Three Or More Electrodes Patents (Class 204/412)
  • Patent number: 10837938
    Abstract: A gas sensor device is equipped with a diffusion controlling portion, a pump cell, and a sensor cell. The diffusion controlling portion is formed to face a major surface of a solid electrolyte body and works to control a rate of diffusion of a measurement gas entering a measurement gas chamber. The pump cell has a pump electrode which contains gold and is formed on the major surface. The pump electrode is located downstream of the diffusion controlling portion in a gas flow direction. The pump cell works to regulate a concentration of oxygen in the measurement gas upon application of voltage to the pump electrode. The sensor cell has a sensor electrode formed on the major surface downstream of the diffusion controlling portion in the gas flow direction. The sensor cell works to measure a concentration of nitrogen oxide contained in the measurement gas upon application of voltage to the sensor electrode. The pump electrode is disposed upstream of the sensor electrode at a distance of 0.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 17, 2020
    Assignee: DENSO CORPORATION
    Inventors: Takashi Araki, Yusuke Todo
  • Patent number: 10816503
    Abstract: An electrochemical hydrogen cyanide sensor (1) comprises a housing (10) comprising an opening (2) allowing gas to enter the sensor (1); an electrolyte disposed within the housing (10); a plurality of electrodes in contact with the electrolyte within the housing (10), wherein the plurality of electrodes comprise a working electrode (5) and a counter electrode (7), and wherein the electrodes comprise a metal catalytic material; and a filter (3) operable to cover the opening (2) of the housing (10), and prevent hydrogen sulfide from reaching the electrodes, wherein the filter (3) comprises silver sulfate layered onto a polytetrafluoroethylene support material.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: October 27, 2020
    Assignee: Honeywell International Inc.
    Inventors: Na Wei, Yuzhong Yu, Ling Liu
  • Patent number: 10809223
    Abstract: The present disclosure relates to a sensor for determining measured values of a measured variable representing an analyte content in a measuring fluid, comprising a measuring probe with a probe housing that comprises an immersion region provided for immersion into the measuring fluid, and a single-layer or multi-layer membrane arranged in the immersion region, wherein the membrane comprises at least a first layer that is formed from a polymer and comprises a superhydrophobic surface that is in contact with the measuring fluid when the immersion region is immersed in the measuring fluid.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: October 20, 2020
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Christian Fanselow, Erik Hennings, Alexander Hörig, Andreas Löbbert, Magdalena Losik-Strassberger, Stefan Wilke
  • Patent number: 10697924
    Abstract: A gas sensor includes a housing (22) having disposed therein a membrane electrode assembly comprising a sensing electrode (14), a counter electrode (16), and a solid polymer electrolyte (12) disposed between the sensing electrode and the counter electrode. The sensing electrode comprises a first catalyst comprising noble metal nanoparticles (34). The counter electrode comprises a second catalyst comprising noble metal nanoparticles (34), which can be of the same composition or a different composition as the first catalyst. The sensor housing also includes an opening (24) in fluid communication with the sensing electrode for test gas to contact the sensing electrode. The sensor also includes an electrical circuit (19) connecting the sensing electrode and the counter electrode.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 30, 2020
    Assignee: CARRIER CORPORATION
    Inventors: Lei Chen, Zhiwei Yang, Antonio M. Vincitore
  • Patent number: 10667732
    Abstract: Devices and methods of making and using the device for the non-invasive detection of volatile anesthetics are provided. The devices are capable of measuring the concentration of volatile anesthetics transdermally and in a non-invasive manner. The devices and methods can be applied in detection of volatile anesthetics in samples collected from human skin perspiration.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: June 2, 2020
    Assignees: The Florida International University Board of Trustees, University of Miami
    Inventors: Yogeswaran Umasankar, Shekhar Bhansali, Ernesto A. Pretto, Jr.
