Gas Sensing Electrode Patents (Class 204/431)
  • Patent number: 8495905
    Abstract: A gas concentration detection device includes: a first sensor having a resistance layer exposed to a gas, and an electrode covered by the resistance layer, the first sensor producing an output according to a gas component ratio on the electrode surface; and a second sensor having a pump cell that pumps oxygen into a gas chamber that contains part of the gas or discharges oxygen out of the gas chamber, and a sensor cell that produces an output according to a gas component ratio in the gas within the gas chamber, the second sensor producing an output based on the pump cell current when the pump cell is operated such that the output of the sensor cell is a predetermined value; and a hydrogen concentration detection unit that detects a hydrogen concentration in the gas based on an output difference between the first sensor output and the second sensor output.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: July 30, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Keiichiro Aoki
  • Publication number: 20130186776
    Abstract: A method of operating a system having at least one sensor for detecting an analyte gas in an ambient atmosphere and a sensor responsive to oxygen includes providing a volume in fluid connection with the sensor responsive to oxygen. The volume has an open state in which the volume is in fluid connection with the ambient atmosphere and at least a first restricted state in which entry of molecules from the ambient atmosphere into the volume is restricted as compared to the open state. The method further includes placing the volume in the open state, subsequently placing the volume in the first restricted state, and measuring a dynamic output of the sensor responsive to oxygen while the volume is in the first restricted state. The dynamic output provides an indication of the status of one or more transport paths of the system.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Inventors: Towner B. Scheffler, Michael A. Brown
  • Patent number: 8470147
    Abstract: A sensor for detecting a gas is provided. The gas sensor may have a sensing section, a heating section, and a resistance temperature detector. The resistance temperature detector may be co-fired to be integral with at least one of the sensing section and the heating section.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 25, 2013
    Assignee: Caterpillar Inc.
    Inventors: Balakrishnan G. Nair, Jesse Nachlas, Gangqiang Wang
  • Publication number: 20130157174
    Abstract: Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO?, H2CO, (HCO2)?, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, (COOH)2, or (COO?)2, and a specific device, namely, a CO2 sensor.
    Type: Application
    Filed: April 12, 2012
    Publication date: June 20, 2013
    Inventors: Richard I. Masel, Amin Salehi-Khojin
  • Publication number: 20130153418
    Abstract: A sensing device is provided. A suction port of a chamber is sealed by using a gas sealing layer with a gas sealing filter. The gas sealing filter has a plurality of one-way passes. The one-way passes have a width in a range of several nanometers to several hundred nanometers. A gas molecular exhausts to the outside of the chamber through the one-way passes. Owing to preventing the material of gas sealing layer from flowing into the chamber by the gas sealing filter, superior sealing performance is achieved as compared to those adopting solder or sealing material, thereby facilitating control of the condition in the chamber.
    Type: Application
    Filed: April 11, 2012
    Publication date: June 20, 2013
    Applicant: Industrial Technology Research Institute
    Inventors: Lung-Tai Chen, Chin-Sheng Chang, Jing-Yuan Lin, Chun-Hsun Chu
  • Patent number: 8465634
    Abstract: An integrated sensing device is capable of detecting analytes using electrochemical (EC) and electrical (E) signals. The device introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 18, 2013
    Assignee: Arizona Board of Regents
    Inventors: Nongiian Tao, Erica Forzani
  • Patent number: 8459004
    Abstract: An oxygen sensor bung of motor vehicle exhaust pipe comprises at least a base, a catalytic converter and a seal lid. The base has an external connection section at one end that contains a first chamber to hold the catalytic converter and is fastened by the seal lid. The external connection section has a first external thread on the surface to fasten to a holding seat of an exhaust pipe. The base has a second chamber on another end with a third internal screw hole formed inside to hold an oxygen sensor by fastening with a second external thread formed thereon. The catalytic converter includes a barrel type casing containing a beehive structure made of precious metal to increase exhaust gas process area. Therefore impurities in the exhaust gas can be reduced and timely replacement of the catalytic converter can be accomplished, and accurate detection of oxygen content can be achieved.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 11, 2013
    Assignee: Liang Fei Industry Co., Ltd.
