Enzyme Included In Apparatus Patents (Class 204/403.14)
  • Publication number: 20100116691
    Abstract: A biosensor comprises a substrate; a reference electrode; a working electrode; a counter electrode; and a plurality of permeability adjusting spacers. The reference electrode, the working electrode and the plurality of permeability adjusting spacers are all being disposed to be substantially parallel to each other to create a plurality of enzyme containing porous sections. The enzyme containing porous sections contain an enzyme; where the enzyme is operative to react with a metabolite to determine the concentration of the metabolite. By combining a number of the aforementioned biosensors, the differential concentration of a target enzyme or protein is determined by monitoring the changes on its metabolite substrates.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Fotios Papadimitrakopoulos, Santhisagar Vaddiraju, Faquir Chand Jain, Ioannis C. Tomazos
  • Publication number: 20100112678
    Abstract: An electrochemical-based analytical test strip includes an electrically-insulating substrate, a patterned conductive layer disposed over the electrically-insulating substrate, a patterned insulating layer disposed over the patterned conductive layer, an enzymatic reagent layer disposed over the patterned conductive layer, a patterned adhesive layer disposed above the enzymatic reagent layer and a top layer disposed over the enzymatic reagent layer. In addition, the test strip has a sample-receiving chamber defined by the electrically-insulating substrate, the patterned conductive layer, the patterned insulating layer, the enzymatic reagent layer, the patterned adhesive layer and the top layer. The sample receiving chamber of the test strip has a working portion and a non-working portion and the top layer has a first portion and an opaque second portion.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: John William DILLEEN, Lynsey Whyte, Robert Hamish MacLeod, Ramsay Raymond Donald Darling
  • Publication number: 20100108509
    Abstract: Disclosed is an electrochemical sensors for measuring an analyte in a subject. More particularly, the sensor comprises a non-working electrode, the non-working electrode comprising a non-working electroactive surface, and a layer covering at least a portion of the non-working electroactive surface, the layer configured to prevent or reduce endogenous or exogenous components from contacting the non-working electrode surface.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 6, 2010
    Applicant: Edwards Lifesciences Corporation
    Inventors: Kenneth M. Curry, James R. Petisce
  • Publication number: 20100112613
    Abstract: Novel membranes comprising various polymers containing heterocyclic nitrogen groups are described. These membranes are usefully employed in electrochemical sensors, such as amperometric biosensors. More particularly, these membranes effectively regulate a flux of analyte to a measurement electrode in an electrochemical sensor, thereby improving the functioning of the electrochemical sensor over a significant range of analyte concentrations. Electrochemical sensors equipped with such membranes are also described.
    Type: Application
    Filed: August 20, 2009
    Publication date: May 6, 2010
    Inventors: Fei Mao, Hyun Cho
  • Publication number: 20100096277
    Abstract: There is provided by this invention a simple and rapid amperometric biosensor for determining the level of histamine in seafood or fish. The biosensor combines the technology of screen-printing with immobilized diamine oxidase as the bioreceptor. IQ one embodiment of the present invention, the biosensor incorporates potassium hexacyanoferrate (III) as a mediator.
    Type: Application
    Filed: March 19, 2008
    Publication date: April 22, 2010
    Applicant: UNIVERSITI PUTRA MALAYSIA
    Inventors: Fatimah Abu Bakar, Abu Backar Salleh, Rahman Wagiran, Mai Keow Ching, Yook Heng Lee, Anuar Ahmad, Rosnin Mustaffa
  • Publication number: 20100096276
    Abstract: A multicomponent analysis sensor for measuring two or more kinds of the subjects to be measured by using redox reactions, which is a multicomponent analysis sensor comprising a liquid sample inlet from which a liquid sample containing two or more kinds of the subjects to be measured is introduced, a first measurement chamber, a second measurement chamber, a first channel connecting the above-described liquid sample inlet to the above-described first measurement chamber and a second channel connecting the above-described first measurement chamber to the second measurement chamber, wherein the above-described first measurement chamber and the above-described second measurement chamber respectively have a working electrode and a counter electrode. A first reagent layer containing an enzyme and an electron transfer substance is provided in the first channel or the first chamber, while another reagent layer containing an enzyme is provided in the second channel or the second chamber.