  • Patent number: 10634654
    Abstract: An electrochemical detector including at least one substance selection structure disposed adjacent or proximate to an electronic device structure, wherein the substance selection structure is arranged to interact with a target substance having a molecular structure so as to alter an electrical characteristic of the electronic device structure.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: April 28, 2020
    Assignee: City University of Hong Kong
    Inventors: A. L. Roy Vellaisamy, Shishir Venkatesh, Chi-Chung Yeung
  • Patent number: 10620151
    Abstract: An electrochemical sensor is provided which may be formed using micromachining techniques commonly used in the manufacture of integrated circuits. This is achieved by forming microcapillaries in a silicon substrate and forming an opening in an insulating layer to allow environmental gases to reach through to the top side of the substrate. A porous electrode is printed on the top side of the insulating layer such that the electrode is formed in the opening in the insulating layer. The sensor also comprises at least one additional electrode. The electrolyte is then formed on top of the electrodes. A cap is formed over the electrodes and electrolyte. This arrangement may easily be produced using micromachining techniques.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: April 14, 2020
    Assignee: Analog Devices Global
    Inventors: Alfonso Berduque, Helen Berney, William Allan Lane, Raymond J. Speer, Brendan Cawley, Donal Mcauliffe, Patrick Martin McGuinness
  • Patent number: 10563252
    Abstract: The present invention is a biosensor apparatus that includes a substrate, a source on one side of the substrate, a drain spaced from the source, a conducting channel between the source and the drain, an insulator region, and receptors on a gate region for receiving target material. The receptors are contacted for changing current flow between the source and the drain. The source and the drain are relatively wide compared to length between the source and the drain through the conducting channel.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 18, 2020
    Assignee: UNIVERSITY OF HAWAII
    Inventor: James Holm-Kennedy
  • Patent number: 10520481
    Abstract: A hydrogen sulfide gas detector is provided. The detector includes a metal oxide semiconductor-based hydrogen sulfide gas sensor having an electrical characteristic that varies with hydrogen sulfide gas concentration. Measurement circuitry is coupled to the metal oxide semiconductor-based hydrogen sulfide gas detector to measure the electrical characteristic. A controller is coupled to the measurement circuitry and is configured to receive an indication of the electrical characteristic of the hydrogen sulfide gas sensor as well as an indication of ambient humidity. The controller is configured to provide a compensated hydrogen sulfide gas concentration output based on the indication of the electrical characteristic of the hydrogen sulfide gas sensor, an indication of ambient temperature, and the indication of ambient humidity.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: December 31, 2019
    Assignee: Rosemount Inc.
    Inventors: Henryk Kozlow, Alastair Kerr Muir, Todd Christopher Phelps, Lucjan Antoni Oleszczuk
  • Patent number: 10522864
    Abstract: Devices powered by fuel cells can be operated for extended durations when the fuel cells are adapted to extract the necessary reactants for generating power from the surrounding environment and when the concentration of reactants in that environment is maintained at a sufficient level by interaction between the environment and a reactant-enriched atmosphere.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: December 31, 2019
    Assignee: CBN Nano Technologies inc.
    Inventors: James F. Ryley, III, Robert A. Freitas, Jr.
  • Patent number: 10495595
    Abstract: A gas sensor device includes: a sensor film including a sensor surface and a resistance which increases with an increase in an amount of gas adsorbed on the sensor surface; a first electrode, a second electrode, and a third electrode that are electrically coupled to the sensor film; and a protective film that covers the sensor surface in a region between the first electrode and the second electrode, wherein the sensor surface is exposed in a region near the third electrode.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: December 3, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Kazuaki Karasawa, Michio Ushigome, Satoru Momose, Ryozo Takasu, Osamu Tsuboi
  • Patent number: 10488389
    Abstract: Some embodiments are directed to a system for assessing chloride concentration at one predetermined area of a porous or composite material, such as a reinforced concrete structure, including a sensor embedded in the predetermined area of the material, an analyzer connected to the sensor, and a processing module connected to the analyzer. The sensor includes two facing or coplanar electrodes, an intermediate layer arranged between the electrodes, the intermediate layer being in contact with the material of the predetermined area of the structure and including calcium aluminates. The analyzer is configured to apply an alternate current between the electrodes and output an impedance value or capacitance value of the intermediate layer. The processing module is configured to compute a chloride concentration assessment in the predetermined area of the material based on the impedance value or capacitance value outputted by the analyser.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: November 26, 2019