    Inventor: Chin-Chuan Chang
  • Patent number: 8455045
    Abstract: Disclosed is a high sensitive gas sensor using a carbon material containing an ionized metal catalyst and a method of manufacturing the same. The method includes the steps of: (1) preparing a hydroxide solution by dissolving a hydroxide in a distilled water; (2) dissolving a metal catalyst in the hydroxide solution; (3) immersing the carbon material in a solution obtained through step (2) and stirring the carbon material; (4) heat-treating a mixture obtained through step (3); (5) cleaning the heat-treated carbon material obtained through step (4); (6) drying the carbon material cleaned through step (5); and (7) manufacturing the gas sensor by loading the carbon material obtained through step (6) on a substrate. The gas sensor having high sensitivity and responsiveness with respect to a target gas even in a normal temperature is obtained.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 4, 2013
    Assignee: Chungnam National Industry Collaboration Foundation
    Inventors: Young Seak Lee, Seok Chang Kang, Sung Kyu Lee, Ji Sun Im
  • Patent number: 8454819
    Abstract: The present invention includes sensors and systems that include a sensor. A sensor includes a sensor polymer, where the polymer includes a repeating unit having an anilineboronic acid-phosphate complex or an anilineboronic acid complexed with an alcohol or diol. The sensor polymer may be a copolymer, such as a random copolymer, a block copolymer, or an alternate copolymer. The present invention also provides methods for using the sensors described herein, including methods for detecting the presence of an analyte, such as CO2, in a fluid.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: June 4, 2013
    Assignee: University of Manitoba
    Inventors: Sureshraja Neethirajan, Michael S. Freund, Digvir J. Jayas
  • Publication number: 20130130383
    Abstract: The present invention is directed to a hierarchical structure characterized by ultrahigh surface area comprising: a solid substrate; an intermediate layer; and at least one plurality of nanoscale attachments that are strongly bonded to the intermediate layer. Also disclosed is a method of fabricating a hierarchical structure comprising: selecting and preparing a parent substrate, wherein the preparing may optionally include cleaning or activation; modifying the substrate surface to form an intermediate layer; attaching at least one plurality of nanoscale attachments, wherein the nanoscale attachments are selected from nanotubes, nanoparticles, or combinations thereof, onto the intermediate layer; optionally attaching a second plurality of nanoscale attachments, wherein the nanoscale attachments are selected from nanotubes, nanoparticles, or combinations thereof, onto the first plurality of nanoscale attachments and intermediate layer.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 23, 2013
    Applicant: WRIGHT STATE UNIVERSITY
    Inventor: Wright State University
  • Publication number: 20130092538
    Abstract: An exhaust sensor comprises a sensing electrode and a reference electrode each in contact with an electrolyte. At least one of the sensing electrode and the reference electrode are formed by depositing an electrode precursor material on an electrolyte precursor material and sintering the combination at a sufficient temperature for a sufficient time to achieve densification of the electrolyte, wherein the electrode precursor material comprises an alkali salt. Electrode patterns having enhanced perimeter ratios are also disclosed. The resulting exhaust sensor is capable of providing a usable output at a reduced operating temperature.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 18, 2013
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Eric P. Clyde, Walter T. Symons, Kaius K. Polikarpus, James D. Ward, Marsha E. Nottingham
  • Publication number: 20130087456
    Abstract: A gas sensor includes known types of electrodes such as sensing electrodes, counter electrodes or reference electrodes to sense the presence of a predetermined gas. In addition, at least one diagnostic electrode is carried in the sensor. The diagnostic electrode implements at least one diagnostic function without substantially impairing the gas sensing function. The diagnostic electrode is immersed in sensor electrolyte.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 11, 2013
    Applicant: LIFE SAFETY DISTRIBUTION AG
    Inventor: LIFE SAFETY DISTRIBUTION AG
  • Publication number: 20130087457
    Abstract: An electrochemical gas sensor includes additional gas diffusion electrodes incorporated to carry out one or more diagnostic functions while the sensor is responding to a target gas. Members of a plurality of sensing and diagnostic electrodes can be switched by associated control circuits to intermittently sense a target gas while others intermittently sense a different gas. The diagnostic electrodes are in direct communication with the target gas that is entering the cell.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 11, 2013
    Applicant: LIFE SAFETY DISTRIBUTION AG
    Inventor: Life Safety Distribution AG
  • Patent number: 8414751
