Three Or More Electrodes Patents (Class 204/412)
  • Publication number: 20120175254
    Abstract: Ion concentration measurement requires a calibration before the start of the measurement, and thus the start of the measurement is delayed for the calibration period. Hence, an ion selective electrode cartridge including an ion selective electrode for measuring the concentration of particular ions dissolved in a test solution is provided with a storage means storing therein an electrode slope value specific to the ion selective electrode.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 12, 2012
    Inventors: Teruyuki Kobayashi, Tsuyoshi Uchida
  • Publication number: 20120152740
    Abstract: Disclosed is a micro-fluidic system including a lower substrate, an upper substrate formed opposite to the lower substrate and formed with an air injection path, and a micro-fluidic device interposed between the upper and lower substrates, wherein the micro-fluidic chamber includes a fluid chamber filled with a fluid and the fluidic chamber is physically connected to the air injection path.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Ji Tae KIM, Gyoung Soo Kim, Seok Jung Hyun, Guei Sam Lim, Youn Jae Lee
  • Publication number: 20120132544
    Abstract: An electrochemical sensor for measuring an analyte in a fluid, the electrochemical sensor having a first working electrode that includes a redox species sensitive to the analyte to be measured and a second working electrode made from a conducting substrate absent the redox species. The electrochemical sensor being capable of operation so that electrochemical effects of active contaminants in the fluid can be removed/attenuated from electrochemical signals produced by the reduction/oxidation of the redox species in the presence of the analyte.
    Type: Application
    Filed: August 5, 2011
    Publication date: May 31, 2012
    Applicant: Schlumberger Technology Corporation
    Inventors: Nathan Lawrence, Andrew Meredith
  • Publication number: 20120125790
    Abstract: An electrochemical sensor for measuring the oxygen partial pressure in a process fluid, comprises an electrolyte-filled sensor body, which is covered on one side charged with the process fluid by an oxygen-permeable membrane, a cathode on the membrane, an annular guard electrode surrounding the cathode, which in measuring operation lies at the same potential as the cathode, an anode charged by the electrolyte in the sensor body, a reference electrode charged by the electrolyte in the sensor body, wherein between the anode and cathode a voltage can be applied, which is controlled between the cathode (8) and reference electrode at a constant polarization voltage and the measuring sensor current flowing in measuring operation between the cathode and anode is a measure for the oxygen partial pressure in the process fluid, and a test voltage source which can be switched in a testing mode between the cathode and guard electrode for producing test oxygen in the electrolyte and/or in the process fluid between the
    Type: Application
    Filed: June 23, 2010
    Publication date: May 24, 2012
    Inventors: Heinz Wohlrab, René Oberlin
  • Publication number: 20120125771
    Abstract: The present invention provides a remote monitoring system for monitoring the operation of a fluid treatment system and/or the qualities, characteristics, properties, etc., of the fluid being processed or treated by the fluid treatment system. The present invention also relates to carbon nanotube sensors.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: Hach Company
    Inventors: Corey Alan SALZER, Russell Martin Young, Michael Mario Carrabba, Vishnu Vardhanan Rajasekharan, Christopher Patrick Fair, Terrance William Firzgerald, Frank Howland Carpenter, JR., John Edwin Lee
  • Publication number: 20120118761
    Abstract: Disclosed is a method for measuring the concentration of a peroxide using a CNT sensor. The CNT sensor comprises a working electrode that is arranged on an insulating substrate, a monolayered carbon nano-tube that is contacted with the working electrode, a counter electrode, and a reference electrode. A sample is provided on the monolayered carbon nano-tube, and a potential difference is made between the working electrode and the counter electrode. In this manner, the concentration of the peroxide in the sample can be measured. The measurement method can be applied to clinical tests or the like.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 17, 2012
    Applicants: Health Sciences University of Hokkaido, National University Corporation Hokkaido University
    Inventors: Hitoshi Chiba, Sheiji Takeda, Atsushi Ishii, Motonori Nakamura
  • Publication number: 20120118762
    Abstract: A sensing device for the determination of ions in a thin layer sample (32) comprising: a first (12) and second (14) ion selective electrode, each having a first (16) and second layer (20); the first layer (16) of the first ion selective electrode (12) being a polymeric membrane layer in electrical contact with the second layer (20) of the first ion selective electrode (12), and the first layer (18) of the second ion selective electrode (14) being a polymeric membrane layer in electrical contact with the second layer (20) of the second ion selective electrode (14); the first and second ion selective electrodes being positioned in opposing arrangement such that, the respective polymeric membrane layers are in direct contact with a thin layer sample (32) containing ions, located between the first and second electrodes; and a detector (28) in electrical connection with the first (12) and second (14) ion selective electrodes.