    Assignees: UNIVERSITÉ DE NANTES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS, UNIVERSIDAD DE LOS ANDES
    Inventors: Magda Marcela Torres Luque, Johann Faccelo Osma Cruz, Mauricio Sanchez Silva, Emilio Bastidas Arteaga, Franck Schoefs
  • Patent number: 10488065
    Abstract: An HVAC system is provided having an air supply system, a refrigerant circuit configured to condition air in the air supply system, and an electrochemical sensor configured to detect a refrigerant leak from the refrigerant circuit.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: November 26, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Lei Chen, Zhiwei Yang, Warren Clough, Larry D. Burns, Ivan Rydkin
  • Patent number: 10458941
    Abstract: Provided is an electrochemical measurement device capable of measuring more accurately and an electrochemical measurement apparatus provided with the electrochemical measurement device. The electrochemical measurement device includes a base part, and a placement part on which an object to be measured is placed, the placement part being provided to the base part. The electrochemical measurement device also includes an electrode part provided near the placement part on the base part, a wiring part provided on a surface of the base part and electrically connected to the electrode part, and an insulator that covers the wiring part. Further, a protruding part is provided on the base part of the electrochemical measurement device so as to protrude past the insulator.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: October 29, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Jun Ogihara, Sumihiro Otsuka, Noriteru Furumoto, Masahiro Yasumi, Atsushi Shunori
  • Patent number: 10416062
    Abstract: A soot sensor includes a soot sensor including a first element on a first surface of the soot sensor. A soot sensing system may include a soot sensor and circuitry electrically coupled to the first element of the soot sensor. The circuitry is configured to determine an amount of soot accumulated on the first element and to control heating of the first element in response to the soot accumulation.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: September 17, 2019
    Assignee: Stoneridge, Inc.
    Inventors: Kayvan Hedayat, John Hart, Eric Matson, Mark Wilson, Norman Poirier
  • Patent number: 10408780
    Abstract: The present invention provides a structure of a gas sensor, comprising: a support, having a front side, a back side opposite to the front side, a cell region, and a peripheral region circling the cell region; a cavity, formed on the back side of the support in the cell region; a heater, disposed on the front side of the support covering the cavity; a sensing element, disposed on the heater; and a sealing layer, formed on the back side of the support covering inside the cavity.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: September 10, 2019
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chia-Wei Lee, Chang-Sheng Hsu, Chih-Fan Hu, Chin-Jen Cheng, Chang Hsin Wu
  • Patent number: 10409226
    Abstract: A wearable device with an air quality sensor, the wearable device, comprising a housing enclosing an electronic board, a display arrangement, a battery, the housing lodging a cavity with an internal area, the cavity containing an air quality sensor in the internal area, the cavity being delimited by a cavity wall and by a membrane, the membrane having an inner wall oriented toward the cavity internal area and an outer wall opposed to the inner wall, the internal area of the cavity being in fluid communication with the ambient air through the membrane, the membrane being permeable to air and substantially not permeable to water.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: September 10, 2019
    Assignee: WITHINGS
    Inventors: Haikel Balti, Charlotte Leger, Frederic Techer, Nadine Buard, Marc Besnard
  • Patent number: 10386325
    Abstract: A gas sensor including a housing containing a potassium permanganate element sandwiched between two polytetrafluoroethylene elements, a carbon element, a polytetrafluoroethylene element located adjacent to the carbon element, a sensing electrode, a reference electrode, and a counter electrode with attached current collectors, and an electrolyte.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: August 20, 2019
    Assignee: LIFE SAFETY DISTRIBUTION GMBH
    Inventors: Lei Xiao, Steven Leslie Scorfield, John Chapples
  • Patent number: 10371617
    Abstract: An electrochemical test device for determining a concentration of one or more analytes in a fluid sample is provided. The electrochemical test device comprises a set of electrodes including two or more working electrodes, each working electrode for determining the concentration of a corresponding analyte, and sensing chemistry for each working electrode, wherein the sensing chemistry for a first of the two or more working electrodes comprises a diaphorase, an electron transfer agent, an NAD(P)+-dependent dehydrogenase and a cofactor for the NAD(P)+-dependent dehydrogenase, wherein at least some of the diaphorase for the first working electrode is disposed in a diaphorase-containing layer which extends over the first working electrode and at least a second of the two or more working electrodes.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: August 6, 2019