    Type: Application
    Filed: October 1, 2007
    Publication date: April 22, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Shinki Kojima, Tomohiro Yamamoto, Fumihisa Kitawaki, Tetsuo Yukimasa
  • Patent number: 7699967
    Abstract: The present invention relates to an analytical tool (X) which includes a substrate (1), a flow path for moving a sample along the substrate (1), a reagent portion (14) provided in the flow path, and an insulating film (13) covering the substrate (1) and including an opening (15a) for defining a region for forming the reagent portion (14). The insulating film (13) further includes at least one additional opening (15b) positioned in a longitudinal direction (N1) relative to the opening (15a). For instance, the flow path is configured to move the sample by capillary force.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: April 20, 2010
    Assignee: Arkray, Inc.
    Inventor: Taizo Kobayashi
  • Publication number: 20100089769
    Abstract: A method of derivatising an analyte for subsequent detection through a nucleic acid based sensor and a sensor based thereon.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 15, 2010
    Applicant: SONY CORPORATION
    Inventors: JENS ULMER, MICHAEL HULKO, INGEBORG HOSPACH, GABRIELE NELLES
  • Patent number: 7695609
    Abstract: The present invention is directed to systems and methods for detecting biological and chemical species in liquid and gaseous phase. The systems and methods utilize carbon nanotubes to enhance sensitivity and selectivity towards the reacting species by decreasing interference and detecting a wide range of concentrations.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: April 13, 2010
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Prabhu Soundarrajan, James Novak
  • Publication number: 20100084268
    Abstract: A biosensor in which at least one reagent constitutes a portion of a working electrode, a conductive track leading from a working electrode to an electrical contact associated with a working electrode, or an electrical contact associated with a working electrode. For example, the biosensor can have a mediator or an enzyme or both incorporated into the working electrode itself. Other reagents can be dispensed on the electrode itself either directly or by impregnating a matrix, such as a mesh or a membrane, with the enzyme, and then placing the impregnated mesh or membrane over the electrode. Alternatively, the biosensor can have a mediator or an enzyme or both incorporated into the conductive track leading from the working electrode to an electrical contact associated with the working electrode. In another alternative, the biosensor can have a mediator or an enzyme or both incorporated into the electrical contact associated with the working electrode itself.
    Type: Application
    Filed: May 8, 2009
    Publication date: April 8, 2010
    Inventors: Robin D. Pierce, Shridhara Alva Karinka, Milind P. Nagale, Ross D. Meyer, W. James Scott, Gurdial Sanghera
  • Publication number: 20100078322
    Abstract: It is an object of the present invention to provide an excellent biosensor which can perform supply of a sample solution accurately and easily. A biosensor which has a capillary (7) for collecting a sample solution and analyzes a specific substance in the sample solution is provided with, in addition to an air hole (9), at least two supply ports, i.e., a sample supply port (13) and an auxiliary sample supply port (14), so that supply of the sample solution can be performed from either of the supply ports (13) and (14). Even when the sample supply port (13) is closed up with a fingertip or the like and supply of the sample solution is stopped, the sample solution can be quickly supplied from the other auxiliary sample supply port (14).
    Type: Application
    Filed: June 23, 2006
    Publication date: April 1, 2010
    Inventors: Eriko Yamanishi, Hiroyuki Tokunaga, Akihisa Higashihara
  • Publication number: 20100081905
    Abstract: Generally, embodiments of the invention relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have improved uniformity of distribution of one or more components of the sensor by inclusion of a low surface tension polymer leveling agent, where the components are disposed proximate to a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Balasubrahmanya S. Bommakanti, Gary Sandhu, Udo Hoss
  • Publication number: 20100072063
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 25, 2010
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Michael V. Pishko
  • Publication number: 20100072064
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 25, 2010
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Michael V. Pishko
  • Patent number: 7678250
    Abstract: Biological reagent compositions with improved sensitivity to the concentration of blood glucose in patient samples for use in measuring systems and methods. The reagent compositions comprise a glucose oxidoreductase enzyme, a flavin nucleoside coenzyme and a mediator formulation. The mediator formulation comprises at least one electroactive organic molecule and at least one coordination complex.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: March 16, 2010
    Assignee: Home Diagnostics, Inc.
