Three Or More Electrodes Patents (Class 204/411)
  • Patent number: 11231390
    Abstract: An embodiment provides a probe, including: an ion selective shell that includes a pH electrode bathed in an electrolyte and/or buffer solution; a plurality of conductive electrodes coaxially arranged respective to the pH electrode; the plurality of conductive electrodes being electrically isolated on a substrate displaced between the pH electrode and a reference electrode, and including: at least a first conductive electrode that is exposed to sample fluid at a terminal end of the probe proximate to the ion selective shell and disposed on the surface of an electrode substrate proximate to a terminal end of the reference electrode; and at least a second conductive electrode that is exposed to the sample fluid at the terminal end of the probe proximate to the ion selective shell and disposed on the surface of an el electrode substrate proximate to the terminal end of the reference electrode; the probe further including the reference electrode arranged about and along a longitudinal axis of the probe and bathed
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: January 25, 2022
    Assignee: HACH COMPANY
    Inventors: Michael Carrabba, Corey Salzer
  • Patent number: 10989688
    Abstract: This disclosure provides techniques for extending useful life of a reference electrode, as well as a novel voltametric system and measurement cell design and related chemistries. An automated, repeatable-use system features a reference electrode that directly immerses a metallic conductor into an analyte, with electrolytes (e.g., chlorides) used for measurement being separately added and removed for each measurement cycles; the metallic conductor can optionally be left exposed to clean dry air in between measurements. In one implementation, the system can be restricted to application with specific analytes (e.g., ground water) that are known in advance to be free of substances that could degrade reference electrode use or lifetime. Cleaning solutions can optionally be used that would not be practical with conventional (insulated) reference electrode designs.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: April 27, 2021
    Assignee: AMS Trace Metals, Inc.
    Inventor: Vladimir Dozortsev
  • Patent number: 10983083
    Abstract: The ability to switch at will between amperometric measurements and potentiometric measurements provides great flexibility in performing analyses of unknowns. Apparatus and methods can provide such switching to collect data from an electrochemical cell. The cell may contain a reagent disposed to measure glucose in human blood.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 20, 2021
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Sridhar G. Iyengar, Baoguo Wei, Steven Diamond, Martin Forest
  • Patent number: 10883182
    Abstract: A microfluidic electrolyzer includes a housing having a power source, a sea water reservoir, a downstream microfluidic reactor connected to the reservoir and a collector for storing the separated gases emanating from the microfluidic reactor. The downstream microfluidic reactor includes a substrate, a microchannel embedded with respect to the substrate and providing a water inlet end at one end and a product outlet at the other, and a pair of electrodes. The electrodes are electrically connected with the power source and each electrode has an operative end inserted within the microchannel constituting an anode and a cathode. The cathode and the anode are positioned one ahead of the other, from the water inlet end and maintained in direct contact with the water to generate the oxygen and hydrogen involving electrolysis of the water and in-situ separate pathways of the hydrogen and oxygen free of any mixing with each other.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: January 5, 2021
    Assignee: INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI
    Inventors: Dipankar Bandyopadhyay, Tapas K Mandal, Saptak Rarotra
  • Patent number: 10458975
    Abstract: An interlock data collection and calibration system has a device computer, and a gas sample delivery system for delivering a first gas sample and a second gas sample to the ignition interlock device, the first and second gas samples having different predetermined concentrations of alcohol. The device computer includes a calibration program for calibrating the ignition interlock device using the first gas sample, and then delivering the second gas sample to the ignition interlock device to verify that the ignition interlock device correctly determines the second alcohol concentration of the second sample gas.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: October 29, 2019
    Assignee: 1A Smart Start, LLC
    Inventor: Michael Lyon
  • Patent number: 10444183
    Abstract: A sensor arrangement for determining at least one measurand of a measuring medium includes at least one first sensor with a first sensing element used to record measured values of a first measurand of the measuring medium, a housing having a housing wall which surrounds a housing interior containing the first sensing element, wherein the housing interior contains a medium in particular, a liquid which has a predetermined value of the first measurand.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 15, 2019
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Michael Weiss, Angela Eubisch, Michael Hanko
  • Patent number: 10362981
    Abstract: A method for diagnosing a body malfunction is provided. At least one change in urinary parameter values, being indicative of the body malfunction, is monitored and detected. A volumetric urinary output of kidneys is monitored using a urine flow monitoring apparatus having a low flow metering device. It is determined whether a change exists in at least one of a volume value of the volumetric urinary output, and a trend of the corresponding urinary parameter value during a predetermined period. Signals are received from a plurality of electrodes, representing the urinary parameter values. The body malfunction is detected based on the determination of the change in at least one of the volume value and the trend.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 30, 2019
    Assignee: FLOWSENSE LTD.