    Assignee: INSIDE BIOMETRICS INTERNATIONAL LIMITED
    Inventors: Marco Cardosi, Stephanie Kirkwood, Damian Baskeyfield
  • Patent number: 10330636
    Abstract: A gas sensor element including a composite ceramic layer including a plate-shaped insulating portion containing an insulating ceramic and having a through hole formed therein and a plate-shaped electrolyte portion containing a solid electrolyte ceramic and disposed in the through hole; and a first conductor layer extending continuously from a first insulating surface on one side of the insulating portion to a first electrolyte surface of the electrolyte portion facing the same direction as the one side of the insulating portion. The first insulating surface is flush with the first electrolyte surface. The electrolyte portion has, on its first electrolyte surface side, an extension portion extending outward from the through hole so as to overlap the first insulating surface. Further, the thickness of the extension portion decreases toward the outer circumference of the extension portion. Also disclosed is a method of manufacturing the gas sensor element.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: June 25, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventor: Ai Igarashi
  • Patent number: 10295492
    Abstract: Methods for analyzing a fluid sample can include providing a sensor comprising a non-conductive housing and having a first face and an electrode array mounted in the first face. The method can include disposing the first face of the housing into a fluid sample to be analyzed, selecting a mode of operation, and initiating sensor operation. Modes of operation can include electrochemical operation and conductivity analysis, and can be selected via positioning a switch. The method can include receiving information from the sensor regarding at least one parameter of the fluid. Such parameters can include a concentration of a target constituent in the fluid sample, combined concentrations of different species within the fluid sample, and/or information indicative of the conductivity of the fluid sample.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: May 21, 2019
    Assignee: Ecolab USA Inc.
    Inventor: Rodney H. Banks
  • Patent number: 10288579
    Abstract: An ammonia detection section is disposed on an electrically insulating layer and includes a reference electrode, a solid electrolyte body for ammonia, and a detection electrode that are stacked in this order on the electrically insulating layer. In the ammonia detection section, a three-phase boundary is formed at the interface between the reference electrode and the solid electrolyte body for ammonia, and another three-phase boundary is formed at the interface between the detection electrode and the solid electrolyte body for ammonia. The concentration of ammonia in exhaust gas is thereby detected. The ammonia detection section includes a porous layer formed of an electrically insulating porous material and disposed between the insulating layer and the reference electrode.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: May 14, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Yoshihiro Nakano, Tetsuo Yamada
  • Patent number: 10261046
    Abstract: Disclosed are improved methods and structures for electrochemical sensors that may advantageously sense/detect chemical species including pollutants and/or energetics in a gaseous phase. Sensors according to the present disclosure may advantageously be fabricated using large scale microfabrication techniques and materials.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: April 16, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Beth L. Pruitt, Thomas Jaramillo, Tom Larsen, Frédéric Loizeau, Pierre-Alexandre Gross
  • Patent number: 10247697
    Abstract: A gas sensor includes a solid electrolyte substrate that has oxygen-ion conductivity, and a counter plate, made of ceramic, that is arranged so as to face a first surface of the solid electrolyte substrate. The gas sensor further includes a first spacer, made of ceramic, that is held between the counter plate and the solid electrolyte substrate, a heater substrate, made of ceramic, that is arranged so as to face a second surface of the solid electrolyte substrate, and a second spacer, made of ceramic, that is held between the heater substrate and the solid electrolyte substrate. Of the counter plate, the sintered density of an inside portion that comes in contact with a measurement-gas chamber is 0.8 to 5.0% lower than the sintered density of an outside portion that comes in contact with the first spacer.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: April 2, 2019
    Assignee: DENSO CORPORATION
    Inventor: Shigekazu Hidaka
  • Patent number: 10209155