    Abstract: A gas sensor (100) in a sensor housing (1) has a gas-permeable membrane (7) for the inlet of a gas sample to be analyzed to a measuring electrode (6). The gas sensor (100) is provided with a test gas generator (18), which has a generator housing (8). The generator housing (8) is fastened in the area of the gas-permeable membrane (7) and has a central gas outlet opening (21) for the gas sample to pass into the sensor and has outlet openings (19) directed towards the gas-permeable membrane (7) for the test gas.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: April 9, 2013
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Julia Danckert, Peter Tschuncky
  • Patent number: 8402812
    Abstract: It is an object of the present invention to provide a gas concentration detection apparatus that is capable of forming an accurate activity judgment when a gas concentration detection cell begins to detect gas concentration with high accuracy. When warm-up begins at time t0 in a NOx concentration detection apparatus that achieves NOx concentration detection with a NOx sensor cell after excess oxygen is discharged by an oxygen pump cell, a NOx sensor cell output begins to rise at time t1. Subsequently, at time t2, an oxygen pump cell output begins to rise. An inflection point appearing in the NOx sensor cell output is then located. At time t5 at which the inflection point appears, an activity judgment about the NOx sensor cell is formed.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: March 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takanori Sasaki
  • Publication number: 20130068616
    Abstract: An electrochemical gas sensor includes: a disc-shaped metal bottom member; a cylindrical metal side member that extends along the axial direction of the bottom member to surround the bottom member; a ring-shaped polymer gasket that includes an opening in the center and in which both sides of the opening each have an L-shaped member in cross section, with one section of the L-shaped member being in contact with the inner side of the side member and the other section of the L-shaped member being in contact with the bottom member; a gas sensor body that is located in the opening of the gasket and whose bottom surface is in contact with the bottom member and that includes a pair of electrodes and a solid electrolyte membrane or a separator retaining a liquid electrolyte; and a metal cover that is in contact with the top surface of the gas sensor body.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 21, 2013
    Applicant: FIGARO ENGINEERING INC.
    Inventors: Tomohiro INOUE, Yuki KATO, Keiko SHIBATA
  • Patent number: 8394330
    Abstract: The present invention provides a class of sensors prepared from regions of conducting organic materials and conducting materials that show an increase sensitivity detection limit for amines. The present class of sensors have applications in the detection of spoiled food products and in testing for diseases, such as cholera and lung cancer, which have amines as biomarkers.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: March 12, 2013
    Assignee: The California Institute of Technology
    Inventors: Nathan S. Lewis, Carol Lewis, Robert Grubbs, Gregory Allen Sotzing
  • Publication number: 20130059396
    Abstract: Fluid analyte sensors include a photoelectrocatalytic element that is configured to be exposed to the fluid, if present, and to respond to photoelectrocatalysis of at least one analyte in the fluid that occurs in response to impingement of optical radiation upon the photoelectrocatalytic element. A semiconductor light emitting source is also provided that is configured to impinge the optical radiation upon the photoelectrocatalytic element. Related solid state devices and sensing methods are also described.
    Type: Application
    Filed: November 5, 2012
    Publication date: March 7, 2013
    Applicant: Valencell, Inc.
    Inventor: Valencell, Inc.
  • Publication number: 20130048496
    Abstract: An electrochemical sensor includes a polymeric housing and at least a first electrode within the housing. The first electrode includes an electrochemically active surface. The electrochemical sensor further includes a first connector in electrically conductive connection with the first electrode. The first connector includes a first extending member formed from a conductive loaded polymeric material. The first extending member is formed such that an interior thereof comprises conductive elements within a matrix of the polymeric material so that the interior is electrically conductive and an exterior surface thereof comprises the polymeric material and is less conductive than the conductive interior. The conductive interior of the first extending member is in electrically conductive connection with the first electrode. The first connector further includes a first extending conductive element in electrical connection with the conductive interior.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Inventors: MICHAEL ALVIN BROWN, BRIAN KEITH DAVIS, TOWNER BENNET SCHEFFLER
  • Publication number: 20130043143
    Abstract: The present invention concerns a device for detecting gases or volatile organic compounds (VOC) comprising an electrically conducting or semiconducting zone f unctionalized with an organic film resulting from the polymerization of aromatic diazonium salt derived monomer.