    Inventors: Ilan Paz, Martin Clive Henry Jackson, Stanley Chimes
  • Patent number: 9970899
    Abstract: A fluid testing system can be used to measure the levels of contaminants in a fluid system. The system can utilize anodic stripping voltammetry or some other chemical, electrical, or electrochemical process to measure the contaminant levels. Wire electrodes may be used to facilitate the tests. Unused portions of the electrode wires can be fed into the test chambers between tests to ensure clean and reliable electrodes for subsequent testing.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 15, 2018
    Assignee: KETOS, INC.
    Inventors: Meena Sankaran, Mazhar N. Ali, Harish Mehta
  • Patent number: 9874540
    Abstract: A sensor with a sensor housing or body, a plastic molded table positioned in the sensor housing; and a counter electrode carried on a first end of the table.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: January 23, 2018
    Assignee: Life Safety Distribution AG
    Inventors: Paul Christopher Westmarland, Martin Jonathan Kelly, John Chapples, Neils Richard Stewart Hansen, Arkadiusz Edward Majczak, Stuart Alistair Harris
  • Patent number: 9766218
    Abstract: The present disclosure is directed to methods and systems for creating a gas curtain inlet for a detector of a substance of interest. The methods and systems include introducing a carrier gas into an inlet to block out atmospheric air without having to make the inlet a sealed system.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: September 19, 2017
    Assignee: Morpho Detection, LLC
    Inventors: Hanh Lai, Bradley Douglas Shaw, Hartwig Schmidt, Stephen Davila, Robert Michalczyk
  • Patent number: 9541436
    Abstract: A fluid measurement system and method for determining distributed measurement of a fluid type and a fluid velocity in a wellbore, pipeline or other conduit in which fluid is moving. Measurement is made by immersing one or more cables having sequential sampling sections in the fluid and monitoring a cooling effect across a cable on the sampling sections and the response to injection of a high frequency pulse each sampling section. A probabilistic model is then used to determine the distributed velocity and fluid types along the conduit.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: January 10, 2017
    Assignee: Lufkin Industries, LLC
    Inventor: David Sirda Shanks
  • Patent number: 9011697
    Abstract: A method for the treatment of fluid including the step of exposing the fluid to a pulsed plasma discharge. The pulsed plasma discharge will be generated using a suitable electrode configuration to generate the plasma discharge in the fluid. Apparatus useful in the method may include a vessel, at least two electrodes for generating a plasma discharge in water, and a flow inlet and a flow outlet to allow water to be passed through the vessel. Also described is an in-line water treatment, where a pulsed plasma discharge is used in a pipe carrying moving water. Plasma based fluid treatment system may have many advantages in comparison to other treatment methods, such as very minimal maintenance, low operating power, and minimal pressure loss through the device.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: April 21, 2015
    Assignee: Drexel University
    Inventors: Christopher A. Campbell, Young I. Cho, Alexander F. Gutsol, Alexander Fridman, Frank T. Snyder, Vincent Szarko, Erik Yelk, Jesse Zanolini, Victor Vasilets
  • Patent number: 8986527
    Abstract: The present disclosure relates to a removable assay cartridge containing a polymer body with channels for fluid movement for an in vitro medical diagnostic device. The device also includes a removable calibration fluid cartridge.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 24, 2015
    Assignee: Edan Diagnostics
    Inventors: Chao Lin, Paul Swanson, Zhixiang Jason Zhao
  • Patent number: 8951395
    Abstract: A biosensor for electrochemically measuring a sample may include a first member made of an insulating material, an electrode system including a working electrode and a counter electrode formed on the first member, a second member fixed over the first member, a sample flow channel provided between the first member and the second member, a hydrophilic section provided on at least a part of the internal surface of the sample flow channel and extending from a first end near the electrode system to a second end on the opposite side, and a flow stop area provided on a section adjacent to the second end on the first member or on the internal surface of the sample flow channel.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: February 10, 2015
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Reiko Machida, Takao Yokoyama, Yayoi Irie, Hisako Takagi, Yoshihiko Umegae, Toshio Tanabe
  • Patent number: 8926811
    Abstract: The present invention provides an apparatus and method for performing heat-exchanging reactions on an electro wetting-based micro fluidic device. The apparatus provides one or multiple thermal contacts to an electro wetting-based device, where each thermal contact controls the part of the electro wetting-based device it communicates with to a designed temperature. The electrowetting-based device can be used to create, merge and mix liquids in the format of droplets and transport them to different temperature zones on the micro fluidic device. The apparatus and methods of the invention can be used for heat-exchanging chemical processes such as polymerase chain reaction (PCR) and other DNA reactions, such as ligase chain reactions, for DNA amplification and synthesis, and for real-time PCR.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 6, 2015
    Assignee: Digital Biosystems
    Inventor: Chuanyong Wu
  • Patent number: 8801918
    Abstract: Methods and devices for point of care determination of heparin concentration in blood are described. Cartridges including protamine ion sensitive electrodes (ISEs) and reference electrodes and systems for automatically determining heparin concentration in the cartridges are provided. Some systems add blood to a protamine bolus sufficient to bind all heparin, leaving excess protamine. The excess protamine concentration can be determined by measuring the initial slope of the electrode potential rate of change, and comparing the slope to known protamine concentration slope values In some cartridges, an oscillating pressure source moves the blood-protamine mixture back and forth across the protamine ISE. Some systems also use a second blood sample having the heparin removed or degraded to create a blank reference sample. Protamine ISEs can include polyurethane polymer, DNNS ionophore, and NPOE plasticizer.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: Wei Qin, Daniel S. Cheek, Christopher Hobot, Kelvin Bonnema, Randy Meyer, Douglas Dean Nippoldt, Vitally G. Sitko, Qingshan (Sam) Ye, Narayanan Ramamurthy
  • Patent number: 8771493
    Abstract: A liquid dielectrophoretic device comprises: a first container unit defining a first micro containing space including an electrode pair for generating a dielectrophoretic force; a second container unit defining a second micro containing space and including an electrode pair for generating a dielectrophoretic force; and a fluid channel unit defining a micro-channel between the first and second micro containing spaces and including an electrode pair having a middle region layer that has first and second enlarged sections and a middle section disposed between the first and second enlarged sections. The first and second enlarged sections are enlarged gradually from the middle section to the first and second micro containing spaces. A method for controllably transporting a liquid using the liquid dielectrophoretic device is also disclosed.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 8, 2014
    Assignee: National Chiao Tung University
    Inventors: Shih-Kang Fan, I-Pei Lu
  • Publication number: 20140183059
    Abstract: The multiplexed electrochemical microfluidic paper-based analytical device comprises multiple detection zones for the detection of multiple biochemical analytes from one single sample. Cavity valves integrated on the device will deliver the sample to different detection zones. These analytes include, but are not limited to, urea, creatinine, creatine, glucose, lactate, ethanol, uric acid, cholesterol, pyruvate, creatinine, ?-hydroxybutyrate, alanine aminotrasferase, aspartate aminotransferase, alkaline phosphatase, and acetylcholinesterase (or its inhibitors). This system will provide a simple and low-cost POC approach to obtain quantitative and multiple biological information from one sample (e.g. one drop of blood).
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: George M. WHITESIDES, Xiujun LI, Frederique DEISS, Zhihong NIE, Xinyu LIU
  • Patent number: 8741118
    Abstract: A sensor control apparatus includes: a gas sensor including an oxygen concentration detection cell having a first solid electrolyte body, a reference electrode and a detection electrode, and a heater; an electric current supply unit that supplies electric current to the oxygen concentration detecting cell; an activation determination unit; a heater control unit that sets a first target temperature equal to or higher than an activation determination temperature when the activation determination unit determines that the temperature of the gas sensor is equal to or higher than the activation determination temperature; an automatic stop detection unit; and a first temperature switching unit that controls electric current supplied to the heater such that the target temperature of the heater is switched to a second target temperature different from a temperature at which blackening is generated in the first solid electrolyte body when an automatic stop is detected.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 3, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Hiroshi Inagaki
  • Publication number: 20140138260
    Abstract: The present invention relates to a cartridge for conducting diagnostic assays. The cartridge consists of an assembly of components that are easily assembled. The cartridge provides means for receiving a patient sample, precisely controlling fluid introduction, onboard storage of assay fluid and conducting different assay protocols and detection of a plurality of analytes. Methods of use for the cartridge are described. The disclosed invention is suitable for point of care environments or any place where rapid, ultrasensitive testing is required.
    Type: Application
    Filed: September 27, 2011
    Publication date: May 22, 2014
    Applicant: Proxim Diagnostics
    Inventor: Mikhail Briman
  • Patent number: 8728288
    Abstract: The invention relates to a sensor assembly comprising a first electronic wiring substrate having a first and a second surface and at least one analyte sensor formed on the first surface thereof, the at least one analyte sensor being connected with one or more electrical contact points, a second electronic wiring substrate having a first and a second surface and at least one analyte sensor formed on the first surface part thereof, the at least one analyte sensor being connected with one or more electrical contact points, and a spacer having a through-going recess with a first and a second opening, wherein the first substrate, the second substrate and the spacer are arranged in a layered structure, where the first surface of the first substrate closes the first opening of the spacer and the first surface of the second substrate closes the second opening of the spacer, thereby forming a measuring cell which is faced by at least one sensor from each of the substrates.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: May 20, 2014
    Assignee: Radiometer Medical Aps
    Inventors: Flemming Aas, Erik Helleso Nicolajsen
  • Publication number: 20140131223
    Abstract: A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.
    Type: Application
    Filed: January 21, 2014
    Publication date: May 15, 2014
    Applicant: ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Nongjian Tao, Erica Forzani, Rodrigo A. Iglesias
  • Patent number: 8702934
    Abstract: A gas sensor including a gas sensor element that extends in an axial direction and has a detection section at a front-end side thereof, and an electrode pad at a rear-end side thereof; a connection terminal that is electrically connected to the electrode pad; and an insulated separator that extends along the axial direction and has an inserting hole into which the connection terminal is inserted. An element side section is arranged within the inserting hole and is connected the electrode pad, and an external circuit side section extends further to the outside in a diametrical direction than an outer surface of the separator through one or more first bending sections from the element side section.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: April 22, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masao Tsuzuki, Tomohiro Tajima, Tomoki Fujii, Hisaharu Nishio, Takaya Yoshikawa, Kunihiko Yonezu
  • Patent number: 8652313
    Abstract: A wet flow-type ion selective electrode device requires not only a large amount of test solution but also cumbersome management works such as flow path cleaning and device conditioning. Provided is an ion selective electrode cartridge which includes at least one ion selective electrode forming an electrical path with a reference electrode when a test solution is infused, and in which the ion selective electrode and the reference electrode is arranged to surround a container.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: February 18, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Teruyuki Kobayashi, Tsuyoshi Uchida
  • Publication number: 20140027313
    Abstract: The cartridge includes a sensor structure that has multiple sensors positioned on a substrate. The cartridge also includes a common channel defined in the substrate such that a fluid flowing in the common channel contacts each of the sensors as a result of the fluid flowing from an inlet of the common channel to an outlet of the common channel.
    Type: Application
    Filed: June 7, 2013
    Publication date: January 30, 2014
    Inventor: Jen-Jr Gau
  • Patent number: 8617371
    Abstract: A wet flow-type ion selective electrode device requires not only a large amount of test solution but also cumbersome management works such as flow path cleaning and device conditioning. Provided is an ion selective electrode cartridge which includes at least one ion selective electrode forming an electrical path with a reference electrode when a test solution is infused, and in which the ion selective electrode and the reference electrode is arranged to surround a container.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: December 31, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Teruyuki Kobayashi, Tsuyoshi Uchida
  • Patent number: 8603310
    Abstract: A sensor control apparatus (3) includes a full-range gas sensor composed of an oxygen concentration detection cell having a pair of electrodes (21, 22) and an oxygen pump cell having a pair of electrodes (19, 20). In an electric circuit section (30), an Ip current flowing between the electrodes (19, 20) is controlled such that an electromotive force Vs produced between the electrodes (21, 22) becomes equal to a reference voltage. The reference voltage is usually set to a first reference voltage. However, when the subject gas is air, the reference voltage is set to a second reference voltage. Humidity of the subject gas is detected on the basis of an error ?Ip between an Ip current detected when the reference voltage is set to the first reference voltage, and an Ip current detected when the reference voltage is set to the second reference voltage.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 10, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Noboru Ishida, Kentaro Mori, Tomohiro Tajima
  • Patent number: 8444835
    Abstract: An electronic fluidic interface for use with an electronic sensing chip is provided. The electronic fluidic interface provides fluidic reagents to the surface of a sensor chip. The electronic sensing chip typically houses an array of electronic sensors capable of collecting data in a parallel manner. The electronic fluidic interface is used, for example, as part of a system that drives the chip and collects, stores, analyzes, and displays data from the chip and as part of a system for testing chips after manufacture. The electronic fluidic interface is useful, for example, nucleic sequencing applications.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 21, 2013
    Assignee: Intel Corporation
    Inventors: Oguz H. Elibol, Jonathan S. Daniels, Stephane L. Smith
  • Patent number: 8419927
    Abstract: In vitro analyte sensors and methods of analyte determination are provided. Embodiments include sensors that include a pair of electrodes to monitor filling of the sample chamber with sample.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 16, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Benjamin J. Feldman, Jared L. Watkin
  • Patent number: 8398844
    Abstract: Method for diagnosing a NOx readings recorder which acquires a NOx concentration in an exhaust gas tract of an internal combustion engine and comprises two measuring chambers (110, 120), wherein the exhaust gas to be measured is supplied to the first measuring chamber (110) and an oxygen concentration is set by means of a first oxygen ion pump current (IP1), wherein the second measuring chamber (120) is connected to said first measuring chamber (110) and wherein both measuring chambers are disposed in a solid electrolyte, the oxygen content in the second measuring chamber (120) is determined; the oxygen content is additionally determined by a separate device; the two values characterizing the oxygen concentration are compared and a defective sensor is then suggested if the oxygen concentration value determined in the second measuring chamber (120) deviates from the oxygen concentration value determined by the separate sensor device by a predeterminable magnitude.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: March 19, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Torsten Handler
  • Publication number: 20130032493
    Abstract: A sensor for continuous detection of one or more analytes in a liquid flow, comprising an array of electrodes together forming an essentially planar sensing surface and a flow distributor with a flow inlet a flow channel and a flow outlet in order to establish a liquid flow of analytes along the sensing surface. The flow inlet and the flow outlet are located in a plane different to the plane of the sensing surface. The array of electrodes is arranged so that, in the direction from the flow inlet to the flow outlet, the array of electrodes consecutively comprises a first blank electrode, at least one measuring electrode, a second blank electrode, at least one measuring electrode and optionally a third blank electrode.
    Type: Application
    Filed: December 22, 2010
    Publication date: February 7, 2013
    Inventors: Anton Karlsson, Anders Carlsson, Gerhard Jobst
  • Patent number: 8287706
    Abstract: A laminated gas sensor element including a detection element including a solid electrolyte body having a pair of electrodes formed thereon laminated together with a heater element. A porous protection layer is formed on at least a distal end portion of the laminated gas sensor element which is to be exposed to a gas to be measured. The surface of the porous protection layer has 10 or more small pores each having a diameter of 1 ?m to 5 ?m inclusive and an aspect ratio of 0.5 to 2.0 inclusive within an area measuring 50 ?m×50 ?m, and one to less than 20 large pores each having a diameter of 8 ?m to 20 ?m inclusive and an aspect ratio of 0.5 to 2.0 inclusive within an area measuring 100 ?m×100 ?m. Also disclosed is a method for manufacturing the laminated gas sensor.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: October 16, 2012
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Tatsuhiko Muraoka, Masaki Mizutani
  • Patent number: 8105539
    Abstract: Chemical sensors whose active element exhibits both a visual change in color and a measurable change in electrical resistance when exposed to an analyte to which it selectively reacts are provided. These sensor have several unique features including vastly improved stability measured in years, irreversible visual changes and surprisingly reversible electrical changes. The combined unique features enable a new generation of ultra low power alerting, alarming and readout devices for hydrazines and other strongly reducing chemicals.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: January 31, 2012
    Assignee: KWJ Engineering
    Inventors: William J. Buttner, Joseph R. Stetter
  • Patent number: 8097138
    Abstract: The present invention provides oxygen partial pressure control apparatuses that can control the partial pressure of oxygen in atmospheric gases in processing apparatuses or the like to within the range of 0.2 to 10?30 atm, while maintaining low material and operational cost conditions.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: January 17, 2012
    Assignee: National Institute of Agrobiological Sciences
    Inventors: Naoki Shirakawa, Shinichi Ikeda, Katsuhide Uchida
  • Patent number: 8083927
    Abstract: In vitro analyte sensors and methods of analyte determination are provided. Embodiments include sensors that include a pair of electrodes to monitor filling of the sample chamber with sample.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 27, 2011
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Benjamin J. Feldman, Jared L. Watkin
  • Publication number: 20110210752
    Abstract: A system and method for voltammetric analysis of a liquid sample solution.
    Type: Application
    Filed: August 24, 2010
    Publication date: September 1, 2011
    Applicant: TRACEDETECT, INC.
    Inventors: Vladimir Dozortsev, William T. Dietze
  • Publication number: 20110203941
    Abstract: A sensor includes a sheath that is elongated along a longitudinal axis; a spacer positioned within the sheath and defining first and second channels having lengths that extend along the longitudinal axis; a first elongated member positioned within the first channel; and a second elongated member positioned within the second channel. The first elongated member includes an active surface forming a working electrode and the second elongated member including an active surface defining a counter electrode.
    Type: Application
    Filed: August 28, 2008
    Publication date: August 25, 2011
    Applicant: Pepex Biomedical LLC
    Inventor: James L. Say
  • Patent number: 7943023
    Abstract: The present invention is directed to devices and methods for carrying out and/or monitoring biological reactions in response to electrical stimuli. A programmable multiplexed active biologic array includes an array of electrodes coupled to sample-and-hold circuits. The programmable multiplexed active biologic array includes a digital interface that allows external control of the array using an external processor. The circuit may monitor, digitally control, and deliver electrical stimuli to the electrodes individually or in selected groups.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 17, 2011
    Assignee: Gamida for Life B.V.
    Inventors: Richard Gelbart, Don L. Powrie, Paul David Swanson
  • Publication number: 20110100811
    Abstract: The invention relates to an electrochemical sensor including a housing with a chamber containing an electrolyte, at least one measuring electrode for oxygen detection, at least one counter electrode and at least one reference electrode, wherein the sensor has a two-part diffusion barrier, wherein a first part of the barrier forms a labyrinth with a second part of the barrier disposed between the measuring and the counter electrode.
    Type: Application
    Filed: May 7, 2009
    Publication date: May 5, 2011
    Applicant: MSA Auer GmbH
    Inventors: Rolf Eckhardt, Martin Weber
  • Patent number: 7887682
    Abstract: In vitro analyte sensors and methods of analyte determination are provided. Embodiments include sensors that include a pair of electrodes to monitor filling of the sample chamber with sample.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: February 15, 2011
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Benjamin J. Feldman, Jared L. Watkin
  • Patent number: 7857963
    Abstract: To provide an electrode plate for electrochemical measurements that enables detecting and quantifying the concentration of a target substance contained in a sample solution with rapidity and favorable sensitivity using an apparatus for electrochemical measurements is objected to.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: December 28, 2010
    Assignee: Panasonic Corporation
    Inventors: Hidehiro Sasaki, Hiroaki Oka
  • Patent number: 7725148
    Abstract: A thin film sensor, such as a glucose sensor, is provided for transcutaneous placement at a selected site within the body of a patient. The sensor includes several sensor layers that include conductive layers and includes a proximal segment defining conductive contacts adapted for electrical connection to a suitable monitor, and a distal segment with sensor electrodes for transcutaneous placement. The sensor electrode layers are disposed generally above each other, for example with the reference electrode above the working electrode and the working electrode above the counter electrode. The electrode layers are separated by dielectric layer.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 25, 2010
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Rebecca K. Gottlieb
  • Patent number: 7699966
    Abstract: Methods and devices for point of care determination of heparin concentration in blood are described. Cartridges including protamine ion sensitive electrodes (ISEs) and reference electrodes and systems for automatically determining heparin concentration in the cartridges are provided. Some systems add blood to a protamine bolus sufficient to bind all heparin, leaving excess protamine. The excess protamine concentration can be determined by measuring the initial slope of the electrode potential rate of change, and comparing the slope to known protamine concentration slope values In some cartridges, an oscillating pressure source moves the blood-protamine mixture back and forth across the protamine ISE. Some systems also use a second blood sample having the heparin removed or degraded to create a blank reference sample. Protamine ISEs can include polyurethane polymer, DNNS ionophore, and NPOE plasticizer.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: April 20, 2010
    Assignee: Medtronic, Inc.
    Inventors: Wei Qin, Daniel S. Cheek, Christopher Hobot, Kelvin Bonnema, Randy Meyer, Douglas Dean Nippoldt, Vitally G. Sitko, Qingshan (Sam) Ye, Narayanan Ramamurthy
  • Patent number: 7638035
    Abstract: An object of the invention is to provide an electrode plate for electrochemical measurements for detecting with high sensitivity and determining a substance included in a living body. The electrode plate of the present invention has on both faces of body of the substrate, oxidation electrode and reduction electrode opened respectively at upper layer opening and lower layer opening having the same area; and further has a plurality of through-holes that penetrate through from the face of the oxidation electrode to the face of the reduction electrode, in which electrode pairs are formed which exhibit a redox cycle effect between the oxidation electrode and the reduction electrode by applying the potential which can proceed an oxidative reaction of a reductant on the oxidation electrode, and the potential which can proceed a reductive reaction of an oxidant on the reduction electrode.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 29, 2009
    Assignee: Panasonic Corporation
    Inventors: Hidehiro Sasaki, Akio Oki
  • Patent number: 7635422
    Abstract: An electrode plate for electrochemical measurements capable of measuring the concentration of a target substance included in a sample solution with favorable accuracy and high sensitivity is provided. The electrode plate for electrochemical measurements of the present invention includes a substrate, an upper layer, a lower layer, a first electrode body sandwiched between the substrate and the upper layer, and a second electrode body sandwiched between the substrate and the lower layer, wherein: the upper layer has a plurality of upper layer through-holes; the first electrode body has a plurality of first electrodes exposed from via the upper layer through-hole in the first electrode body; the substrate has a plurality of substrate through-holes; and the second electrode body has a plurality of second electrodes exposed via the upper layer through-hole and the substrate through-hole in the second electrode body.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: December 22, 2009
    Assignee: Panasonic Corporation
    Inventors: Hidehiro Sasaki, Hiroaki Oka
  • Patent number: 7615139
    Abstract: An electrochemical sensor with at least one measuring electrode (3), at least one auxiliary electrode (7) and at least one reference electrode (5), wherein a protective electrode (6), which ensures at the reference electrode (5) the at least partial shielding of the reference electrode (5) against substances that would lead to a change in the reference potential when reaching the reference electrode (5), is arranged in the vicinity of the reference electrode (5). A highly stable reference potential can be obtained with the present invention.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: November 10, 2009
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Herbert Kiesele, Frank Mett, Sabrina Sommer
  • Patent number: 7608177
    Abstract: An electrochemical gas sensor with a stacked arrangement of electrodes and nonwoven layers arranged in parallel, comprising at least one measuring electrode (3) and at least one counterelectrode (5). A porous membrane (8) that is permeable to air is in contact with the stacked arrangement of electrodes and nonwoven layers arranged in parallel at least on one side, at least one layer of a hydrophilic nonwoven (7) is located between the electrodes. The porous membrane (8) that is permeable to air and the hydrophilic nonwoven (7) extend into a separate equalization volume (9), which is filled with electrolyte at least partially and is located at least partially in one plane with the electrodes. The separate equalization volume (9) surrounds the electrode arrangement at least partially in this plane, and the porous membrane (8) that is permeable to air is exposed to ambient pressure at least in partial areas.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: October 27, 2009
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Dieter Krüger, Michael Sick, Christoph Bernstein, Michael Dietrich, Hans-Jürgen Busack, Rigobert Chrzan, Kathrin Hermann
  • Patent number: 7591938
    Abstract: Electrically charged molecules need to be transported in order to create a DNA sensor. The following measures are undertaken: base metals are introduced into a solution as a positive ion; negatively charged molecules are transported in an opposite direction and are enriched in the vicinity of the measuring electrodes. Binding-specific separation of the charged molecules can be achieved by forming metal layers on the measuring electrodes by depositing metal ions from the solution when a suitable potential is selected. Target DNA can more particularly be introduced into the vicinity of the catcher molecules on the measuring electrodes and non-specifically bound DNA can be removed. According to the associated device, the electrode arrangement may be associated with a sacrificial electrode made of more base metal than the material of the measuring electrodes. The measuring electrodes in particular may be made of noble metal, preferably gold, and the sacrificial electrode may be made of copper.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: September 22, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Heike Barlag, Walter Gumbrecht, Manfred Stanzel
  • Patent number: 7534331
    Abstract: The invention relates generally to methods and apparatus for conducting analyses, particularly microfluidic devices for the detection of target analytes.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: May 19, 2009
    Assignee: Osmetech Technology Inc.
    Inventor: Jon Faiz Kayyem
  • Patent number: 7470352
    Abstract: Sensor arrangement having row and column lines arranged in first and second directions, respectively, sensor arrays arranged in crossover regions of the row and column lines, a detector, and a decoding device. The sensor arrays have a coupling device for electrically coupling respective row and column lines, and a sensor element to influence electric current flow through the coupling device. The detector is electrically coupled to a respective end section of at least a portion of the row and column lines, and detects a respective accumulative current flow from the individual electrical current flows provided by the sensor arrays of the respective lines. The decoding device is coupled to the row and column lines, and evaluates at least a portion of the accumulative electric current flows fed to the decoding device via the row and column lines to determine at which of the sensor elements a sensor signal is present.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: December 30, 2008
    Assignee: Infineon Technologies AG
    Inventors: Bjorn-Oliver Eversmann, Christian Paulus, Guido Stromberg, Roland Thewes