    Abstract: A semiconductor device includes: a first substrate with one side on which a sensing unit for a physical quantity is arranged and multiple diffusion wiring layers electrically connected to the sensing unit are arranged by impurity diffusion; and a second substrate having one side which is bonded to the one side of the first substrate. An air tight chamber is provided between the first substrate and the second substrate. The sensing unit is sealed in the air tight chamber. The first substrate includes an outer edge portion as a portion of the one side of the first substrate surrounding multiple diffusion wiring layers, and multiple diffusion wiring layers are arranged in an inner edge portion. The outer edge portion has an impurity concentration which is constant in a circumferential direction along an edge of the first substrate.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: February 19, 2019
    Assignee: DENSO CORPORATION
    Inventors: Kouhei Yamaguchi, Masakazu Yatou, Minoru Murata
  • Patent number: 10191009
    Abstract: Methods and sensing instruments are provided which perform automated electrochemical sensing and determination of metals in a liquid sample, such as drinking water or waste water. With use of microelectrode arrays, concentrations of metal are determined through a double potential step variation on anodic stripping coulometry, and the ability to generate these results provides for compact sensor networks that can be remotely deployed for determination of metals in samples, for real-time, decentralized sample monitoring.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: January 29, 2019
    Assignee: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Mohamed M. Marei, Richard P. Baldwin, Thomas J. Roussel, Jr., Robert S. Keynton
  • Patent number: 10191008
    Abstract: A gas sensor including a gas sensing electrode, a counter electrode disposed within a housing, and respective conductors that connect the gas sensing electrode to the counter electrode via a sensing circuit is disclosed. The housing includes a solid electrolyte in communication with the gas sensing electrode and counter electrode wherein the solid electrolyte further comprises one or more coatings or layers. The one or more coatings or layers have a lower water vapor transport rate than that of the electrolyte, such that, in use, water vapor transport between the electrolyte and atmosphere is reduced.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: January 29, 2019
    Assignee: Life Safety Distribution AG
    Inventors: John Chapples, Keith Francis Edwin Pratt, Martin Geoffrey Jones
  • Patent number: 10132934
    Abstract: A detection device is formed in a body of semiconductor material having a first face, a second face, and a cavity. A detection area formed in the cavity, and a gas pump is integrated in the body and configured to force movement of gas towards the detection area. A detection system of an optical type or a detector of alpha particles is arranged at least in part in the detection area.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: November 20, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Sara Loi, Alberto Pagani
  • Patent number: 10041903
    Abstract: In a cross section of the gas sensor element which is perpendicular to its lengthwise direction and through which all first to fourth lead portions penetrate, when the cross section is bisected into two regions with respect to the width direction of the gas sensor element, the first lead portion and the fourth lead portion are disposed in one of the regions and the second lead portion and the third lead portion are disposed in the other region, and the second lead portion and the third lead portion are disposed so as to be spaced apart from each other in the width direction with no overlap as viewed in a stacking direction.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: August 7, 2018
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Masaki Mizutani, Nobuo Furuta
  • Patent number: 10036721
    Abstract: A method is described for operating a sensor element for detecting at least one concentration of a gas in a measuring gas chamber. The sensor element includes at least one pump cell having at least two pump electrodes connected to each other by at least one solid electrolyte. At least one measuring variable is detected in the method, and at least one compensating variable is determined. The compensating variable is at least partially dependent on capacitive effects on at least one junction between at least one of pump electrodes and the solid electrolyte. At least one corrected measuring variable is determined from the measuring variable and the compensating variable. The concentration of the gas in the measuring gas chamber is determined from the corrected measuring variable.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: July 31, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Goetz Reinhardt, Hartwig Lehle, Bernhard Ledermann
  • Patent number: 10020528
    Abstract: A fuel cell comprises an anode, a cathode, and a solid electrolyte layer disposed between the anode and the cathode. The solid electrolyte layer contains a zirconia-based material as a main component. A first intensity ratio of tetragonal crystal zirconia to cubic crystal zirconia in a Raman spectrum in a central portion of the solid electrolyte layer is greater than a second intensity ratio of tetragonal crystal zirconia to cubic crystal zirconia in a Raman spectrum of an outer edge.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 10, 2018
    Assignee: NGK INSULATORS, LTD.