    Type: Application
    Filed: September 24, 2010
    Publication date: February 21, 2013
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Guillaume Delapierre, Yanxia Hou-Broutin, Heather McCaig, Edward Myers, Michael L. Roukes
  • Patent number: 8366894
    Abstract: A multi-gas microsensor assembly for simultaneously detecting carbon dioxide and oxygen in real time. According to one embodiment, the assembly comprises a non-conductive, solid substrate. A plurality of sensing electrodes, a single reference electrode, and a single counter electrode are positioned on one side of the non-conductive, solid substrate. In addition, all of the electrodes are in intimate contact with the same side of a solid-polymer electrolyte anion-exchange membrane, the solid polymer electrolyte membrane having at least one gas diffusion opening aligned with each sensing electrode. The sensor is operated in a three-electrode potentiostatic mode, in which a constant potential is maintained between the sensing and reference electrodes, and the current is measured between the sensing and counter electrodes. Control of the electrodes is achieved with a small bi-potentiostat.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 5, 2013
    Assignee: Giner, Inc.
    Inventors: Mourad Manoukian, Anthony B. LaConti, W. Michael Krebs, Linda A. Tempelman, John W. Forchione, Jr., Erich Muehlanger, Jr.
  • Patent number: 8354015
    Abstract: A method for detecting the presence or absence of a gas bubble in an aqueous liquid is provided comprising providing a sensor positioned within a measuring chamber, wherein the sensor is configured to determine the concentration of a gaseous component dissolved in a liquid, the sensor comprising a sensitive region; setting a gas partial pressure at the sensor, wherein the gas partial pressure differs from an expected value of the gas partial pressure of the gaseous component of a liquid to be measured; exposing the sensor to the liquid to be measured; resting the liquid until standstill is attained; recording a signal from the sensor as a function of time until the signal becomes constant; and detecting the presence or absence of a gas bubble from the variation of the signal over time. The gas bubble, if present, is in at least partial contact with the sensitive region of the sensor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 15, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Heinz Kaltenbeck, Robert Grubler, Egon Landschutzer
  • Publication number: 20130008787
    Abstract: A detector includes a smoke detecting section that includes a light-receiving unit at a position at which the light-receiving unit does not directly receive light emitted by a light-emitting unit in a chamber in which a labyrinth for preventing light from directly entering from the outside and an insect net covering the rim of the labyrinth are provided, the light-receiving unit receiving light scattered by smoke flowing into the chamber. An opening hole is formed open in the surface of the cover receiving hot air current, of the detector. In the cover behind the opening hole, an electrochemical gas sensor is placed to bring gas generated by a fire through the opening hole into contact with an electrolyte solution to detect the gas by an electrode.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 10, 2013
    Applicant: HOCHIKI Corporation
    Inventors: Atsuchi Mammoto, Hiromichi Ebata
  • Publication number: 20120321916
    Abstract: A method is provided for mitigating hydrogen evolution within a flow battery system that includes a plurality of flow battery cells, a power converter and an electrochemical cell. The method includes providing hydrogen generated by the hydrogen evolution within the flow battery system to the electrochemical cell. A first electrical current generated by an electrochemical reaction between the hydrogen and a reactant is sensed, and the sensed current is used to control an exchange of electrical power between the flow battery cells and the power converter.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Applicant: Pratt & Whitney Rocketdyne, Inc.