    Type: Application
    Filed: February 12, 2010
    Publication date: May 17, 2012
    Applicant: Curtin University of Technology
    Inventor: Eric Bakker
  • Patent number: 8177949
    Abstract: A microelectrode comprising a diamond layer formed from electrically non-conducting diamond and containing one or more pins or projections of electrically conducting diamond extending at least partially through the layer of non-conducting diamond and presenting areas of electrically conducting diamond.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: May 15, 2012
    Assignee: Element Six Limited
    Inventors: Charles Simon James Pickles, Clive Edward Hall, Li Jiang, Neil Perkins, Richard Antonius Kleijhorst
  • Publication number: 20120103837
    Abstract: A trace gas sensing apparatus includes a cathode, an anode, a vacuum enclosure, and a membrane. The anode coaxially surrounds the cathode, wherein the cathode and the anode define an annular ionization chamber. The vacuum enclosure surrounds the cathode and the anode and includes a gas inlet fluidly communicating with the ionization chamber. The membrane is coupled to the gas inlet in a sealed manner and is permselective to trace gas. The apparatus may further include circuitry for applying a negative voltage potential to the cathode and for measuring an ion current signal generated by the cathode, and a magnet assembly for generating a magnetic field in the ionization chamber. The cathode may include an elongated member located along a longitudinal axis, and first and second end plates orthogonal to the longitudinal axis.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Inventors: David Wall, J. Daniel Geist, Stephen M. Elliot
  • Publication number: 20120103807
    Abstract: Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC.
    Inventors: Andrew M. Dattelbaum, Gautam Gupta, David E. Morris
  • Patent number: 8152977
    Abstract: The multichannel potentiostat comprises a reference terminal, a counter-electrode terminal, and at least two working terminals, respectively designed to be connected to a reference electrode, a counter-electrode and at least two working electrodes of an electrochemical cell. The potentiostat comprises first and second regulating circuits to apply a setpoint voltage respectively between the first and second working terminals and the reference terminal. The potentiostat comprises a control circuit of the counter-electrode voltage applied to the counter-electrode terminal. The control circuit comprises a first input terminal connected to a predefined potential and a second input terminal to which a regulating voltage representative of at least one of the voltages of the working terminals is applied.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: April 10, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Alain Bourgerette, Gilles Marchand
  • Patent number: 8153062
    Abstract: Electrochemical devices, methods, and systems for detecting and quantifying analytes are disclosed. A chemical detection reagent is locally generated in a test solution by electrochemical reaction of a precursor compound caused to migrate into the test solution from a precursor solution separated from the test solution by a cell separator. This approach provides precise metering of the reagent, via the charge passed, and avoids the need to store a reagent solution that may be chemically unstable. In one embodiment, the starch concentration in a colloidal solution can be measured via spectroscopic detection of a blue complex formed by the interaction of starch with iodine produced, on demand, by electrochemical oxidation of iodide ion. The approach may also be used to characterize certain types of analytes. The invention is amenable to automation and is particularly useful for on-line monitoring of production processes, including the inclusion of feed back loop mechanisms for process control.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 10, 2012
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Martin W. Kendig, Chuan-Hua Chen, D. Morgan Tench, Jeffrey F. DeNatale, Frederick M. Discenzo
  • Publication number: 20120080319
    Abstract: A method of co-functionalizing single-walled carbon nanotubes for gas sensors, which includes the steps of: fabricating single-walled carbon nanotube interconnects; synthesizing tin oxide onto the single-walled carbon nanotube interconnects; and synthesizing metal nanoparticles onto the tin oxide coated single-walled carbon nanotube interconnects.