    Inventors: Makoto Ohmori, Shinji Fujisaki
  • Patent number: 9991565
    Abstract: A sensor system for detecting a leak of a system component from an electrochemical storage system, in particular a lithium-ion battery. To determine a defect in the electrochemical storage system, the sensor system includes a reaction chamber containing a detection component, and a measuring device for determining a physical variable within the reaction chamber. The value of the physical variable is changeable by a chemical reaction of the system component with the detection component, so that a leak of the system component is detectable via a change in the value of the physical variable. Also described is a sensor element for such a sensor system, an electrochemical storage system having such a sensor system or sensor element, the use of such a sensor system or sensor element, and a mobile or stationary system, for example an electric vehicle, equipped with the sensor system, the sensor element, or the storage system.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 5, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Kathy Sahner, Jens Grimminger, Marcus Wegner, Dirk Liemersdorf
  • Patent number: 9983164
    Abstract: An electrochemical sensor assembly is disclosed. In some implementations, the electrochemical sensor assembly comprises at least one electrochemical sensor/cell including a substrate with a cavity formed on a first side of the substrate, an ionic conductor is disposed within the cavity, and a lid assembly positioned over the cavity. The lid assembly may include a plurality of electrodes and a gas permeable region positioned over the plurality of electrodes, where the plurality of electrodes include a working electrode configured to react a molecular species when the molecular species is received through the gas permeable region. The lid assembly may be sealed to the substrate with a bonding layer disposed between the lid assembly and the substrate. The bonding layer may be curable with light or thermally curable at a suitably low temperature to avoid thermal damage to the ionic conductor.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 29, 2018
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Dan G. Allen, Jim Chih-Min Cheng
  • Patent number: 9947954
    Abstract: A fuel cell stack includes seven current collecting members and six fuel cells that are alternate stacked with reference to the stacking direction. Each of the six fuel cells includes an anode, a cathode and a solid electrolyte layer that is disposed between the anode and the cathode and contains a zirconia-based material as a main component. The six fuel cells include a first fuel cell disposed in the center with reference to the stacking direction, and a second fuel cell disposed in one end with reference to the stacking direction. An intensity ratio of tetragonal crystal zirconia to cubic crystal zirconia in a Raman spectrum of the solid electrolyte layer of the first fuel cell is greater than an intensity ratio of tetragonal crystal zirconia to cubic crystal zirconia in a Raman spectrum of the solid electrolyte layer of the second fuel cell.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 17, 2018
    Assignee: NGK INSULATORS, LTD.
    Inventors: Makoto Ohmori, Shinji Fujisaki
  • Patent number: 9891162
    Abstract: An online colorimetric analyzer that generates an indication of a material in a sample is provided. The analyzer includes a peristaltic pump configured to convey. A photometric cell is operably coupled to the peristaltic pump to receive the sample. An illumination source is disposed to direct illumination through the sample in the photometric cell along an angle of incidence. A photodetector disposed to receive illumination passing through the photometric cell along the angle of incidence and provide a signal indicative of a color of the sample. A controller is coupled to the illumination source, the photodetector and the peristaltic pump. The photometric cell is tilted relative to vertical such that a surface of liquid present when the photometric cell is partially filled substantially reflects the illumination away from the angle of incidence.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: February 13, 2018
    Assignee: Rosemount Analytical Inc.
    Inventors: Bradley A. Butcher, Chang-Dong Feng, Jeffrey Lomibao, Calin Ciobanu
  • Patent number: 9885694
    Abstract: The invention concerns a method for detection of the concentration of at least one gaseous target substance (10) in a gas or a gas mixture (20), especially air, wherein: a) a first measured value (11) of the concentration of the at least one gaseous target substance (10) is saved as the first measured value (11) in a predetermined way and then b) the at least one target substance (10) is kept away from the sensor (1) with a gas shielding device (2) for a predetermined period of time, so that the concentration of the at least one target substance (10) measured by the sensor changes, c) before the end of the shielding of the sensor (1), the magnitude of the measured concentration and/or the direction of the change in concentration of the gaseous target substance (10) as detected by the sensor (1) is saved as the second measured value (12), d) the sensor (1) is then exposed again to the gas (20) with the at least one gaseous target substance (10), while e) on the basis of the difference between the first measure
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 6, 2018
    Assignee: MSA EUROPE GMBH
    Inventors: Ralf Warratz, Martin Weber
  • Patent number: 9864345
    Abstract: A process for creating a predictive data set predicting the amount of target constituents are in an electrolyte solution at varying temperatures is provided.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: January 9, 2018
    Assignee: TECHNIC, INC.