    Inventors: Rachid Zaffou, Arun Pandy, Michael L. Perry
  • Publication number: 20120312685
    Abstract: A gas sensor has a cylindrical housing case, a gas sensor element as a sensor component, and a filler portion. The filler portion is formed between the inner surface of the cylindrical housing case and the outer surface of the gas sensor element. The filler portion is filled with filler powder composed of talc as a layered compound. Talc is a principal ingredient of the filler powder. The space formed between the cylindrical housing case and the gas sensor element is sealed with the filler powder in the filler portion. The filler powder in the filler portion has a degree of c-axis orientation within a range of 60% to 85%, The filler powder in the filler portion has a porosity of not more than 10%.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 13, 2012
    Applicant: Denso Corporation
    Inventor: Kiyomi KOBAYASHI
  • Patent number: 8323475
    Abstract: A system for operating at least first and second amperometric sensors includes a cartridge and a control device. The cartridge includes a first amperometric sensor and a second amperometric sensor. The first amperometric sensor is in fluid flow communication with a liquid sample inlet and includes a first electrode. The second amperometric sensor is in fluid flow communication with a liquid sample and includes a second electrode. The control device sets the first and second electrodes to about the same potential such that the first and second amperometric sensors can be operated simultaneously.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: December 4, 2012
    Assignee: International Technidyne Corporation
    Inventors: Scott Everett Blomberg, James Donald Kurkowski, Kee Van Sin
  • Patent number: 8323465
    Abstract: A three-dimensionally ordered macroporous sensor apparatus and method of forming the same. A direct opal film associated with a number of pores can be formed by vertical deposition of one or more nanospheres on a glass substrate. The thickness of the direct opal film can be controlled by concentration of the nanospheres. A mixture of a precursor/monomer of a sensing material and a complexing agent can be filled into the pores associated with the direct opal film, such that the mixture permeates the interstitial spaces between the pores. The nanospheres may then be removed in order to form a three dimensionally-ordered macroporous electrode with an inverse opal structure. Optionally, the sensing material can be coated on an inverse opal backbone structure formed from an external inactive material and utilizing a coating operation.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Zhi Zheng, Linan Zhao, Marilyn Wang
  • Patent number: 8323469
    Abstract: A galvanic sensor for analyzing gases present in blood includes a duct suitable for being crossed by a flow of gas and provided with an inlet opening and an outlet opening, a reference galvanic element including a container containing an electrolytic solution in which a reference electrode is inserted, and a measuring galvanic element. The container is fixed to the duct and the measuring galvanic element includes a measuring electrode arranged transversally to the axis of the duct and a filiform element having a high capillarity so as to act as a wick. The filiform element is anchored to the container and has a first end contacting the measuring electrode and a second end contacting the electrolytic solution. The measuring element of the galvanic sensor is extremely miniaturized and allows to detect in real time and continuously gases in traces, on the order of parts per million or even lower.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: December 4, 2012
    Assignee: BioTech Research and Finance Ltd.
    Inventor: Elio Scarano
  • Patent number: 8317998
    Abstract: A method of operating an electrochemical gas sensor includes: a) exposing, for a first predetermined duration, the electrochemical gas sensor to an atmosphere containing a target gas while the gas reaction capability of the electrode assembly is substantially reduced from a working level, such that target gas is collected within the housing; b) increasing the gas reaction capability of the electrode assembly to a level at which it consumes collected target gas and thereby outputs a signal to the sensing circuit, including an initial transient decay signal; c) monitoring the transient decay signal; and d) analysing the rate of decay of the transient decay signal to determine whether the performance of at least one component of the electrochemical gas sensor is within acceptable limits. An apparatus for operating an electrochemical gas sensor, adapted for connection to an electrochemical gas sensor via a sensing circuit for control thereof, can carry out the disclosed method(s).
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: November 27, 2012
    Assignee: Life Safety Distribution AG
    Inventors: Keith Francis Edwin Pratt, John Chapples, Martin Jones, Stefan Dan Costea, Mihai Gologanu
  • Publication number: 20120285828
    Abstract: An electrochemical oxygen sensor includes a micro-porous plastic membrane supported on a sealing disk and located between a gas inflow port and the sensor's electrolyte. The membrane and disk minimize thermal shock effects due to using the sensor at a first location, at a first temperature, and then moving it to a second location at a different temperature.
    Type: Application
    Filed: June 21, 2012
    Publication date: November 15, 2012
    Applicant: Honeywell International Inc.
    Inventors: John Chapples, John Anthony Tillotson, Ian McLeod, Martin Williamson
  • Patent number: 8303788
    Abstract: An electrochemical gas sensor has a working electrode having a gas porous membrane and a catalyst layer formed on one side of the membrane; a counter electrode, electrolyte in contact with the catalyst both of the working electrode and of the counter electrode; and a support that is in contact with, and presses against the side of the working electrode remote from the electrolyte and that compresses the electrodes and the electrolyte together. The support includes open areas enabling gas to contact the membrane. The support provides a faster response and provides greater efficiency of catalyst usage.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: November 6, 2012
    Assignee: Honeywell Analytics AG
    Inventors: Martin Williamson, David O'Grady
  • Patent number: 8294008
    Abstract: Carbon nanotubes are formed on projections on a substrate. A metal, such as nickel is deposited on the substrate with optional platforms, and heated to form the projections. Carbon nanotubes are formed from the projections by heating in an ethylene, methane or CO atmosphere. A heat sensor is also formed proximate the carbon nanotubes. When exposed to IR radiation, the heat sensor detects changes in temperature representative of the IR radiation. In a gas sensor, a thermally isolated area, such as a pixel is formed on a substrate with an integrated heater. A pair of conductors each have a portion adjacent a portion of the other conductor with projections formed on the adjacent portions of the conductors. Multiple carbon nanotubes are formed between the conductors from one projection to another. IV characteristics of the nanotubes are measured between the conductors in the presence of a gas to be detected.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 23, 2012
    Assignee: Honeywell International Inc.