    Type: Application
    Filed: May 19, 2011
    Publication date: April 5, 2012
    Applicant: The Regents of the University of California
    Inventors: Nosang Vincent MYUNG, Syed MUBEEN, Ashok MULCHANDANI, Marc Arnold DESHUSSES
  • Publication number: 20120073990
    Abstract: The purpose of the invention is to provide a method for quantifying a chemical substance with high accuracy using substitutional stripping voltammetry and a sensor chip used therefor. A sensor chip comprising a stripping electrode which is covered with stripping gel and a method utilizing the sensor chip. A reaction represented by the following formula (III) occurs at the stripping electrode. [Chem.
    Type: Application
    Filed: November 30, 2011
    Publication date: March 29, 2012
    Applicant: Panasonic Corporation
    Inventor: Satoshi ARIMOTO
  • Publication number: 20120073991
    Abstract: The evaporation of the stripping liquid 6 changes the concentration of the standard electrolyte. This causes the quantification accuracy of the chemical substance to be lowered. In order to solve the above problem, this invention provides a method for quantifying a chemical substance contained in a sample solution, characterized by the following stripping gel. The stripping gel covers the stripping electrode, and contains a standard electrolyte and an ionic liquid; however, the stripping gel contains no water. Furthermore, the ionic liquid is hydrophobic and nonvolatile, and the standard electrolyte is consisted of the anion and a metallic ion.
    Type: Application
    Filed: December 9, 2011
    Publication date: March 29, 2012
    Applicant: Panasonic Corporation
    Inventor: Satoshi ARIMOTO
  • Publication number: 20120067745
    Abstract: Internally calibrated pH and other analyte sensors based on redox agents provide more accurate results when the redox active reference agent is in a constant chemical environment, yet separated from the solution being analyzed in such a way as to maintain electrical contact with the sample. Room temperature ionic liquids (RTIL) can be used to achieve these results when used as a salt bridge between the reference material and the sample being analyzed. The RTIL provides the constant chemical environment and ionic strength for the redox active material (RAM) and provides an electrolytic layer that limits or eliminates direct chemical interaction with the sample. A broad range of RAMs can be employed in a variety of configurations in such “Analyte Insensitive Electrode” devices.
    Type: Application
    Filed: March 10, 2010
    Publication date: March 22, 2012
    Applicant: Senova Systems, Inc.
    Inventors: Joseph A. Duimstra, Lee Leonard, Gregory G. Wildgoose, Eric Lee
  • Patent number: 8133369
    Abstract: A potentiostat is provided for a biosensor circuit and permits sequential and simultaneous measurements to be performed at different cells across a matrix of biosensing devices. Accordingly, a potentiostat comprises a first differential amplifier for receiving a scanning voltage at a first input terminal and a voltage at the reference electrode at a second input terminal and for generating an output voltage at an output terminal to be applied to the working electrode, wherein, when in use, a feedback loop of the potentiostat circuit is closed between the reference electrode and the working electrode.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Simon Tam
  • Publication number: 20120048748
    Abstract: Air quality in a workplace can be monitored to ensure worker safety.