    Inventors: Douglas E. Bell, Michele Albino
  • Publication number: 20100059372
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 11, 2010
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Michael V. Pishko
  • Publication number: 20100059373
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 11, 2010
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Michael Pishko
  • Publication number: 20100059370
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 11, 2010
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Michael V. Pishko
  • Publication number: 20100059371
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 11, 2010
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Michael V. Pishko
  • Publication number: 20100062469
    Abstract: By a method for measuring 1,5-anhydroglucitol, comprising the steps of: eliminating or converting glucose interfering with the measurement of 1,5-anhydroglucitol and/or a derivative thereof beforehand; and measuring 1,5-anhydroglucitol performed thereafter, wherein such glucose and/or a derivative thereof are/is eliminated or converted in whole blood as such without performing blood cell separation, an enzyme for measuring 1,5-anhydroglucitol is allowed to act on without performing blood cell separation, and 1,5-anhydroglucitol is electrochemically measured, it becomes possible to measure 1,5-anhydroglucitol using a small amount of whole blood without resort to a centrifuge or the like. Accordingly, this measurement method can be applied to rapid measurement of 1,5-anhydroglucitol at bedside or in a medical examination room or to home self-measurement thereof by a patient.
    Type: Application
    Filed: December 13, 2007
    Publication date: March 11, 2010
    Inventors: Yoshihiko Umegae, Reiko Machida, Hisako Takagi, Yayoi Irie, Takao Yokoyama, Toshio Tanabe
  • Publication number: 20100051479
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Application
    Filed: November 9, 2009
    Publication date: March 4, 2010
    Inventors: Adam Heller, Michael V. Pishko
  • Publication number: 20100040910
    Abstract: A novel electrocatalyst made of an oxidase having high electron transfer efficiency and an enzymatic electrode using the same are provided. The electrocatalyst is made of CueO. The enzymatic electrode comprises a carbonaceous porous body and an electrocatalyst made of CueO supported on the surface of the carbonaceous porous body. CueO is preferably CueO from Escherichia coli. The carbonaceous porous body constituting the enzymatic electrode is preferably carbonaceous gel. Also, the enzymatic electrode may further comprise a mediator which facilitates transfer of electron between the carbonaceous porous body and said CueO.
    Type: Application
    Filed: September 5, 2007
    Publication date: February 18, 2010
    Inventors: Tsutomu Kajino, Norihiko Setoyama, Keiko Uemura, Hisao Kato, Kenji Kano, Seiya Tsujimura, Takeshi Sakurai, Kunishige Kataoka
  • Publication number: 20100038242
    Abstract: Novel transition metal complexes of iron, cobalt, ruthenium, osmium, and vanadium are described. The transition metal complexes can be used as redox mediators in enzyme-based electrochemical sensors. The transition metal complexes include substituted or unsubstituted (pyridyl)imidazole ligands. Transition metal complexes attached to polymeric backbones are also described.
    Type: Application
    Filed: September 10, 2009
    Publication date: February 18, 2010
    Inventors: Fei Mao, Adam Heller
  • Publication number: 20100032317
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: February 11, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100032321
    Abstract: Disclosed is an electrochemical biosensor measuring device which can be used together with an electrochemical biosensor. The biosensor measuring device comprises an electrical connection portion which is electrically connected with the electrodes of the biosensor upon the insertion of the biosensor there into, and a connector having a structure in which at least one light absorption or reflection path sequentially comprising a light emitter-production lot information identification portion-detector unit is provided to identify the production lot information recorded in the biosensor. The electrochemical biosensor measuring device can automatically identify the production lot information of the biosensor, encoded in the form of a hue or hole marks, upon the insertion of the electrochemical biosensor into the measuring device, thereby obviating the need to manually input the production lot information of the biosensor.
    Type: Application
    Filed: February 26, 2008
    Publication date: February 11, 2010
    Inventors: Keun Ki Kim, Moon Hwan Kim, Jae Hyun Yoo, Gang Cui, Hakhyun Nam, Geun Sig Cha
  • Publication number: 20100025265
    Abstract: The present invention discloses a potentiometric biosensor for urea and creatinine detection, and the forming method thereof. The disclosed biosensor comprises a substrate, at least two working electrode on the substrate, at least one reference electrode on the substrate, an internal reference electrode on the substrate, and a packaging structure which separates the adjacent electrodes. The working electrode comprises urease or creatinine iminohydrolase (CIH). The detection signal is transmitted for further processing through a wire or an exposed surface on the biosensor. The disclosed biosensor is replaceable.
    Type: Application
    Filed: February 18, 2009
    Publication date: February 4, 2010
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Shen-Kan Hsiung, Nien-Hsuan Chou, Jung-Chuan Chou, Tai-Ping Sun
  • Publication number: 20100025238
    Abstract: Embodiments of the invention provide analyte sensors having optimized elements and/or configurations of elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Rebecca K. Gottlieb, Rajiv Shah, Katherine T. Wolfe, Gopikrishnan Soundararajan, Kenneth W. Cooper, Ratnakar Veljella, Enjoo Jin, Brian T. Kannard, John J. Mastrototaro
  • Publication number: 20100025264
    Abstract: The invention provides electrochemical biosensors for direct determination of percentage of glycated hemoglobin in blood samples without the need of a separated measurement of total hemoglobin content in blood samples. The invention provides methods for using the electrochemical biosensors.
    Type: Application
    Filed: May 13, 2009
    Publication date: February 4, 2010
    Inventors: Chong-Sheng Yuan, Neal K. Blue, Abhijit Datta, Limin Liu, Lei Fang
  • Patent number: 7655119
    Abstract: The present invention is directed to an improved meter that utilizes a method of reducing the effects of interfering compounds in the measurement of analytes and more particularly to a method of reducing the effects of interfering compounds in a system wherein the test strip utilizes two or more working electrodes. In one embodiment of the present invention, a meter is described which applies a first potential to a first working electrode and a second potential, having the same polarity but a greater magnitude than the first potential, is applied to a second working electrode. The meter then measures the generated current and utilizes a predetermined algorithm to correct the measured current to compensate for the presence of interfering compounds in the sample.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: February 2, 2010
    Assignee: Lifescan Scotland Limited
    Inventor: Oliver William Hardwicke Davies
  • Patent number: 7655120
    Abstract: A biosensor measuring an analyte contained in a sample is provided, including: an insulative lower substrate that has at least one electrode on which an enzyme reaction layer reacting with the analyte is formed; an upper substrate that faces the lower substrate and is made of a conductive material; and an adhesive layer that has a sample feed with a predetermined height on the enzyme reaction layer and attaches the upper and lower substrates to each other, where an end of the upper substrate acts as an electrode in which an electron-transfer mediator contained in the enzyme reaction layer is oxidized or reduced, and the other end acts as an electrical contact part that electrically contacts a measurement unit.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: February 2, 2010
    Assignee: Infopia Co., Ltd.
    Inventors: Byeong-woo Bae, Sung-dong Lee, Hong-seong Suk, Jina Yoo, Min-sun Kim, Jae-hyun Yoo, Ki-won Lee
  • Publication number: 20100018870
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 28, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100018872
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 28, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100018871
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 28, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffrey V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100018869
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 28, 2010
    Inventors: Benjamin J. FELDMAN, Adam HELLER, Ephraim HELLER, Fei MAO, Joseph A. VIVOLO, Jeffery V. FUNDERBURK, Fredric C. COLMAN, Rajesh KRISHNAN
  • Publication number: 20100018866
    Abstract: The system includes an electronic measuring apparatus for receiving an electrochemical sensor including a substrate that carries the current collectors for connecting the measuring and reference electrodes to the measuring apparatus. The measuring electrode is coated with a reagent including at least the specific enzyme of the biological compound to be analysed in a body fluid. The measuring apparatus can impose at least two different temperatures to enable the signal from the compound to be analysed from those of other biological compounds interfering with the signal. Application to measuring glucose in the blood with glucose dehydrogenase as the enzyme, without interference with maltose.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 28, 2010
    Applicant: THE SWATCH GROUP RESEARCH AND DEVELOPMENT LTD
    Inventors: Wolfgang Schuhmann, Sabine Borgmann
  • Publication number: 20100012520
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100012516
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100012518
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffrey V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100012524
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100012519
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100012525
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100012517
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffrey V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Publication number: 20100012521
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Patent number: 7648624
    Abstract: An oxygen sensor has a laminated body with a fluid sample inlet end and an electrical contact end, a fluid sample inlet, a substantially flat test chamber communicating with the fluid sample inlet where the test chamber is adapted to collect a fluid sample through the sample fluid inlet, a working electrode and a reference electrode within the test chamber, and a reagent matrix disposed on the working electrode where the reagent matrix contains an oxidase, a reduced form of a redox mediator and a peroxidase.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: January 19, 2010
    Assignee: Nova Biomedical Corporation
    Inventors: Xiaohua Cai, Kara Alesi, Chung Chang Young
  • Publication number: 20100006432
    Abstract: In a biosensor for measuring a specific substance in a liquid sample, one or a combination of sugar alcohol, metallic salt, organic acid or organic acid salt which has at least one carboxyl group in a molecule, and organic acid or organic acid salt which has at least one carboxyl group and one amino group in a molecule, is included in a reagent layer provided on electrodes, thereby providing a highly-accurate biosensor which is excellent in stability and has high response (sensitivity, linearity) of the sensor to the substrate concentration.
    Type: Application
    Filed: June 12, 2009
    Publication date: January 14, 2010
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Takahiro Nakaminami, Junko Nakayama, Eriko Yamanishi
  • Publication number: 20100006452
    Abstract: Disclosed herein are methods and devices for detecting the presence of an analyte of interest. A biosensor device can include a reaction chamber and an electrochemical detection chamber. The reaction chamber can include at least one immobilized binding site and a probe conjugate adapted to bind to at least one of the target analyte and the immobilized binding site while the detection chamber can include electrodes for detecting an electrochemical reaction. If present, the target analyte in the fluid sample results in a change in the amount of probe conjugate bound in the reaction chamber, which can be detected electrochemically in the detection chamber.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Applicant: UNIVERSAL BIOSENSORS PTY LTD.
    Inventors: Alastair McIndoe Hodges, Ronald Chatelier, Dennis Rylatt
  • Publication number: 20100000883
    Abstract: A sensor comprises a substrate having nanoparticles of a conducting polymer such as polyanaline printed thereon. Also described is a printing composition for printing onto a substrate, the composition comprising nanoparticles of a conducting polymer such as polyanaline.
    Type: Application
    Filed: April 13, 2007
    Publication date: January 7, 2010
    Applicants: DUBLIN CITY UNIVERSITY, UNIVERSITY OF WOLONGONG
    Inventors: Aoife Morrin, Malcolm Smyth, Anthony Killard, Orawan Ngamna, Gordon Wallace, Simon Edward Moulton, Karl Crowley
  • Publication number: 20100000880
    Abstract: There is provided a biosensor measurement system which can output a highly-precise measurement result even when an impact such as falling of the sensor occurs or the biosensor is an exposed sensor. An abnormal waveform detection electrode is provided in addition to electrodes for quantitative determination of a target substance. Therefore, when an impact is caused by such as falling of the sensor in a halt period where no voltage is applied in a voltage application algorithm, the abnormal waveform detection electrode can detect the impact. Further, also an exposed sensor can be detected by the abnormal waveform which is detected by the abnormal waveform detection electrode.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 7, 2010
    Inventors: Yoshihiro Itoh, Eriko Yamanishi, Tsuyoshi Takahashi, Hiroyuki Tokunaga
  • Publication number: 20090321257
    Abstract: A biosensor that detects a target substance contained in a liquid sample has an insulating base plate including a recess formed in a portion that is thinner than the surrounding part, a working electrode and a counter electrode, at least one of which is disposed in the recess, and a reaction reagent that is disposed in the recess and reacts with a specific substance in the liquid sample.
    Type: Application
    Filed: June 24, 2009
    Publication date: December 31, 2009
    Inventors: Yoshifumi TAKAHARA, Noriyoshi TERASHIMA, Takaaki FUJII
  • Patent number: RE41264
    Abstract: An improved biosensor having at least a first working electrode and a first electrode material disposed on the first working electrode. The first electrode material is a mixture made by combining at least one enzyme where the at least one enzyme is a capable of reacting with the analyte to be measured, a redox mediator capable of reacting with a product of an enzymatic reaction or a series of enzymatic reactions involving the at least one enzyme, a peroxidase capable of catalyzing a reaction involving the redox mediator where the redox mediator is oxidized, a binder and a surfactant.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: April 27, 2010
    Assignee: Nova Biomedical Corporation
    Inventors: Xiaohua Cai, Handani Winarta, Chung Chang Young