    Inventors: Kazimierz Wikiel, Aleksander Jaworski, Wojciech Wikiel
  • Patent number: 9843262
    Abstract: Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage using the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: December 12, 2017
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Kenneth L. Shepard, Noah Andrew Sturcken
  • Patent number: 9835581
    Abstract: A gas sensor having a housing with first and second chambers featuring a porous separator located there between. The first chamber of the sensor being connected to atmosphere via a gas diffusion aperture. The gas sensor having a sensing electrode disposed within the first chamber and at least a second electrode disposed within the second chamber. The sensor having an ionic liquid electrolyte disposed within the second chamber where the sensing electrode and at least second electrodes comprise platinum.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: December 5, 2017
    Assignee: Honeywell International, Inc.
    Inventors: John Chapples, Martin Geoffrey Jones
  • Patent number: 9791404
    Abstract: Provided are: an electrode for a gas sensor formed as a porous electrode so as to stably allow reduction in electrode resistance for excellent low-temperature activity; and a gas sensor. The electrode (108, 110) for the gas sensor is adapted for use on a surface of a solid electrolyte body (109), which is predominantly formed of zirconia, and contains particles (2) of a noble metal or an alloy thereof, first ceramic particles (4) of stabilized zirconia or partially stabilized zirconia and second ceramic particles (6) of one or more selected from the group consisting of Al2O3, MgO, La2O3, spinel, zircon, mullite and cordierite, wherein the second ceramic particles are contained in an amount smaller than that of the first ceramic particles.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 17, 2017
    Assignee: NGK SPARK PLUG CO. LTD.
    Inventors: Seiji Oya, Yuta Oishi
  • Patent number: 9754848
    Abstract: Provided is a gas sensor package, including: a gas sensing element; and a substrate on which the gas sensing element is disposed, in which a through hole corresponding to the gas sensing element is formed.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: September 5, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Sung Gon Jun, Jee Heum Paik, Ji Hun Hwang
  • Patent number: 9743221
    Abstract: Embodiments relate generally to methods and systems for user association with a gas detector using passive NFC tags. Applicants propose a gas detector with a near-field communication (NFC) reader built into the gas detector, thereby allowing the user to scan their employee identification (ID) badge or a specialized individualized NFC tag. In some embodiments, an NFC tag may be attached to an employee ID badge. The gas detector may communicate via NFC with the badge and/or tag, and may recognize the badge and/or tag as associated with a specific user. When the user starts their shift, the gas detector with an NFC reader can scan the tag and associate the user with the detector and store the information in a log for archival purposes. This process can be completed by the user, and does not require connecting the gas detector to a computer to provide the association.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: August 22, 2017
    Assignee: Honeywell International Inc.
    Inventors: Mahdi Javer, Kirk William Johnson, Kelly Englot, Stephen Mroszczak
  • Patent number: 9732657
    Abstract: In this invention, an EMF oxygen sensor is subjected to an activation process applying unidirectional voltage between an atmosphere electrode and an exhaust electrode thereof. A control device controlling the oxygen sensor in which a voltage was applied with the atmosphere electrode being positive, additionally applies unidirectional voltage between the electrodes to make the atmosphere electrode positive, for example, when the oxygen sensor was used under an environment in which the air-fuel ratio of the internal combustion engine was rich relative to the theoretical air-fuel ratio. Conversely, a control device controlling the oxygen sensor in which a voltage was applied to make the atmosphere electrode negative, additionally applies unidirectional voltage between the electrodes to make the atmosphere electrode negative, for example, when the oxygen sensor was used under an environment in which the air-fuel ratio was lean relative to the theoretical air-fuel ratio.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: August 15, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keiichiro Aoki, Takanori Sasaki, Go Hayashita
  • Patent number: 9726627
    Abstract: A chemical sensor may include an electrode array for electrically interfacing with a fluid sample. The sensor can apply an electrical potential to the sample in order to effect a current flow within the sample. The sensor can measure the resulting current through the sample and determine characteristics about the fluid sample from the current measurement. In one mode of operation of the sensor, the applied electrical potential can be controlled to cause desired electrochemical reactions, such as oxidation or reduction, to occur within the sample to determine the concentration of the oxidized or reduced sample constituent. In another mode of operation, the applied electrical potential causes a current to flow simply due to the conductivity of the sample. In various embodiments, the sensor comprises a controller and a switch for switching between various modes of operation and applying appropriate electric potentials to the sample.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: August 8, 2017
    Assignee: Ecolab USA Inc.
    Inventor: Rodney H. Banks
  • Patent number: 9689753
    Abstract: A handheld analyte meter, such as a blood glucose meter, has a measurement module, a rechargeable battery and a charging control to select a maximum charging current to regulate self-heating during recharging that can interfere with analyte tests. Self-heating by the meter can bias temperature measurements made inside the meter that are used to determine whether the temperature is acceptable for testing. Prior to beginning a charging session, the charging control selects the maximum charging current that does not change during the charging session based capacity of a charging source along with a first temperature measured near the battery that is compared with a first temperature range. By selecting the maximum charging current in this manner, the risk of the measurement module preventing a test under high lock-out conditions and the risk of the measurement module allowing a test when low lock-out conditions that are masked is reduced.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: June 27, 2017
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Blaine E. Ramey, Joseph M. Simpson
  • Patent number: 9689837
    Abstract: Provided is a small-sized device for measuring an oxidation-reduction potential, whereby an oxidation-reduction current and an oxidation-reduction potential can be measured by reducing noise even when a signal from a solution being measured is small. A device for measuring an oxidation-reduction potential is provided with a substrate (10), a working electrode (15) mounted on a surface of the substrate (10), and a bipolar transistor (21) for amplifying the output of the working electrode (15) also provided on the surface of the substrate (10), and the signal amplified by the bipolar transistor (21) is inputted to a processing circuit (18).
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: June 27, 2017
    Assignee: National University Corporation Toyohashi University of Technology
    Inventors: Masato Futagawa, Kazuaki Sawada, Sou Takahashi
  • Patent number: 9692026
    Abstract: Provided is a secondary battery including a positive electrode, a negative electrode, an alkaline electrolytic solution, a separator structure, and a resin container. The separator structure includes a ceramic separator composed of an inorganic solid electrolyte exhibiting hydroxide ion conductivity and optionally a resin frame and/or resin film disposed to surround the periphery of the ceramic separator. The separator structure is bonded to the resin container with an adhesive, and/or the ceramic separator is bonded to the resin frame and/or the resin film with the adhesive. The adhesive is selected from an epoxy resin adhesive, a natural resin adhesive, a modified olefin resin adhesive, and a modified silicone resin adhesive, and the adhesive exhibits a variation in weight of 5% or less after immersed, in a solidified form, in a 9 mol/L aqueous KOH solution at 25° C. for 672 hours.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 27, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Hashimoto, Kenshin Kitoh, Yuichi Gonda
  • Patent number: 9678244
    Abstract: Apparatus, methods, and systems related to a spectroelectrochemical cell apparatus including a cell body that has a first volume, a transparent sample window defined in the cell body, the transparent sample window defining an optical path through the cell body and having a second volume, a working electrode extending through the cell body and into the transparent sample window in the optical path, a counter electrode extending through the cell body, a reference electrode extending through the cell body, a sample inlet extending through the cell body, a solvent inlet extending through the cell body, an electrolyte inlet extending through the cell body, an ionic fluid inlet extending through the cell body, a detection species inlet extending through the cell body, a fluid outlet extending through the cell body, and a fluid mixer located within the cell body.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: June 13, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jing Shen, Wei Zhang
  • Patent number: 9655986
    Abstract: The device for the treatment of a gaseous medium according to the invention comprises in flow direction of the gaseous medium a plasma-generating device for the generation of a plasma in the gaseous medium. The plasma comprises in particular excited molecules, radicals, ions, free electrons, photons and any combination thereof. Furthermore, the device according to the invention comprises at least one dielectric structure, in particular at least one fused silica tube. The plasma is conveyable into the at least one dielectric structure, in particular after generation in the plasma-generating device.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: May 23, 2017
    Inventor: Jean-Michel Beaudouin
  • Patent number: 9638663
    Abstract: The present invention relates to a cartridge for conducting diagnostic assays. The cartridge consists of an assembly of components that are easily assembled. The cartridge provides means for receiving a patient sample, precisely controlling fluid introduction, onboard storage of assay fluid and conducting different assay protocols and detection of a plurality of analytes. Methods of use for the cartridge are described. The disclosed invention is suitable for point of care environments or any place where rapid, ultrasensitive testing is required.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: May 2, 2017
    Assignee: Proxim Diagnostics Corporation
    Inventor: Mikhail Briman