    Type: Application
    Filed: August 29, 2011
    Publication date: March 1, 2012
    Inventors: Charles E. Wickersham, JR., Gerhard Meyer
  • Patent number: 8105539
    Abstract: Chemical sensors whose active element exhibits both a visual change in color and a measurable change in electrical resistance when exposed to an analyte to which it selectively reacts are provided. These sensor have several unique features including vastly improved stability measured in years, irreversible visual changes and surprisingly reversible electrical changes. The combined unique features enable a new generation of ultra low power alerting, alarming and readout devices for hydrazines and other strongly reducing chemicals.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: January 31, 2012
    Assignee: KWJ Engineering
    Inventors: William J. Buttner, Joseph R. Stetter
  • Publication number: 20120018303
    Abstract: An electrochemical sensor having at least two electrodes, and a reservoir chamber containing electrolyte. The reservoir chamber is internally coated with a wicking material to spread the electrolyte evenly over the walls of the reservoir.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: INDUSTRIAL SCIENTIFIC CORPORATION
    Inventors: Mark William BORDO, Wenfeng PENG
  • Patent number: 8088262
    Abstract: Provided are a low impedance gold electrode, which has increased surface area, and can improve a bonding force with other materials, an apparatus for and a method of fabricating the low impedance gold electrode, and an electrolyte solution for use in the fabrication of the low impedance gold electrode. The gold electrode has a surface roughness that is increased through electrolysis using an acid electrolyte solution, has an impedance that is less than 1/10 of an impedance before the electrolysis and is higher than 0? when the low impedance gold electrode is disposed in the acid electrolyte solution or another electrolyte solution, and has a single-layered structure whose thickness is less than that before the electrolysis.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 3, 2012
    Assignee: Marveldex, Inc.
    Inventors: Seh Jin Choi, Myung Ki Choi
  • Publication number: 20110315551
    Abstract: An electrode for active oxygen species comprising a conductive component with a polymer membrane of a metal porphyrin complex formed on the surface is disclosed. The electrode for active oxygen species can detect active oxygen species such as superoxide anion radicals, hydrogen peroxide, and .OH and other active radical species (NO, ONOO—, etc.) in any environment including in vivo environment as well as in vitro environment. The electrode thus can be used for specifying various diseases and examining active oxygen species in food or in water such as tap water and sewage water.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Applicants: Makoto YUASA, Hitoshi TAKEBAYASHI, Masahiko ABE
    Inventors: Makoto YUASA, Masahiko ABE, Aritomo Yamaguchi, Asako Shiozawa, Masuhide Ishikawa, Katsuya Eguchi, Shigeru Kido
  • Publication number: 20110315563
    Abstract: Disclosed herein is a sensor comprising a conduit; the conduit comprising an organic polymer; a working electrode; the working electrode being etched and decorated with a nanostructured material; a reference electrode; and a counter electrode; the working electrode, the reference electrode and the counter electrode being disposed in the conduit; the working electrode, the reference electrode and the counter electrode being separated from each other by an electrically insulating material; and wherein a cross-sectional area of the conduit that comprises a section of the working electrode, a section of the reference electrode and a section of the counter electrode is exposed to detect analytes.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 29, 2011
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Liangliang Qiang, Santhisagar Vaddiraju, Fotios Papadimitrakopoulos
  • Patent number: 8083927
    Abstract: In vitro analyte sensors and methods of analyte determination are provided. Embodiments include sensors that include a pair of electrodes to monitor filling of the sample chamber with sample.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 27, 2011
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Benjamin J. Feldman, Jared L. Watkin
  • Publication number: 20110308946
    Abstract: An ion-selective electrode comprising: a housing, which surrounds a housing interior; an ion-selective membrane; especially a polymer membrane; and a sensing system, which is in contact with the ion-selective membrane, for sensing a potential of the ion-selective membrane, wherein the ion-selective membrane at least partially fills the housing interior, and is in contact with a medium surrounding the housing via at least one traversing bore through a housing wall of the housing.
    Type: Application
    Filed: November 27, 2009
    Publication date: December 22, 2011
    Applicant: Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. K
    Inventor: Stefan Wilke
  • Publication number: 20110297555
    Abstract: An analyte test element for determining the concentration of at least one analyte in a physiological sample fluid having a first and a second surface in a predetermined distance opposite from each other, said both surfaces are provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas with high surface energy create a sample distribution system with at least two detection areas, characterized in that the detection areas of first and second surface are also provided with two corresponding patterns of working and reference electrodes of electrochemical detection means.
    Type: Application
    Filed: July 22, 2011
    Publication date: December 8, 2011
    Applicant: EGOMEDICAL TECHNOLOGIES AG
    Inventors: Matthias STIENE, Ingrid Rohm
  • Publication number: 20110297556
    Abstract: An electrode for electrochemical analysis is described, the electrode comprising: an insulating surface; a three-dimensional network of carbon nanotubes situated on the insulating surface; and an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes are oriented substantially parallel to the insulating surface. Also described is a method of manufacturing the electrode, and a method of electrochemically analysing a solution using electrodes of this type, and an associated assay device or kit.
    Type: Application
    Filed: December 11, 2009
    Publication date: December 8, 2011
    Inventors: Patrick Unwin, Julie Macpherson, Ioana Dumitrescu, Jonathan P. Edgeworth
  • Publication number: 20110290671
    Abstract: An electrochemical gas sensor for detecting hydrocyanic acid in a gas sample has a measuring electrode (3) formed of carbon nanotubes (CNT) and a counterelectrode (8) in an electrolyte (9), which contains lithium bromide in an aqueous solution.
    Type: Application
    Filed: March 4, 2011
    Publication date: December 1, 2011
    Applicant: Drager Safety AG & Co. KGaA
    Inventors: Frank METT, Sabrina SOMMER, Kerstin LICHTENFELDT
  • Publication number: 20110284374
    Abstract: An electrochemical sensor is described, containing a sensor substrate and at least one set of electrodes comprising a working electrode, a reference electrode and optionally an auxiliary electrode, further containing at least one reaction vessel, which is tightly connected to the sensor substrate and inside which is located at least one working electrode, whereas at least a part of the sensor substrate forms a vessel bottom. The vessel can contain a lid and also other preferred embodiments are described. The invention further describes a method of manufacture of the electrochemical sensor with the integrated reaction vessel, particularly by injection moulding.
    Type: Application
    Filed: May 12, 2009
    Publication date: November 24, 2011
    Inventors: Jan Krejci, Zuzana Sajdlova, Lenka Chroma, Hana Vranova
  • Patent number: 8052619
    Abstract: A blood sensor to be used in a blood test apparatus, more specifically speaking, a blood sensor which can be easily attached to a blood test apparatus and detached therefrom. Namely, a blood sensor to be detachably attached to a blood test apparatus having a plural number of connectors, which comprises: a supply channel to which blood is supplied; a detection section provided in the supply channel; an electrode system formed in an area including the detection section; a plural number of connection terminals electrically connected to each electrode of the electrode system respectively; and a standard electrode serving as a standard for differentiating these connection terminals. The connectors are connected respectively to the connection terminals and the standard electrode of the blood sensor having been attached to a definite position of the blood test apparatus.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: November 8, 2011
    Assignee: Panasonic Corporation
    Inventors: Masaki Fujiwara, Yoshinori Amano
  • Publication number: 20110259742
    Abstract: The present invention refers to a droplet-based miniaturized device with on-demand droplet-trapping, -fusion, and -releasing. The device makes use of different electrical fields for directing droplets into microwells and releasing them from the same. In another aspect, the present invention refers to a system comprising such a microfluidic device and a method of operating it.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 27, 2011
    Applicant: Nanyang Technological University
    Inventors: Changming Li, Wei Wang
  • Publication number: 20110253546
    Abstract: A molecular detection device for use in electrochemical detection assays includes at least two electrodes, and has a film deposited on at least one of the electrodes. The film includes a conductive polymer and conductive particles, having mean diameters between 1 and 100 nm, within the conductive polymer. Probe molecules may be attached on or to the conductive polymer, or be included in the conductive polymer. The device may be used to detect specific target molecules in a sample, for example, protein, peptide, nucleic acid or small molecule target molecules.
    Type: Application
    Filed: November 18, 2010
    Publication date: October 20, 2011
    Inventors: Changming Li, Wei Chen
  • Publication number: 20110233060
    Abstract: A gas sensor including a sensor element constituted by an oxygen-ion conductive solid electrolyte as a main component and detecting a predetermined gas component in a measurement gas includes: an external communication part having an opening opened to the outside, and introducing the measurement gas from the outside under a predetermined diffusion resistance; an internal space communicating with the external communication part; a first electrode formed on a surface of the internal space; a second electrode formed in a space different from the internal space; and a pumping cell operable to pump out oxygen existing in the internal space when a predetermined voltage is applied between the first electrode and the second electrode. The thickness of the external communication part is 50% or more and 100% or less of the thickness of the internal space.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 29, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Sumiko HORISAKA, Hiroki Fujita, Mika Murakami, Takashi Ito
  • Publication number: 20110226618
    Abstract: A gas sensor including an internal space, a first electrode, a second electrode, a pumping cell, a third electrode, a fourth electrode, a measuring cell, and a porous diffusion layer. The first and third electrodes, and the second and fourth electrodes are formed inside and outside the internal space, respectively. The pumping cell includes the first and second electrodes, and the measuring cell includes the third and fourth electrodes. The pumping cell pumps oxygen from the internal space when a predetermined voltage is applied between the first and second electrodes. The third electrode reduces an oxide gas component in a predetermined gas component to which a predetermined diffusion resistance has been applied by the porous diffusion layer. The measuring cell measures current flow between the third and fourth electrodes when a voltage corresponding to the degree of reduction in the third electrode is applied between the third and fourth electrodes.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 22, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Hiroki Fujita, Sumiko Horisaka, Mika Murakami, Takashi Ito
  • Publication number: 20110230735
    Abstract: Embodiments of the invention provide analyte sensors having optimized elements and/or configurations of elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 22, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Katherine T. Wolfe, Ameya S. Kantak, Eric Allan Larson, Daniel E. Pesantez, Dongjuan Xi, Chia-Hung Chiu, Rajiv Shah
  • Publication number: 20110209996
    Abstract: An electrochemical sensor for detecting the concentration of ions in a solution includes a substrate, a sensor unit, and a reference electrode. The sensor unit includes at least one working electrode. The working electrode has a conductive layered structure formed on the substrate, and a sensor element of a metal oxide film formed on the conductive layered structure and capable of reacting with the ions in the solution to generate a potential. The reference electrode is spaced apart from the working electrode, and includes a conductive film printed on the substrate for establishing a potential difference between the working electrode and the reference electrode when the electrochemical sensor is brought into contact with the solution.
    Type: Application
    Filed: August 23, 2010
    Publication date: September 1, 2011
    Inventors: Tai-Ping Sun, Chung-Yuan Chen, Hsiu-Li Shieh, Tak-Shing Ching
  • Publication number: 20110209997
    Abstract: An electrochemical cell for applications such as electrochemical fuel cells, or electrochemical cell gas sensors used for detection of target gas species in environments containing or susceptible to presence of same. The electrochemical cell utilizes an ionic liquid as an electrolyte medium, thereby achieving a broader range of operational temperatures and conditions, relative to electrochemical cells utilizing propylene carbonate or other conventional electrolytic media.
    Type: Application
    Filed: May 9, 2011
    Publication date: September 1, 2011
    Applicant: Honeywell International Inc.
    Inventor: Andreas Röhrl
  • Publication number: 20110192722
    Abstract: A detection cell for a chromatography system includes a cell body having an inlet, an outlet, and a counter electrode, a working electrode, a sample flow passageway extending between the inlet and the outlet and in fluid contact with the counter and working electrodes, and a palladium/noble metal reference electrode system. A method of using the detection cell is also described.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 11, 2011
    Applicant: Dionex Corporation
    Inventors: Jun Cheng, Petr Jandik, Christopher A. Pohl
  • Patent number: 7988844
    Abstract: A method for measuring an iodine adsorption number of carbon black includes: (a) electrochemically reducing an unknown amount of iodine adsorbed by a predetermined amount of a carbon black sample; (b) measuring the electrical charge used for reducing the unknown amount of the iodine adsorbed by the carbon black sample; and (c) obtaining the iodine adsorption number from the measured electrical charge. An electrolytic cell and a kit for measuring an iodine adsorption number of carbon black are also disclosed.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: August 2, 2011
    Assignee: National Kaohsiung University of Applied Sciences
    Inventors: Jiin-Jiang Jow, Ho-Ruei Chen, Ping-Feng Lo, Zong-Sin Guo, Tzong-Rong Ling
  • Patent number: 7972489
    Abstract: A sensor element is used to detect a physical property of a measuring gas, preferably to determine the oxygen content or the temperature of an exhaust gas of an internal combustion engine. The sensor element contains a first solid electrolyte layer and a second solid electrolyte layer. A first printed conductor and a second printed conductor are provided on opposite sides of the first solid electrolyte layer, the first printed conductor including a first electrode and a feed line to the first electrode, and the second printed conductor including a second electrode and a feed line to the second electrode. A third printed conductor, which includes a third electrode and a feed line to the third electrode, is provided on the second solid electrolyte layer. The second printed conductor is positioned between the third electrode and the first printed conductor.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: July 5, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Roland Stahl, Hans-Martin Wiedenmann, Berndt Cramer, Detlef Heimann, Thomas Wahl, Lothar Diehl, Thomas Moser, Bjoern Janetzky, Jan Bahlo
  • Publication number: 20110155587
    Abstract: A system for analyzing a liquid is provided. The system comprises: an electrochemical unit having an electrochemical microchamber for receiving a sample of the liquid and electrochemically analyzing the sample; and a microfluidic unit being attached to the electrochemical unit and having microchannels constituted for sampling the sample in situ and feeding the sample to the electrochemical microchamber. Also provided are nucleic acid constructs and cells comprising same for analyte detection.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 30, 2011
    Applicants: Ramot at Tel-Aviv University Ltd., Yissum Research Development Company of the Hebrew University of Jerusalem Ltd.
    Inventors: Yosi Shacham-Diamand, Hadar Ben-Yoav, Shimshon Belkin, Rami Pedahzur, Alva Biran, Georg Reifferscheid, Sebastian Buchinger
  • Patent number: 7967965
    Abstract: The present invention provides a unique solution to the problems of both steady-state and transient signals produced by a variety of interfering stimuli, including humidity, which relies upon the inclusion in a gas sensing electrode in an electrochemical gas sensor of a catalyst material in addition to a first catalyst material reactive to the target gas, the additional, or second, catalyst material producing a response to an interfering stimulus which is of the opposite polarity to that generated by the first catalyst material.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: June 28, 2011
    Assignee: Honeywell International Inc.
    Inventor: Martin Jones
  • Publication number: 20110152654
    Abstract: Embodiments of the invention provide analyte sensors having elements designed to modulate their chemical reactions as well as methods for making and using such sensors. In certain embodiments of the invention, the sensor includes an analyte modulating membrane that comprises a blended mixture of a linear polyurethane/polyurea polymer, and a branched acrylate polymer.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Tri T. Dang, Brooks B. Cochran, John J. Mastrototaro, Rajiv Shah
  • Publication number: 20110132775
    Abstract: [Objective] An object is to provide a sensor control apparatus and a sensor-control-apparatus control method which can reduce variation in startup time among a plurality of times of execution of detection processing, in consideration of variation in output characteristic among a plurality of gas sensors. [Means for Solution] In a sensor control apparatus, before drive control (S55 to S80) is started, preliminary control is executed so as to supply a constant current to a second oxygen pump cell over a constant time, to thereby control to a constant level the amount of oxygen pumped from a second measurement chamber to the outside of the second measurement chamber (S40 to 50). The preliminary control is executed under control conditions of the sensor control apparatus which are determined for each gas sensor and are associated with the amount of oxygen pumped from the second measurement chamber to the outside thereof.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 9, 2011
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Takeshi KAWAI, Hiroshi INAGAKI, Koji SHIOTANI, Hirotaka ONOGI, Satoshi TERAMOTO
  • Patent number: 7951606
    Abstract: A bilirubin sensor has a working electrode with a first chemical matrix disposed thereon that contains a binder, a substrate electrode with a second chemical matrix dispose thereon that contains a binder and a chemical agent that consumes bilirubin, a reference electrode, a sample chamber containing the working electrode, the substrate electrode and the reference electrode, and a method of measuring bilirubin in a body fluid.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 31, 2011
    Assignee: Nova Biomedical Corporation
    Inventors: Jianhong Pei, Mary M. Lauro, Chung Chang Young
  • Patent number: 7943023
    Abstract: The present invention is directed to devices and methods for carrying out and/or monitoring biological reactions in response to electrical stimuli. A programmable multiplexed active biologic array includes an array of electrodes coupled to sample-and-hold circuits. The programmable multiplexed active biologic array includes a digital interface that allows external control of the array using an external processor. The circuit may monitor, digitally control, and deliver electrical stimuli to the electrodes individually or in selected groups.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 17, 2011
    Assignee: Gamida for Life B.V.
    Inventors: Richard Gelbart, Don L. Powrie, Paul David Swanson
  • Publication number: 20110108419
    Abstract: A sensor element for determining a physical property of a gas in a measuring gas chamber includes at least two electrodes, at least one solid-state electrolyte connecting the electrodes, and at least one heating element having at least two heating contacts. A first heating contact and a first electrode are contacted via a common connecting line, and a second heating contact and a second electrode are connected to a common ground line.
    Type: Application
    Filed: March 6, 2009
    Publication date: May 12, 2011
    Inventors: Lothar Diehl, Thomas Seiler
  • Publication number: 20110108439
    Abstract: An oxide-ion sensor includes an oxygen electrode, a sense electrode and a saturated (reference) electrode. The sense electrode is operated at a substantially constant current for determining an instantaneous value of a dissolved oxide-ion concentration in the molten salt electrolyte. The saturated electrode is used to determine a reference value of the dissolved oxide-ion concentration in the molten salt electrolyte. A dissolved oxide-ion concentration in the molten salt electrolyte is continuously monitored in-situ during the molten-salt based electrochemical reduction process by determining an equilibrium potential between the sense electrode and the saturated electrode with the sense electrode carrying a small current in a circuit that is completed using the oxygen electrode.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Karthick Vilapakkam Gourishankar, Andrew Maxwell Peter, Hari Nadathur Seshadri, Anbarasan Viswanathan
  • Publication number: 20110100812
    Abstract: An electrode module includes a working electrode, a counter electrode, a reference electrode and a well (container) for retaining an electrolytic solution and is used in electrochemical measuring instruments. This electrode module is produced by integrating the well with at least one of the working electrode, the counter electrode and the reference electrode. This integrated electrode includes a chip-like electrode having a thin membrane of an electrode material formed on the surface of a chip-like base metal. This chip-like electrode is disposed on and integrated with the bottom of the well in a detachable manner. There is provided the compact, low price electrode module of high repetition use efficiency with no need of maintenance and having easy handling.
    Type: Application
    Filed: April 2, 2009
    Publication date: May 5, 2011
    Applicant: KYUSHU INSTITUTE OF TECHNOLOGY
    Inventors: Shigeori Takenaka, Yoshiaki Hano, Minoru Yamada, Kimio Morimoto, Hiroshi Endo, Hiroshi Yasutake, Shinobu Sato, Keiichi Otsuka
  • Patent number: 7935234
    Abstract: A planar electrochemical gas sensor is provided with at least one working electrode (4), at least one counterelectrode (4?), at least one electrolyte-filled planar electrolyte carrier (10), at least one planar housing upper part (3) and at least one planar housing lower part (2). The electrodes (4, 4?) are arranged such that they are in two-dimensional contact with the electrolyte carrier (10). The housing upper part (3) and the housing lower part (2) are connected with one another such that the electrodes (4, 4?) and the electrolyte carrier (10) are pressed against one another in such a way that they are secured against displacement. The housing upper part (3) and the housing lower part (2) are partially in direct two-dimensional contact with one another, and the connection of the housing upper part (3) and the housing lower part (2) in the area of the direct two-dimensional contact is present at least along a closed figure, which surrounds the electrodes (4, 4?) and the electrolyte carrier (10).
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: May 3, 2011
    Assignee: Dräger Safety AG & Co. KGaA
    Inventor: Frank Mett