With Means Providing Specified-flow Condition Or Flow-path Patents (Class 204/409)
  • Patent number: 10668470
    Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: June 2, 2020
    Assignee: The General Hospital Corporation
    Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
  • Patent number: 10581091
    Abstract: A resin-framed membrane electrode assembly includes a membrane electrode assembly, a resin frame, and a clearance. The membrane electrode assembly includes an electrolyte membrane, a first electrode, a second electrode, and a step. The first electrode is located on a first surface of the electrolyte membrane and includes a first catalyst layer and a first diffusion layer which are stacked on the first surface in a stacking direction. The resin frame is disposed outside the membrane electrode assembly. The clearance is provided between the resin frame and an outer edge surface of the first diffusion layer to be filled with a filler such that the filler reaches a level higher than a lower one of a height of the first diffusion layer or a height of the resin frame in cross section in the stacking direction.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: March 3, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Naoki Mitsuta, Hiroshi Sohma
  • Patent number: 10563241
    Abstract: According to one embodiment, a biosensor includes a substrate and a sensor matrix that is present in a two-dimensional region on the substrate. The sensor matrix includes a plurality of basic blocks. Each of the basic blocks includes at least three types of sensor elements.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: February 18, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kaita Imai, Shouhei Kousai, Soichiro Ueno
  • Patent number: 10322280
    Abstract: The subject of the invention is a microprobe for selective electroporation comprising at least two metal electrodes (A) immersed in a glass rod (E), characterized in that the glass rod (E) made of a primary glass is 50 ?m to 2 mm in diameter, preferably 50 ?m to 500 ?m, the metal electrodes (A) made of a metal alloy are formed as rods with diameter of 1 ?m to 100 ?m, preferably 20 ?m to 30 ?m, wherein endings of those rods are exposed, wherein the primary glass and the metal alloy are matched in such manner that dilatometric softening temperature DTM of the primary glass is highly similar to the temperature of melting for the metal alloy. The invention also includes a method of manufacturing of such a microprobe.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 18, 2019
    Assignee: INSTYTUT TECHNOLOGII MATERIALOW ELEKTRONICZNYCH
    Inventors: Ryszard Buczynski, Dariusz Pysz, Ryszard Stepien
  • Patent number: 10309921
    Abstract: The current invention pertains to electrochemical biosensors. The electrochemical biosensor of the current invention comprises: a) a sensing electrode having attached to its surface a binding agent capable of specifically binding to the analyte to form a binding agent-analyte complex and wherein the binding of the analyte to the binding agent alters the electron transfer properties at the sensing electrode surface thereby providing a change in the electrochemical response at the sensing electrode surface proportional to the number of binding agent-analyte complexes, and b) a test equipment capable of measuring the electrochemical response at the sensing electrode surface. The binding agent can be a binding protein, an antibody, or an aptamer, and the analyte can be a biomolecule. Accordingly, the current invention provides a method of detecting the presence or assessing the likelihood of development of a disease associated with an abnormal level of a biomolecule in a subject.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: June 4, 2019
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Shekhar Bhansali, Abhay Vasudev Mallari
  • Patent number: 10234419
    Abstract: The presently claimed invention provides an electrochemical analytical apparatus for electrochemical bath analysis. The apparatus comprise a static electrode and a rotatable unit. As steady liquid flow can be generated on the electrolytic surface of the static electrode by the rotatable unit through rotation, the static disk electrode does not involve any movement during the bath analysis such that the design of the electrical contact in the electrode can be substantially simplified.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: March 19, 2019
    Assignee: Hong Kong Applied Science and Technology Research Institute Company Limited
    Inventors: Yaofeng Sun, Sha Xu
  • Patent number: 10190468
    Abstract: A sensor element includes a sensor arrangement and a heating arrangement. The sensor arrangement can be heated by the heating arrangement. The heating arrangement has an electrically conductive heating structure which is at least partially electrically insulated from the sensor arrangement by electrical insulation having an electrically insulating material. The electrically insulating material has gas-tight sintered particles which have forsterite particles, spinel particles, or a mixture of forsterite particles and spinel particles. Such particles may have an average size D50 of less than or equal to about 200 nm.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: January 29, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Gudrun Oehler, Imke Heeren
