the first gas collection vessel, and wherein the separa
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister