Gas Sensing Electrode Patents (Class 204/431)
  • Patent number: 8840766
    Abstract: The present invention relates to a gas-monitoring assembly (100) and method for selectively determining the presence of a target gas in a gaseous environment that potentially comprises one or more interfering gases. Such gas-monitoring assembly and method specifically employ one or more gas sensors (S1) one or more getters (G1) arranged and constructed to reduce cross-interference caused by potential presence of the interfering gases in such gaseous environment to be monitored. The gas-monitoring assembly and method of the present invention are capable of monitoring a gaseous environment with respect to potential presence of multiple target gases that may interfere with one another.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: September 23, 2014
    Assignee: Honeywell International, Inc.
    Inventors: Stefan Stromereder, Peter Koller
  • Patent number: 8840775
    Abstract: A gas sensor includes a housing having disposed therein a membrane electrode assembly comprising a sensing electrode, a counter electrode, and a polymer membrane disposed between the sensing electrode and the counter electrode. The polymer membrane comprises an ionic liquid retained therein. The sensor also includes a catalyst support that can be stable in a range of potentials to allow for detection mode and catalyst regeneration mode to be operative. The sensor further includes a circuitry and algorithm to implement the catalyst regeneration mechanism electrochemically. The sensor further includes a chamber for reference gas to which the counter electrode is exposed, and a chamber for test gas to which a gas to be tested is exposed. The sensor also includes a pathway for test gas to enter the chamber and a measured electrical circuit connecting the sensing electrode and the counter electrode.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 23, 2014
    Assignee: UTC Fire & Security Corporation
    Inventors: Lei Chen, Zhiwei Yang, Antonio M. Vincitore, Joseph J. Sangiovanni
  • Publication number: 20140262827
    Abstract: A microelectrochemical sensor includes an energy supply unit and a sensor unit. The energy supply unit is configured to generate electrical energy using a reference fluid. The sensor unit is configured to determine a concentration difference of a chemical species between a measuring fluid and the reference fluid. The measuring fluid has an unknown concentration of the species, and the reference fluid has a known concentration of the species. The sensor unit is electrically connected to the energy supply unit and is designed to determine the concentration difference using the electrical energy from the energy supply unit.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Richard Fix, Denis Kunz, Andreas Krauss, Kathy Sahner, Philipp Nolte
  • Publication number: 20140262835
    Abstract: Various embodiments of a gas sensor device and method of fabricating a gas sensor device are provided. In one embodiment a gas sensor device includes a base substrate, an electrolyte layer disposed on the base substrate and a plurality of potentiometric sensor units electrically coupled to the base substrate. Each potentiometric sensor unit includes an electrolyte layer disposed on the base substrate, a sensing electrode comprising tungsten oxide (WO3) and platinum (Pt), a reference electrode comprising Pt, and a plurality of connectors coupled to the plurality of potentiometric sensors to connect the plurality of potentiometric sensors in series.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE CLEVELAND CLINIC FOUNDATION
    Inventors: Gary W. Hunter, Carl W. Chang, Prabir K. Dutta, Suvra P. Mondal, Azlin M. Biaggi-Labiosa
  • Publication number: 20140262837
    Abstract: The present invention provides for a device for detecting one or more target gas compounds, such as a volatile organic compound, such as formaldehyde, comprising a chamber comprising a gas inlet and a gas outlet, wherein the chamber is capable of absorbing one or more non-target gas compounds. When the device is in use, the gas outlet is in fluid communication with a detector capable of detecting the amount or concentration of the one or more target gas compounds.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Meera A. Sidheswaran, Lara A. Gundel
  • Publication number: 20140262780
    Abstract: A gas sensor is disclosed. The gas sensor includes a gas sensing layer, at least one electrode, an adhesion layer, and a response modification layer adjacent to said gas sensing layer and said layer of adhesion. A system having an exhaust system and a gas sensor is also disclosed. A method of fabricating the gas sensor is also disclosed.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: Amphenol Thermometries, Inc.
    Inventors: Kalaga M. KRISHNA, Geetha KARAVOOR, John P. LEMMON, Jun CUI, Vinayak TILAK, Mohandas NAYAK, Ravikumar HANUMANTHA
  • Publication number: 20140251835
    Abstract: Systems and methods for implementing an automated process which calculates the current specific gravity of a liquid by using the original gravity of a fermenting liquid and a measurement of the percent alcohol by volume.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: Alcotek, Inc.
    Inventors: John Mitchell, Karl R. Wolf, JR., Patrick Clifford
  • Patent number: 8816867
    Abstract: A detector includes a smoke detecting section that includes a light-receiving unit at a position at which the light-receiving unit does not directly receive light emitted by a light-emitting unit in a chamber in which a labyrinth for preventing light from directly entering from the outside and an insect net covering the rim of the labyrinth are provided, the light-receiving unit receiving light scattered by smoke flowing into the chamber. An opening hole is formed open in the surface of the cover receiving hot air current, of the detector. In the cover behind the opening hole, an electrochemical gas sensor is placed to bring gas generated by a fire through the opening hole into contact with an electrolyte solution to detect the gas by an electrode.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: August 26, 2014
    Assignee: HOCHIKI Corporation
    Inventors: Atsuchi Mammoto, Hiromichi Ebata
  • Patent number: 8815065
    Abstract: A sensor body of an electrochemical gas sensor having no water reservoir is housed in a metal can including a sensing electrode on one surface of a proton-conducting membrane or a separator retaining an electrolyte and a counter electrode on the opposite surface thereof. The counter electrode is supported by and electrically connected to the metal can via a connecting member. The sensing electrode is connected to a diffusion control plate with the sensing electrode-side ring member, and the ring member is conductive and includes a hole at a center thereof that is connected to a hole of the diffusion control plate.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: August 26, 2014
    Assignee: Figaro Engineering Inc.
    Inventors: Yoshihiro Yamamoto, Masafumi Okada, Kuniyuki Izawa, Tomoyasu Honda
  • Patent number: 8815077
    Abstract: An electrochemical sensor for measuring the oxygen partial pressure in a process fluid, comprises an electrolyte-filled sensor body, which is covered on one side charged with the process fluid by an oxygen-permeable membrane, a cathode on the membrane, an annular guard electrode surrounding the cathode, which in measuring operation lies at the same potential as the cathode, an anode charged by the electrolyte in the sensor body, a reference electrode charged by the electrolyte in the sensor body, wherein between the anode and cathode a voltage can be applied, which is controlled between the cathode (8) and reference electrode at a constant polarization voltage and the measuring sensor current flowing in measuring operation between the cathode and anode is a measure for the oxygen partial pressure in the process fluid, and a test voltage source which can be switched in a testing mode between the cathode and guard electrode for producing test oxygen in the electrolyte and/or in the process fluid between the
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 26, 2014
    Assignee: Knick Elektronische Messgeräte GmbH & Co. KG
    Inventors: Heinz Wohlrab, René Oberlin
  • Publication number: 20140231253
    Abstract: A lead-free, self-corrosion-free electrochemical galvanic oxygen sensor is provided. The preferred sensor includes a container, the container including a lead-free anode, an alkali electrolyte, a carbon platinized with platinum cathode and a nickel wire current collector, wherein the container further includes a diffusion barrier that causes the sensor to operate in the limiting current region.
    Type: Application
    Filed: September 14, 2011
    Publication date: August 21, 2014
    Applicant: LIFE SAFETY DISTRIBUTION AG
    Inventor: Cornel Cobianu
  • Patent number: 8795492
    Abstract: A gas sensor element includes a solid electrolyte body having oxygen ion conductivity, a pair of measurement and reference electrodes respectively provided on an opposite pair of first and second surfaces of the solid electrolyte body, a porous diffusion-resistant layer through which a measurement gas is introduced to the measurement electrode, and a protective layer. The protective layer is provided to cover, at least, an outer surface of the porous diffusion-resistant layer through which the measurement gas flows into the diffusion-resistant layer. The protective layer is hydrophilic at room temperature and water-repellent at high temperatures at which the solid electrolyte body can be activated.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: August 5, 2014
    Assignee: Denso Corporation
    Inventors: Makoto Ito, Fuminori Nakashima
  • Patent number: 8795484
    Abstract: A printed gas sensor is disclosed. The sensor may include a porous substrate, an electrode layer, a liquid or gel electrolyte layer, and an encapsulation layer. The electrode layer comprises two or more electrodes that are formed on one side of the porous substrate. The liquid or gel electrolyte layer is in electrolytic contact with the two or more electrodes. The encapsulation layer encapsulates the electrode layer and electrolyte layer thereby forming an integrated structure with the porous substrate.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 5, 2014
    Assignee: KWJ Engineering, Inc.
    Inventors: Joseph R. Stetter, Edward F. Stetter, Daniel D. Ebeling, Melvin Findlay, Vinay Patel
  • Publication number: 20140197044
    Abstract: Apparatus and methods in accordance with one or more preferred embodiments of the present invention are used to measure nitric oxide in a fluid, and each includes a sample injection port; a pump; a measurement chamber; an electromagnetic radiation source; one or controls and user interfaces; and a cartridge. The cartridge includes a sample chamber; an electromagnetic radiation and heat chamber; and a gas permeable membrane. The cartridge preferably is single-use and disposable. Further apparatus and methods in accordance with other alternative embodiments, and additional inventive aspects and features, are disclosed related to measuring nitric oxide in a fluid.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Inventors: Scott Everett BLOMBERG, Mark Louis Peterson, Amanda Marie Franey
  • Publication number: 20140197043
    Abstract: An exemplary apparatus for measuring nitric oxide in a fluid includes a sample injection port; a pump and reservoir; a valve; a measurement chamber; an electromagnetic radiation source; controls and user interface; and a cartridge. The cartridge includes a sample chamber a mix chamber; a sample degassing chamber; and a planar reaction chamber. The cartridge preferably is single-use and disposable. Furthermore, additional inventive aspects and features are disclosed related to measuring nitric oxide in a fluid.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 17, 2014
    Inventors: Scott Everett BLOMBERG, Mark Louis Peterson, Amanda Marie Franey
  • Publication number: 20140190829
    Abstract: A gas sensor includes a metal shell, a gas sensor element held in the metal shell, a metal portion arranged between a flange portion of the gas sensor element and a seat portion of the metal shell and a porous thermal spray layer formed on the gas sensor element. When viewed in cross section along the direction of an axis of the gas sensor, a corner of the metal portion axially overlaps in position with or radially outwardly protrudes from an outer surface of a part of the thermal spray layer located on a side surface of the flange portion and is brought into contact with the seat portion. A rear end-facing surface of the metal portion is brought into contact with an outer surface of the thermal spray layer at a position radially inside the side surface of the flange portion.
    Type: Application
    Filed: October 26, 2012
    Publication date: July 10, 2014
    Inventors: Daiki Tabuchi, Hidekazu Kato, Yasuhiro Fujita, Mitsuru Sugihara, Takayoshi Atsumi
  • Patent number: 8771489
    Abstract: A gas sensor in one form comprises a housing including a base and a top defining an interior space. The housing includes a gas entry hole and first and second electrical terminals. First and second electrodes in the housing interior space each comprise a membrane having a layer of platinum black catalyst on one side. The second electrode includes a lower amount of platinum black catalyst than the first electrode. A separator is placed between the first and second electrodes. Current collectors electrically connect the first and second electrodes to the respective first and second electrical terminals whereby sensor current represents concentration of gas while minimizing cross sensitivity.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: July 8, 2014
    Assignee: Honeywell International Inc.
    Inventors: Lei Xiao, Terence Nicholas Moran
  • Patent number: 8771490
    Abstract: An electrochemical sensor having at least two electrodes, and a reservoir chamber containing electrolyte. The reservoir chamber is internally coated with a wicking material to spread the electrolyte evenly over the walls of the reservoir.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: July 8, 2014
    Assignee: Industrial Scientific Corporation
    Inventors: Mark William Bordo, Wenfeng Peng
  • Patent number: 8758585
    Abstract: A sensor for determining the concentration of a gas in gas mixtures, which has a measuring and a reference electrode as well as a polymer layer, which is in contact with the gas mixture and with the measuring electrode. A pH sensitive electrode is provided as the measuring electrode.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Brinz, Jane Lewis, Claus Heppel
  • Patent number: 8753494
    Abstract: The present disclosure relates to a gas sensor including a nanopore electrode and a fluorine compound coated on the nanopore electrode, and also relates to a preparing method of the gas sensor.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: June 17, 2014
    Assignee: Ewha University—Industry Collaboration Foundation
    Inventors: Youngmi Lee, Myung Hwa Kim, Min-Cheol Oh, Hyunkyung Do, Kyung Jang, Ji-Hyang Jang
  • Patent number: 8747636
    Abstract: A gas sensor is disclosed. The gas sensor includes a gas sensing electrode and a counter electrode disposed within a housing, and respective conductors that connects the gas sensing electrode and the counter electrode to a sensing circuit. The housing includes walls defining a cavity containing electrolyte in fluid communication with the gas sensing electrode and counter electrode and wherein the walls further comprise one or more coatings or second layers superimposed on the walls. The one or more coatings or second layers have a lower water vapor transport rate than that of the walls, such that, in use, water vapor transport between the electrolyte and atmosphere through the walls of the housing is reduced.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 10, 2014
    Assignee: Life Safety Distribution AG
    Inventors: Paul Westmarland, Dan Hawkinson, Tony Downer
  • Publication number: 20140151242
    Abstract: Detecting a leak from a site in a sealed system with a source of pressurized gas which is capable of passing through the site, a composition of matter which adheres to the surfaces of the system and which is capable of showing the presence of the gas escaping from the site. The method includes: injecting gas into the system to a pressure in excess of the surrounding pressure, and covering the external surface with the composition to identify the location of the site by the interaction of the escaping gas with the composition. The composition is foam that includes a surfactant which forms a least one bubble in the presence of escaping gas and an indicator which changes color in the presence of the escaping gas. The leak is an opening down to at least the size of a hole 0.001? in diameter. A gas detector may also be used.
    Type: Application
    Filed: September 12, 2013
    Publication date: June 5, 2014
    Applicant: Automotive Test Solutions, Inc.
    Inventors: Bernie C. Thompson, Neal R. Pederson
  • Patent number: 8702934
    Abstract: A gas sensor including a gas sensor element that extends in an axial direction and has a detection section at a front-end side thereof, and an electrode pad at a rear-end side thereof; a connection terminal that is electrically connected to the electrode pad; and an insulated separator that extends along the axial direction and has an inserting hole into which the connection terminal is inserted. An element side section is arranged within the inserting hole and is connected the electrode pad, and an external circuit side section extends further to the outside in a diametrical direction than an outer surface of the separator through one or more first bending sections from the element side section.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: April 22, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masao Tsuzuki, Tomohiro Tajima, Tomoki Fujii, Hisaharu Nishio, Takaya Yoshikawa, Kunihiko Yonezu
  • Publication number: 20140102914
    Abstract: A sensor for detecting a target analyte in a gaseous sample at ultra-low concentrations wherein access opening(s) provided through the sensor housing are plugged with endcap(s) and spent gas (i.e., gaseous sample post detection) is channeled along the interface between the sensor housing and the endcap(s) prior to venting of the spent gas, for flushing any environmentally introduced target analyte from this interface.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: MOCON, INC.
    Inventor: MOCON, INC.
  • Publication number: 20140102898
    Abstract: A system includes a polymeric housing and a first connector in electrically conductive connection with a first component within the housing. The first connector includes a first extending member formed from a conductive loaded polymeric material. The first extending member is formed such that an interior thereof includes conductive elements within a matrix of the polymeric material so that the interior is electrically conductive and an exterior surface thereof comprises the polymeric material and is less conductive than the conductive interior. The conductive interior of the first extending member is in electrically conductive connection with the first component. The first connector further includes a first extending conductive element in electrical connection with the conductive interior of the first extending member. The first extending conductive element extends from the first extending member to pass through the polymeric housing.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: MINE SAFETY APPLIANCES COMPANY
    Inventors: MICHAEL ALVIN BROWN, BRIAN KEITH DAVIS, TOWNER BENNET SCHEFFLER
  • Patent number: 8691066
    Abstract: A current collector wire (1) is over-moulded with a seal (2) made from a thermoplastic elastomer (Santoprene 64) having a (64) Shore A hardness rating. In a three electrode carbon monoxide sensor three current collector wire (1a, 1b, 1c) and seal (2a, 2b, 2c) combinations are inserted into the body (3) through receiving apertures (12a, 12b, 12c) in a side wall of the body, so that the current collectors protrude through connection apertures (12a, 12b and 12c). The outside diameters of the seals and the bores of the apertures are dimensioned to provide an interference fit of the one in the other. The seals are pressed home into receiving apertures in the body (3) to provide compression of the seals against both current collectors and the aperture bores resultant from the interference. Gold-plated phosphor bronze clips (8) are attached which locate on and are retained by barbs on the housing, thereby trapping the current collector wires and providing electrical contact to external circuitry.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: April 8, 2014
    Assignee: City Technology Limited
    Inventor: Graham Collins
  • Publication number: 20140093799
    Abstract: Electrochemical devices for converting carbon dioxide to useful reaction products include a solid or a liquid with a specific pH and/or water content. Chemical processes using the devices are also disclosed, including processes to produce CO, HCO?, H2CO, (HCO2), H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, (COOH)2, (COO?)2, acrylic acid, diphenyl carbonate, other carbonates, other organic acids and synthetic fuels. The electrochemical device can be a CO2 sensor.
    Type: Application
    Filed: September 24, 2013
    Publication date: April 3, 2014
    Inventors: Richard I. Masel, Brian A. Rosen, Wei Zhu
  • Publication number: 20140090977
    Abstract: An electrochemical sensor cell is disclosed. The cell comprised of a diffusion membrane, a cathode, an anode, an electrolyte, electronic circuit board with electronic leads contained in housing. The anode is made of substantially pure bismuth. The electrolyte may be either solid or aqueous solution of potassium hydroxide (KOH) solution or acetic acid (CH3COOH). The cathode may be a carbon fiber substrate with gold deposited thereon. The sensor may be RoHS compliant.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventor: Alan Boardman
  • Publication number: 20140083851
    Abstract: A gas sensor comprises a layered structure with an ionic conductive film and a high gas-permeability interlayer film, a first catalyst electrode and a second catalyst electrode, a conductivity promotion structure, a high-k layer and a current detecting unit. The ionic conductive film includes a material with ionic conductivity ranging from 0.02 to 1000 S/cm. The first catalyst electrode and second catalyst electrode are located on the layered structure and spaced by a predetermined distance for ionizing gas and converting the ionized gas into gas. The conductivity promotion structure includes a material with electronic conductivity ranging from 10?5 to 105 S/cm, and provides wanted electrons for reaction with the gas. The high-k layer is interposed between the conductivity promotion structure and layered structure. The current detecting unit is coupled the first catalyst electrode and second catalyst electrode to sense a detecting current with respect to the ionized gas.
    Type: Application
    Filed: April 3, 2013
    Publication date: March 27, 2014
    Applicant: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventor: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
  • Patent number: 8669131
    Abstract: Gas sensor materials and methods are disclosed for preparing and using the same to produce gas sensor structures. Also disclosed are gas sensor structures and systems that employ these disclosed materials. A gas sense-enhancing metal such as platinum may be added to a gas sensitive metal oxide material in a manner that more highly disperses the added platinum than conventional methods so as to more effectively utilize the platinum at a lower concentration, thus achieving a more cost effective solution. An ink vehicle may also be used for deposition of a gas sensitive material (e.g. on the surface of integrated circuit) that is formulated to allow “burn-out” of ink vehicle components at relatively low temperatures as compared to conventional ink vehicles.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 11, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Peter Smith, Jane Blake, Leon Cavanagh, Raymond Speer
  • Patent number: 8658013
    Abstract: A sensor includes an oxygen pump cell; an oxygen pump chamber; an emf cell; a reference chamber providing a fluid connection to the reference gas; gas channels in fluid communication with the pump and emf electrodes, the reference gas comprising reformate produced by a fuel reformer fueled by an air-fuel gas mixture having an air-fuel ratio; a reformer electronic control module; a sensor electronic control module; a heater; a temperature sensor disposed in communication with the heater and the sensor control module for maintaining the sensor at a desired operating temperature; a closed loop controlled operation amplifier in electrical communication with the sensor, whereby the oxygen pump cell provides sufficient oxygen ions to oxidize an incoming diffusion-limiting fuel flux to the emf cell and maintain a constant emf at the emf cell, and wherein a current value represents an equivalent to the air-fuel ratio of the air-fuel gas mixture.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: February 25, 2014
    Assignee: Delphi Technologies, Inc.
    Inventors: Da Yu Wang, Walter Thomas Symons, Robert Jerome Farhat, John E. Kirwan, Joachim Kupe, Kenneth D. Mowery
  • Publication number: 20140027281
    Abstract: An improved alcohol fuel cell sensor and alcohol breath tester assembly where wires for connection to the electrodes are bent to have a generally planar base portion which may be positioned toward the center of the electrodes and an upright that then extends to the outside of the case. The uprights are generally perpendicular to the base allowing the wires to exit the housing toward the center, as opposed to toward an edge.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 30, 2014
    Applicant: ALCOTEK, INC.
    Inventors: Joe Fodor, Karl R. Wolf, JR.
  • Publication number: 20140021067
    Abstract: An electrochemical sensor for sensing a gaseous analyte includes a substrate having at least two electrodes disposed thereon, and a carbon nanotube-polyaniline (CNT/PANI) film disposed on the substrate and in contact with at least two electrodes. The CNT/PANI film includes carbon nanotubes coated with a thin layer of polyaniline. The thickness of the polyaniline coating is such that electron transport can occur along and/or between the carbon nanotubes.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 23, 2014
    Applicant: The Research Foundation for The State University of New York
    Inventor: Vladimir Samuilov
  • Patent number: 8632665
    Abstract: The invention relates to an electrochemical sensor including a housing with a chamber containing an electrolyte, at least one measuring electrode for oxygen detection, at least one counter electrode and at least one reference electrode, wherein the sensor has a two-part diffusion barrier, wherein a first part of the barrier forms a labyrinth with a second part of the barrier disposed between the measuring and the counter electrode.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: January 21, 2014
    Assignee: MSA Auer GmbH
    Inventors: Rolf Eckhardt, Martin Weber
  • Patent number: 8633683
    Abstract: The apparatus is provided with an abnormality determination means for determining abnormality of the apparatus where two different combinations of two electrodes are selected from the three electrodes, an alternating-current voltage is applied to an electrode in one combination by the voltage-applying portion to measure a value of a current flowing to the other electrode via the dielectric body by electrostatic coupling, an alternating-current voltage is applied to an electrode in another combination out of the at least two different combinations by the voltage-applying portion to measure a value of a current flowing to the other electrode via the dielectric body by electrostatic coupling, and an abnormality of the apparatus is determined from the current values measured.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: January 21, 2014
    Assignees: NGK Insulators, Ltd., Honda Motor Co., Ltd.
    Inventors: Shoji Yokoi, Takayuki Sakurai, Tatsuya Okayama, Masanobu Miki, Keizo Iwama, Makoto Hattori, Hidetaka Ozawa
  • Publication number: 20140014512
    Abstract: Provided are an amperometric sensor and device for electrochemically quantifying nitrosothiol (RSNO), which is associated with storage and delivery of nitric oxide (NO) in the human body. The amperometric sensor for measuring a concentration of RSNO includes an electrode configured to measure an electric current generated by an oxidation reaction of NO, and a means configured to start and stop photo-induced decomposition of RSNO. Here, the electric current is measured by the oxidation reaction of NO before and after the photo-induced decomposition of RSNO. The amperometric sensor may measure separate signals of RSNO and NO, which are present in the sample at the same time, using one electrode, thereby preventing an inhibition action caused by NO during the measurement of RSNO. Also, the amperometric sensor is simple in structure and easy to manufacture and may be applied to manufacture of a small electrode, and thus may be developed as a sensor for in vivo measurements.
    Type: Application
    Filed: April 14, 2011
    Publication date: January 16, 2014
    Applicant: I-SENS, INC.
    Inventors: Sung A Hong, Da Yeon Sung, Jun Hee Han, Jea Hun Song, Hakhyun Nam, Geun Sig Cha, Jae Ho Shin
  • Patent number: 8623189
    Abstract: An electrochemical gas sensor includes an ionic liquid as electrolyte. The ionic liquid includes at least one cation selected from the group of a monoalkylammonium cation, a dialkylammonium cation, and a trialkylammonium cation. The individual alkyl groups of the cation can be branched or unbranched and have 1 to 4 carbon atoms. The individual alkyl groups of the cation can be the same or different in case of the dialkylammonium cation and the trialkylammonium cation. In a number of embodiments, the individual alkyl groups have 2 to 4 carbon atoms.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 7, 2014
    Assignee: MSA Auer GmbH
    Inventors: Rolf Eckhardt, Ralf Warratz
  • Patent number: 8626451
    Abstract: A method and device allow the determination of the concentrations of a plurality of gas species in a gas mixture based on the output signals from a plurality of gas sensors, each of which is sensitive to a plurality of gas species in the gas mixture. The method includes measuring the response of each sensor at a number of levels of each gas in the mixture, determining a mathematical representation of the response characteristics of each sensor, and using the mathematical representation to determine gas concentrations from sensor readings.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: January 7, 2014
    Assignee: Delphi Technologies, Inc.
    Inventors: Da Yu Wang, David M. Racine, David D. Cabush
  • Publication number: 20140001047
    Abstract: Described herein are substrates, sensors and systems related to measuring the concentration of an analyte such as hydrogen ion in a sample. Redox active moieties whose reduction and/or oxidation potentials are sensitive to the presence of an analyte are immobilized onto a surface of an electrode. Immobilized redox active moieties whose reduction and/or oxidation potential are insensitive to the analyte can be used for reference. Voltammetric measurements made using such modified surfaces can accurately determine the presence and/or concentrations of analytes in a sample of interest. The electrochemical sensors of the invention are robust and can be made so as not to require calibration or re-calibration.
    Type: Application
    Filed: June 20, 2013
    Publication date: January 2, 2014
    Inventors: Carolyn R. Kahn, Elicia Wong, Vern Norviel
  • Publication number: 20130341206
    Abstract: The disclosed invention relates to an amperometric gas sensor for measuring the concentration of an analyte, comprising: a solid support; and a working electrode in contact with the solid support; wherein the analyte comprises a dopant which when in contact with the solid support increases the electrical conductivity of the solid support. A sterilization process employing the amperometric gas sensor is disclosed.
    Type: Application
    Filed: February 26, 2013
    Publication date: December 26, 2013
    Applicant: STERIS CORPORATION
    Inventors: Elizabeth H. Schenk, Peter A. Burke, Michael A. Centanni
  • Patent number: 8613843
    Abstract: An electro-chemical sensor for methane is described having a catalyst to react methane or other low molecular weight hydrocarbons and a detector to detect the turnover or reaction rate and using such information to determine the concentration of the methane or other low molecular weight species. The sensor is preferably used for measurements in a wellbore.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: December 24, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Timothy Gareth John Jones, Li Jiang
  • Publication number: 20130319858
    Abstract: An electrochemical detector includes a carbon based element located between a separator and a current collector of an adjacent electrode. Elements can take the form of a carbon fabric located between the separator and the collector, or a linear, or, circular carbon deposit on a surface of the separator adjacent to the respective current collector. Other conductive coatings including gold, platinum or transition metals, as well as carbon, can be deposited directly onto a porous substrate, such as a masked separator material.
    Type: Application
    Filed: May 23, 2013
    Publication date: December 5, 2013
    Inventors: Alan Daniel SPONG, John Chapples, Neils Richard Stewart Hansen
  • Patent number: 8584504
    Abstract: An ammonia concentration detection sensor 100, has: a sensor element 110 capable of detecting the ammonia concentration of a measurement target gas; and a protective cover 120 that regulates the inflow of the measurement target gas into the sensor element 110 and protects the sensor element 110. The protective cover 120 is coated with a coating layer.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: November 19, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Ito, Sang Jae Lee
  • Patent number: 8567231
    Abstract: A gas sensor includes an inner electrode formed on an inner surface of a base body. The inner electrode has an inner sensing portion formed in a gas contact inner region such that the inner sensing portion is located on the whole of a heat-facing area of the gas contact inner region facing a heating portion in a radial direction of the base body, a terminal contact portion formed in a rear end region such that the terminal contact portion is located in at least a part of the rear end region in a circumferential direction of the base body and a lead portion formed only on a part of the inner surface of the base body in the circumferential direction of the base body so as to connect the inner sensing portion and the terminal contact portion to each other.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 29, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroshi Isomura, Aya Sato, Takayoshi Atsumi
  • Patent number: 8551310
    Abstract: There is disclosed a method for making a nano-composite gas sensor. At first, there is provided a substrate. Then, electrodes are provided on the substrate in an array. Finally, a gas-sensing membrane is provided on the electrodes. The gas-sensing membrane includes a nano-conductive film and a peptide film.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 8, 2013
    Assignee: Chung-Shan Institute of Science and Technology, Armaments Bureau, Dept. of National Defense
    Inventors: Li-Chun Wang, Tseng-Hsiung Su, Shang-Ren Yang, Cheng-Long Ho, Han-Wen Kuo, Kea-Tiong Tang
  • Patent number: 8535498
    Abstract: An electrochemical gas sensor includes: a disc-shaped metal bottom member; a cylindrical metal side member that extends along the axial direction of the bottom member to surround the bottom member; a ring-shaped polymer gasket that includes an opening in the center and in which both sides of the opening each have an L-shaped member in cross section, with one section of the L-shaped member being in contact with the inner side of the side member and the other section of the L-shaped member being in contact with the bottom member; a gas sensor body that is located in the opening of the gasket and whose bottom surface is in contact with the bottom member and that includes a pair of electrodes and a solid electrolyte membrane or a separator retaining a liquid electrolyte; and a metal cover that is in contact with the top surface of the gas sensor body.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: September 17, 2013
    Assignee: Figaro Engineering Inc.
    Inventors: Tomohiro Inoue, Yuki Kato, Keiko Shibata
  • Publication number: 20130233708
    Abstract: A gas sensor element having a chamfered portion. The chamfered portion has a leading end chamfered portion formed in a leading end portion of the gas sensor element, a rear end chamfered portion formed in a rear end portion of the gas sensor element, and an intermediate chamfered portion linking the leading end chamfered portion and rear end chamfered portion. The chamfer angle of the rear end chamfered portion is formed so as to be larger than the chamfer angle of the leading end chamfered portion.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 12, 2013
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Shun SAKUMA, Masaki MIZUTANI, Makoto SHIMOIDE
  • Publication number: 20130224872
    Abstract: The present disclosure relates to a gas sensor, including: a gas collecting chamber including: (a) a nanoporous wall including alumina, on a portion of the gas collecting chamber in the near vicinity of the solid propellant fuel; a micro pump attached to the gas collecting chamber; and a gas analysis device connected to the gas collecting chamber. The gas analysis device measures both type and concentration of gases collected in the gas collecting chamber via the nanoporous wall, the gases measured being selected from the group consisting of CO, CO2, NO, N2O, NO2 and combinations thereof. The present disclosure also relates to a method of sensing propellant degradation in solid fuel and a method of using a gas collecting chamber to sense such degradation.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 29, 2013
    Applicant: United States of America as represented by the Secretary of the Army
    Inventors: Christina L. Brantley, Eugene Edwards, Paul B. Ruffin, Fang Luo
  • Publication number: 20130220834
    Abstract: A method for detecting at least one property of a gas in a measuring gas chamber, in particular for detecting at least one gas component of the gas. The at least one property is determined using at least one electrochemical measuring cell of a sensor element. Temperatures are detected at at least two different locations of the sensor element and used in determining the at least one property.
    Type: Application
    Filed: July 20, 2011
    Publication date: August 29, 2013
    Inventors: Dirk Liemersdorf, Benjamin Sillmann
  • Patent number: 8512536
    Abstract: A NOx sensor includes a sensor element equipped with first and second pumping cells to define first and second measurement chambers. The first pumping cell exerts an oxygen pumping action against the first measurement chamber to adjust the oxygen concentration in the gas under measurement within the first measurement chamber to a given level. The second pumping cell exerts an oxygen pumping action against the second measurement chamber to produce a pumping cell current according to the NOx concentration in the gas under measurement. When the moisture content of the gas under measurement changes from 2 vol % to 8 vol %, the NOx sensor allows a variation of NOx concentration detection value based on the pumping cell current in such a manner that the NOx concentration detection value reaches a transient peak value of 20 ppm or smaller and converges to ±5 ppm of a reference value within 5 seconds.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: August 20, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Kenji Kato, Hisashi Sasaki, Koji Shiotani