  • Patent number: 10139365
    Abstract: A pH sensor comprising a metal oxide-polymer composite, comprising: a continuous polymer resin matrix; and a solid particulate, component dispersed in the polymer resin matrix comprising (i) metal oxides and (ii) a particulate carbon-based conductor wherein the metal oxides comprise Ta2O5 and RuO2 in a weight ratio of Ta2O5:RuO2 (on the basis of weight of metal component) in the range of from 90:10 to 10:90.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: November 27, 2018
    Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Miao Chen, Mikko Vepsalainen
  • Patent number: 10119954
    Abstract: A gas monitoring apparatus and system that provides for reliable and accurate monitoring of gaseous hydrogen and other compounds in dielectric oil. The apparatus provides an environment for and is used in conjunction with metal oxide semiconductor sensors. Thermal conditioning zones for oil provide an environment in which variations in oil temperature and ambient temperature are eliminated to insure that analytical data are not affected by these environmental conditions.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: November 6, 2018
    Assignee: Serveron Corporation
    Inventors: Steven Mahoney, Thomas Waters
  • Patent number: 9962696
    Abstract: The present invention relates to phaseguide patterns for use in fluid systems such as channels, chambers, and flow through cells. In order to effectively control filling and/or emptying of fluidic chambers and channels, techniques for a controlled overflowing of phaseguides are proposed. In addition, techniques of confined liquid patterning in a larger fluidic structure, including approaches for patterning overflow structures and the specific shape of phaseguides, are provided. The invention also proposes techniques to effectively rotate the advancement of a liquid/air meniscus over a certain angle. In particular, a phaseguide pattern for guiding a flow of a liquid contained within a compartment is provided, wherein an overflow of the phaseguide by a moving liquid phase is controlled by a local change in capillary force along the phaseguide, wherein said overflow by the liquid over the phaseguide is provoked at the position of the local change in capillary force.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: May 8, 2018
    Assignee: UNIVERSITY LEIDEN
    Inventors: Paul Vullo, Gerald Urban, Susann Podszun
  • Patent number: 9863926
    Abstract: Analyzing a hydrocarbon-containing fluid includes providing a hydrocarbon-containing fluid to a separation system including a cyclone separator, and separating the hydrocarbon-containing fluid into a gas phase sample and a liquid phase sample. The liquid phase sample is separated into an aqueous sample and a non-aqueous sample. The volume of the gas phase sample and of the non-aqueous sample are assessed, and the ratio of the volume of the non-aqueous sample to the volume of the gas phase sample yields the condensate-gas ratio.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: January 9, 2018
    Assignee: SGS North America Inc.
    Inventors: Wayne A. Kriel, Jerry W. Swearingen, Jr.
  • Patent number: 9784705
    Abstract: A measuring electrode for chemical liquid in semiconductor process that measures a chemical liquid used for a semiconductor process comprises a first body having a first internal liquid chamber into which a first internal liquid is filled, and a flow tube for a part or all of which a responsive glass is used and that forms a flow channel where a chemical liquid as being a measuring object flows, wherein the flow tube is so arranged to penetrate the first body and the responsive glass makes contact with the first internal liquid in the first internal liquid chamber.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: October 10, 2017
    Assignee: HORIBA, Ltd.
    Inventors: Kazuhiro Miyamura, Koji Ueda
  • Patent number: 9618393
    Abstract: The present invention comprises an optical train (50) and optional wavelength-selective photodetectors. The optical train (50) uses reflecting elements (600) including mirrors and/or prisms to fold the light path of the transmitted UV light beam to direct it through the body (100) of the instrument, through a sample vessel (200) using at least one pass but preferably two or more passes and into illumination contact with a photodetector (400). With each additional pass, the Beer-Lambert path length is effectively increased. Separate second optical train (53) and third optical train (54) exist for the detection and measurement of scattered light by illumination contact with one or more photodetectors.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: April 11, 2017
    Assignee: Freestone Environmental Services, Inc.
    Inventors: Stephen H Hall, Kimberly Anne Schuyler
  • Patent number: 9593371
    Abstract: Devices and methods for detecting, identifying, and sequencing, compounds, complexes, and molecules are described. Electronic detection is combined with optical excitation to determine the presence or identity of an analyte of interest. Embodiments of the invention additionally provide devices and methods that allow highly parallel nucleic acid sequence determination.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: March 14, 2017
    Assignee: INTEL CORPORATION
    Inventors: Xing Su, Mark Oldham
  • Patent number: 9546978
    Abstract: An electrochemical polymerization based salt content analyzer configured to determine salt composition in a direct, fast, and serial manner. The salt content analyzer includes three electrodes: a working electrode, a counter electrode and a reference electrode. In operation, the current passing through the electrodes as a sweeping voltage is applied may be analyzed to determine the salt content of the analyte. The working electrode includes an access control mechanism to only expose a fraction of the working length of the working electrode to the outside environment at any given time. The access control mechanism is advanced between tests to expose a fresh portion of the working electrode. Thus, testing may be performed in a serial manner.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: January 17, 2017
    Assignee: Saudi Arabian Oil Company
    Inventors: Rashed Mohammad Aleisa, Naim Akmal, Taher Ali Atef Alamri
  • Patent number: 9513255
    Abstract: An amperometric sensor circuit for measuring chlorine concentration in water. The circuit includes first and second working electrodes coated with a hydrophilic membrane. A power supply and biasing circuit is configured to deliver a generally constant voltage between the first working electrode and a reference electrode and to generally deliver a constant current between the second working electrode and a counter electrode. A measurement circuit measures the current between the counter electrode and the first working electrode. A processing circuit is provided for determining the chlorine concentration based on the current measured by the measurement circuit.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: December 6, 2016
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Carine Beriet, Yves De Coulon, Cyrille Lemoine
  • Patent number: 9488627
    Abstract: A stationary gas monitoring and testing system includes one or more gas monitoring stations 20, each of which includes at least one gas sensor. The system also includes a supply of testing span gas, a supply of testing zero gas, a gas distribution network connecting each gas sensor to the span gas supply and the zero gas supply through substantially separate conduits, and a controller for enabling the delivery of gas from the supply into the network for delivery to the one or more sensors. A one-way poppet valve at each gas monitor allows the supply conduits to be pressurized in advance. Pre-pressurized separate supply conduits minimize or eliminate the delay in delivering gas to each sensor for testing and calibration.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 8, 2016
    Inventor: James Skourlis
  • Patent number: 9364807
    Abstract: The invention relates to a component (4) of a biosensor, comprising at least one first device (6) for receiving a sample liquid, wherein the device (6) is connected via a distributor channel (7) to further receiving devices (8 to 11), into each of which a feed channel (71, 72, 73, 74) branching off from the distributor channel (7) opens, and the feed channels (71, 72, 73, 74) are arranged in succession in flow direction (S) of the sample liquid passed on through the distributor channel (7). In accordance with the invention, it is envisaged that, in the distributor channel (7), in each case between two immediately successive feed channels (71, 72; 72, 73; 73, 74) in flow direction (S), at least one region (K) for at least temporary slowing or stoppage of the capillary flow of the sample liquid has been inserted.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: June 14, 2016
    Assignee: BOEHRINGER INGELHEIM MICROPARTS GMBH
    Inventors: Christian Schoen, Michael Wagner
  • Patent number: 9310330
    Abstract: Described is an electrochemical flow cell (1) for analyzing fluid samples including a first member (100) including a first working surface (101), the first working surface (101) including a sample outlet (102), and a second member (200) including a second working surface (201), the second working surface (201) including a working electrode (202). The first and second member (100, 200) being connectable to each other to create a chamber (2) in between the first (101) and second working surface (201). The first working surface (101) being opposite and spaced apart from the second working surface (201) and the sample outlet (102) being directed at the working electrode (202). The electrochemical flow cell (1) includes an adjustment element for stepless adjustment of a distance (d) between the first working surface (101) and the second working surface (201).
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 12, 2016
    Assignee: ANTEC LEYDEN B.V.
    Inventors: Herman Robert Louw, Hendrik-Jan Brouwer, Nicolaas Reinhoud
  • Patent number: 9146208
    Abstract: An electrochemical sensor cell is disclosed. The cell comprised of a diffusion membrane, a cathode, an anode, an electrolyte, electronic circuit board with electronic leads contained in housing. The anode is made of substantially pure bismuth. The electrolyte may be either solid or aqueous solution of potassium hydroxide (KOH) solution or acetic acid (CH3COOH). The cathode may be a carbon fiber substrate with gold deposited thereon. The sensor may be RoHS compliant.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 29, 2015
    Assignee: Brigham Young University
    Inventor: Alan Boardman
  • Publication number: 20150144485
    Abstract: An ion sensitive system has sets of microfluidic microchannels forming ion sensitive electrodes by the assembly of a substrate with structured microchannels and another substrate including metal contacts on its surface. The integrated ion sensitive sensors are each composed of a microfluidic microchannel to contain an electrolyte, another microfluidic microchannel to contain the analyte and another microfluidic microchannel to contain a membrane liquid that separates the electrolyte from the analyte at the confluent junction of the three solutions. The system has the dimension of a thin and small disc and can be incorporated in an analyzing device.
    Type: Application
    Filed: March 12, 2013
    Publication date: May 28, 2015
    Applicant: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA - RECHERCHE ET DEVELOPPMENT
    Inventors: Olivier Guenat, Silvia Generelli
  • Patent number: 8986518
    Abstract: The present aspects of an embodiment make more efficient use of hydrogen on-demand (hereinafter “HoD”) systems, thereby improving fossil-fuel-powered systems on the market. One main aspect uses a disposable cartridge in which the electrolytic process takes place to separate gas molecules from a solution that uses a substantially dry-cell design. Generally, the aspects include a replaceable and reusable cartridge for the flow of electrolyte solution using a pump, which may include a variety of safety features. A HoD cartridge generator has a plurality of staggered conductive material members that require electrolyte solution to flow between them, from one or more inlets to one or more outlets, using one or more specified paths. A conventional or specially-formulated electrolyte solution may be used. One or more sensors allow the generator to have a steady flow of solution in and a steady flow of liquid-gas mixture out of the system.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: March 24, 2015
    Assignee: Cleanworld Fuels, LLC
    Inventor: Marc Daniel Moncion
  • Publication number: 20150076005
    Abstract: An electrolytic device includes four channels separated by three charged barriers. The device can be used to suppress an eluent stream containing separated sample analyte ions and/or to pretreat a sample stream containing unseparated analyte ions.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Inventors: Kannan SRINIVASAN, Sheetal BHARDWAJ, Rong LIN
  • Patent number: 8961758
    Abstract: An ion-selective electrode comprising: a housing, which surrounds a housing interior; an ion-selective membrane; especially a polymer membrane; and a sensing system, which is in contact with the ion-selective membrane, for sensing a potential of the ion-selective membrane, wherein the ion-selective membrane at least partially fills the housing interior, and is in contact with a medium surrounding the housing via at least one traversing bore through a housing wall of the housing.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: February 24, 2015
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess—und Regeltechnik mbH + Co. KG
    Inventor: Stefan Wilke
  • Publication number: 20150047990
    Abstract: Described herein is an apparatus and methods for characterizing a fluid composition including exposing electrolyte to one fluid mixture, collecting a signal from an electrode in contact with the electrolyte, and simultaneously exposing the electrolyte to a second fluid, collecting a signal from a second electrode in contact with the electrolyte exposed to the second fluid, and comparing the signal difference between the electrodes with the Nerst equation wherein the temperature of the electrolyte is above 488° C. Carbon dioxide, nitrogen, and/or oxygen may be present in the fluid and/or the second fluid.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: Schlumberger Technology Corporation
    Inventors: ALBERT PEREZ, TERIZHANDUR S. RAMAKRISHNAN, WENLIN ZHANG, LI JIANG, ROY KOVELESKI, QUINCY K. ELIAS
  • Publication number: 20150047978
    Abstract: The present invention provides a substrate for a microfluidic device comprising a polymeric base plate, at least one sensor formed over the polymeric base plate for detecting at least one target analyte from a sample, the sensor comprising at least one reference electrode and at least one working electrode, wherein a plurality of nanostructures deposited over the working electrode for increasing the surface area of the working electrode, and at least one recognition element bound to or deposited over the nanostructures. The microfluidic device of the present invention is a point-of-care, self calibrated, self contained hand-held device for rapid screening and diagnosis of various disease markers.
    Type: Application
    Filed: March 13, 2012
    Publication date: February 19, 2015
    Applicant: PIRAMAL ENTERPRISES LIMITED
    Inventors: Vijaywanth Mathur, Vaishali Nevreker, Rahul Mathew
  • Patent number: 8926811
    Abstract: The present invention provides an apparatus and method for performing heat-exchanging reactions on an electro wetting-based micro fluidic device. The apparatus provides one or multiple thermal contacts to an electro wetting-based device, where each thermal contact controls the part of the electro wetting-based device it communicates with to a designed temperature. The electrowetting-based device can be used to create, merge and mix liquids in the format of droplets and transport them to different temperature zones on the micro fluidic device. The apparatus and methods of the invention can be used for heat-exchanging chemical processes such as polymerase chain reaction (PCR) and other DNA reactions, such as ligase chain reactions, for DNA amplification and synthesis, and for real-time PCR.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 6, 2015
    Assignee: Digital Biosystems
    Inventor: Chuanyong Wu
  • Patent number: 8920727
    Abstract: A device is intended to electrochemically measure biochemical reactions and includes a base plate, a sensor array situated on the latter, a coating of the base plate, and a sealing film with at least one recess. The recess is mechanically connected to the base plate and/or to the coating of the base plate and forms a flow cell above the sensor array. An inlet and an outlet of the flow cell are in the form of continuous recesses in the base plate. The active surfaces of the sensors are free of the coating and regions of the base plate adjacent to the sensors are covered by the coating.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: December 30, 2014
    Assignee: Boehringer Ingelheim Vetmedica GmbH
    Inventor: Heike Barlag
  • Publication number: 20140339102
    Abstract: An object of the present invention is that variations in an applied membrane potential in the planar patch clamp device are suppressed to reduce a noise current, thereby enabling accurate measurement of an ion channel current. Disclosed is a planar patch clamp device including: an electrically insulative substrate provided with one or more fine through holes; a liquid reservoir that holds a conductive liquid provided on both surface sides of the through hole; and energizable electrode sections provided in the liquid reservoir; these electrode sections including: (a) an electrode vessel, at least part of which is made of an inorganic porous material, (b) an electrode in which a chloride NmCl layer is formed on the surface of a noble metal Nm, and (c) an electrode solution containing NmCl and an alkali metal chloride being dissolved therein at a saturated concentration.
    Type: Application
    Filed: December 5, 2012
    Publication date: November 20, 2014
    Inventors: Tsuneo Urisu, Zhi-hong Wang, Hidetaka Uno, Senthil Kumar Obuliraj, Yasutaka Nagaoka
  • Patent number: 8888989
    Abstract: Method and apparatus to measure electrolytes. The apparatus has a measuring portion for measuring electromotive forces generated by a reference fluid and the sample fluid, respectively, by the use of an electrode portion. A dilution vessel for preparing the sample solution by diluting a sample fluid with a diluting fluid. A control portion for providing control such that the reference fluid and the sample solution are alternately supplied to the electrode portion from the dilution vessel and that a given amount of the diluting fluid is supplied to and wasted from the dilution vessel prior to the preparation of the sample solution.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: November 18, 2014
    Assignee: JEOL Ltd.
    Inventor: Atsuro Tonomura
  • Patent number: 8864967
    Abstract: A device for displacing a small volume of liquid under the effect of an electric control, including a first substrate with a hydrophobic surface provided with a first electrical conductor, a second electrical conductor positioned facing the first conductor, and a third conductor, forming with the second conductor, a mechanism for analyzing or heating a volume of liquid.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 21, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Gilles Marchand, Yves Fouillet, Philippe Clementz
  • Patent number: 8845871
    Abstract: An electrochemical oxygen sensor includes a micro-porous plastic membrane supported on a sealing disk and located between a gas inflow port and the sensor's electrolyte. The membrane and disk minimize thermal shock effects due to using the sensor at a first location, at a first temperature, and then moving it to a second location at a different temperature.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Honeywell International Inc.
    Inventors: John Chapples, John Anthony Tillotson, Ian McLeod, Martin Williamson
  • Publication number: 20140246334
    Abstract: Exemplary embodiments provide diagnostic devices, systems and methods for determining the presence or absence of one or more markers or characteristics in one or more samples. An exemplary diagnostic device may display a first two-dimensional machine-readable output to indicate the presence or absence of a first characteristic in a sample. Similarly, the exemplary diagnostic device may display a second two-dimensional machine-readable output to indicate the presence or absence of a second characteristic in a sample. An image capture device may be used to automatically detect the two-dimensional machine-readable output appearing in the diagnostic device. A computational device may be used to automatically determine whether the presence or absence of the first characteristic and/or the second characteristic based on the two-dimensional machine-readable output displayed in the diagnostic device.
    Type: Application
    Filed: August 30, 2013
    Publication date: September 4, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Irene Bosch, Kimberly S. Hamad-Schifferli, Lee Gehrke, Nevan Clancy Hanumara, Jacqueline Linnes, David Wood, Jose F. Gomez-Marquez
  • Patent number: 8795485
    Abstract: Microelectrode comprising a body formed from electrically non-conducting material and including at least one region of electrically conducting material and at least one passage extending through the body of non-conducting material and the region of conducting material, the electrically conducting region presenting an area of electrically conducting material to a fluid flowing through the passage in use. An electrochemical cell which includes such a microelectrode is also disclosed.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 5, 2014
    Assignee: Element Six Technologies Limited
    Inventors: Andrew John Whitehead, Geoffrey Alan Scarsbrook, Julie Victoria Macpherson, Mark Newton, Patrick Robert Unwin, William Joseph Yost, III
  • Patent number: 8790501
    Abstract: A sensor includes a housing, at least two electrodes within the housing, an electrolyte providing ionic conductivity between the electrodes and a vent member including a first section including a portion extending through a passage in the housing. The vent member also includes at least one extending member connected to the first section that extends through at least a portion of an interior of the housing. The first section of the vent member is porous so that gas can diffuse from the interior of the housing to an exterior of the housing via the vent member.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 29, 2014
    Assignee: MSA Technology, LLC
    Inventors: Michael Alvin Brown, Towner Bennett Scheffler
  • Patent number: 8784623
    Abstract: A nanopore device is described wherein is provided a sample input (110), an input chamber (120), and first and second sample chambers (130, 140) connected to the input chambers (120) via first and second nanopores (135, 145).
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: July 22, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Pieter Jan Van Der Zaag, Anja Van De Stolpe, Elaine McCoo, Eva Van Van Wanrooij
  • Patent number: 8778153
    Abstract: An ion sensor includes a sensor main body having a channel for a sample and an opening connected to the channel, a responsive portion which is filled in the opening and selectively responds to a specific ion, an electrode which has a ring shape, is set such that a central axis of the ring is substantially perpendicular to a central axis of the channel, and senses the response, and an output terminal which is formed out of one metal plate out of which the electrode is formed, has a pin shape, and is held by the sensor main body such that an axis extends along a direction substantially perpendicular to the central axis of the channel and the central axis of the ring.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: July 15, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Masayuki Sakuraoka, Sonoe Suzuki, Takehiko Onuma, Emiko Tamura
  • Patent number: 8771490
    Abstract: An electrochemical sensor having at least two electrodes, and a reservoir chamber containing electrolyte. The reservoir chamber is internally coated with a wicking material to spread the electrolyte evenly over the walls of the reservoir.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: July 8, 2014
    Assignee: Industrial Scientific Corporation
    Inventors: Mark William Bordo, Wenfeng Peng
  • Patent number: 8771487
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltage to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction, and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: July 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Kazuhiro Matsumoto, Yasuhiko Sawada
  • Patent number: 8771493
    Abstract: A liquid dielectrophoretic device comprises: a first container unit defining a first micro containing space including an electrode pair for generating a dielectrophoretic force; a second container unit defining a second micro containing space and including an electrode pair for generating a dielectrophoretic force; and a fluid channel unit defining a micro-channel between the first and second micro containing spaces and including an electrode pair having a middle region layer that has first and second enlarged sections and a middle section disposed between the first and second enlarged sections. The first and second enlarged sections are enlarged gradually from the middle section to the first and second micro containing spaces. A method for controllably transporting a liquid using the liquid dielectrophoretic device is also disclosed.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 8, 2014
    Assignee: National Chiao Tung University
    Inventors: Shih-Kang Fan, I-Pei Lu
  • Publication number: 20140183059
    Abstract: The multiplexed electrochemical microfluidic paper-based analytical device comprises multiple detection zones for the detection of multiple biochemical analytes from one single sample. Cavity valves integrated on the device will deliver the sample to different detection zones. These analytes include, but are not limited to, urea, creatinine, creatine, glucose, lactate, ethanol, uric acid, cholesterol, pyruvate, creatinine, ?-hydroxybutyrate, alanine aminotrasferase, aspartate aminotransferase, alkaline phosphatase, and acetylcholinesterase (or its inhibitors). This system will provide a simple and low-cost POC approach to obtain quantitative and multiple biological information from one sample (e.g. one drop of blood).
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: George M. WHITESIDES, Xiujun LI, Frederique DEISS, Zhihong NIE, Xinyu LIU
  • Publication number: 20140148358
    Abstract: Various embodiments provide a system for detecting one or more analytes in a fluid. The system comprises: a controller adapted to obtain one or more sample streams of the fluid. The controller is configured in use to form a plurality of output streams. Each output stream comprises at least part of one of the one or more sample streams. The system further comprises: a detector adapted to receive from the controller the plurality of output streams and comprising a plurality of sensors. Each sensor is operable to detect an interaction between a corresponding detecting agent and a corresponding analyte. The detector is configured in use to detect one or more said interactions using the plurality of output streams to determine if the fluid contains one or more said analytes. A corresponding method is also provided.
    Type: Application
    Filed: June 28, 2012
    Publication date: May 29, 2014
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Fong Yau Sam Li, Huanan Wu, Mahe Liu
  • Publication number: 20140138260
    Abstract: The present invention relates to a cartridge for conducting diagnostic assays. The cartridge consists of an assembly of components that are easily assembled. The cartridge provides means for receiving a patient sample, precisely controlling fluid introduction, onboard storage of assay fluid and conducting different assay protocols and detection of a plurality of analytes. Methods of use for the cartridge are described. The disclosed invention is suitable for point of care environments or any place where rapid, ultrasensitive testing is required.
    Type: Application
    Filed: September 27, 2011
    Publication date: May 22, 2014
    Applicant: Proxim Diagnostics
    Inventor: Mikhail Briman
  • Patent number: 8728288
    Abstract: The invention relates to a sensor assembly comprising a first electronic wiring substrate having a first and a second surface and at least one analyte sensor formed on the first surface thereof, the at least one analyte sensor being connected with one or more electrical contact points, a second electronic wiring substrate having a first and a second surface and at least one analyte sensor formed on the first surface part thereof, the at least one analyte sensor being connected with one or more electrical contact points, and a spacer having a through-going recess with a first and a second opening, wherein the first substrate, the second substrate and the spacer are arranged in a layered structure, where the first surface of the first substrate closes the first opening of the spacer and the first surface of the second substrate closes the second opening of the spacer, thereby forming a measuring cell which is faced by at least one sensor from each of the substrates.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: May 20, 2014
    Assignee: Radiometer Medical Aps
    Inventors: Flemming Aas, Erik Helleso Nicolajsen
  • Patent number: 8721852
    Abstract: An electrochemical sensor system that continuously monitors and calibrates the sensors included in the system. The invention also includes a method for determining failure patterns of a sensor and incorporating into an electrochemical sensor system the ability to recognize the failure pattern and initiate remedial action.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: May 13, 2014
    Assignee: Instrumentation Laboratory Company
    Inventors: Sohrab Mansouri, Kevin Fallon, Patti Eames
  • Patent number: 8702957
    Abstract: A systems and apparatus for measuring non-electroactive materials in liquids using electrochemical detection. A first electrical activity of a electroactive material is detected in absence of a target non-electroactive material (Step 120). A second electrical activity of the electroactive material is detected in presence of the target non-electroactive material (Step 130). A difference between the first and second electrical activities is obtained, and based on the obtained difference, a concentration of the target non-electroactive material is identified (Step 140).
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 22, 2014
    Assignees: Arizona Board of Regents for and on behalf of Arizona State University, EMD Millipore Corporation
    Inventors: Joseph Wang, Aristotelis Dimitrakopoulos, Celine Le Ninivin, Stephane Mabic
  • Publication number: 20140102916
    Abstract: Described is an electrochemical flow cell (1) for analyzing fluid samples including a first member (100) including a first working surface (101), the first working surface (101) including a sample outlet (102), and a second member (200) including a second working surface (201), the second working surface (201) including a working electrode (202). The first and second member (100, 200) being connectable to each other to create a chamber (2) in between the first (101) and second working surface (201). The first working surface (101) being opposite and spaced apart from the second working surface (201) and the sample outlet (102) being directed at the working electrode (202). The electrochemical flow cell (1) includes an adjustment element for stepless adjustment of a distance (d) between the first working surface (101) and the second working surface (201).
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Antec Leyden B.V.
    Inventors: Herman Robert LOUW, Hendrik-Jan Brouwer, Nicolaas Reinhoud
  • Patent number: 8697008
    Abstract: A method and device for periodically perturbing the flow field within a microfluidic device to provide regular droplet formation at high speed.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 15, 2014
    Assignee: Eastman Kodak Company
    Inventors: Andrew Clarke, Nicholas J. Dartnell, Christopher B. Rider
  • Patent number: 8663579
    Abstract: This invention provides a biological component-measuring device, enabling the operator to easily calibrate the entire device and capable of measuring biological components accurately, and a method for calibrating the device. The device measures a sample including a body fluid taken through a body fluid sampler by sending it with a pump through a sample channel to a sensor. The device further includes a calibrating liquid channel through which a calibrating liquid can be supplied to the sensor via the sample channel by a switching of a first flow path changeover valve placed in the sample channel at a location upstream of the pump and connected to the channel. The method includes introducing the calibrating liquid in the calibrating liquid channel, via other channels, into the sensor by switching the valve.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 4, 2014
    Assignee: Nikkiso Co., Ltd.
    Inventor: Motoaki Murakami
  • Patent number: 8658094
    Abstract: A device for measuring oxidation-reduction potential at operating temperature and pressure in hot water systems is disclosed and claimed. The device includes a flow-through cell, an oxidation-reduction potential probe, a temperature detector, and an external pressure-balanced reference electrode assembly. Each component of the device works in conjunction with the other components and each has electrical connections that transmit signals to a controller. The controller calculates and determines adjustments to feedwater chemistry for the hot water system.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 25, 2014
    Assignee: Nalco Company
    Inventors: Peter D. Hicks, M. Alexandra Knoth