    Inventors: Barrett E. Cole, J. David Zook
  • Patent number: 8282798
    Abstract: A gas probe, in particular a lambda probe for the analysis of exhaust gases from a mobile internal combustion engine, includes at least one protective device, at least partly surrounding a sensitive sensor element of the gas probe, which comes into contact with a gas. The at least one protective device includes a gas contact face which at least partly has a hygroscopic surface.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: October 9, 2012
    Assignees: EMITEC Gesellschaft fuer Emissionstechnologie mbH, Audi AG
    Inventors: Rolf Brück, Bernhard Pfalzgraf, Bodo Odendall
  • Publication number: 20120247978
    Abstract: An electrochemical ethylene sensor and method for ethylene sensing are disclosed. In one aspect, an electrochemical ethylene sensor includes a working electrode and a counter electrode on an electrically insulating substrate. An ionic liquid layer covers the working electrode and counter electrode. In one method, a voltage is applied to the working electrode which is equal to or lower than the voltage required for the onset of oxidation of the material of the working electrode, for example, in the range spanning 700 mV before the onset of oxidation of the material of the working electrode.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: Stichting IMEC Nederland
    Inventors: Marcel Zevenbergen, Sywert Brongersma, Mercedes Crego Calama, Daan Wouters
  • Publication number: 20120241319
    Abstract: A gas detector includes at least two electrodes. The electrodes are carried on a common substrate having first and second spaced apart surfaces. The electrodes are formed on respective ones of the surfaces with the substrate sandwiched therebetween.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Applicant: Life Safety Distribution AG
    Inventors: Graeme Ramsay Mitchell, Martin Williamson, John Chapples, Frans Monsees
  • Patent number: 8273229
    Abstract: A hydrogen quantity sensor can directly measure hydrogen contained in a hydrogen storage device with simple and easy means. The hydrogen quantity sensor comprises a detecting electrode comprised of a hydrogen storage alloy disposed inside a hydrogen storage vessel, a standard electrode disposed to confront the detecting electrode; and an electrolyte member disposed between the detecting electrode and the standard electrode. The detecting electrode, the standard electrode and the electrolyte member constitute a sensor portion to measure hydrogen concentration within the hydrogen storage alloy as an electromotive force value.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: September 25, 2012
    Assignee: Niigata TLO Corporation
    Inventors: Shuuji Harada, Tsuyoshi Suda
  • Patent number: 8268161
    Abstract: An electrochemical sensor is provided especially for gases. The electrochemical sensor has a mediator compound, which is both dissolved in an electrolyte (9) in a saturated form and is present as an excess solid (10) in the electrolyte (9).
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: September 18, 2012
    Assignee: Drägerwerk AG & Co. KGaA
    Inventors: Sabrina Sommer, Herbert Kiesele, Frank Mett
  • Patent number: 8268147
    Abstract: A control device for a gas sensor is configured to: receive a mode command to specify one of a plurality of sensor energization modes including at least a gas concentration detection mode, a protection mode and a pre-energization mode; switch a sensor element of the gas sensor into the one of the plurality of sensor energization modes according to the mode command; judge satisfaction of a certain condition where the mode command is to specify the gas concentration detection mode and the sensor element is in any of the plurality of sensor energization modes other than the pre-energization mode at the time of receipt of the mode command; and prohibit the sensor element from switching over to the gas concentration detection mode when the certain condition is satisfied.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 18, 2012
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Norikazu Ieda, Tomonori Uemura, Hiroshi Inagaki
  • Patent number: 8268146
    Abstract: A wellbore tool has an electrochemical sensor for measuring the amount of hydrogen sulphide or thiols in a fluid downhole in a wellbore. The sensor comprises a temperature- and pressure-resistant housing containing a flow path for the fluids. The fluids flow over one side of a gas permeable membrane the other side of the membrane being exposed to a chamber containing at least two electrodes and containing a reaction solution which together with the hydrogen sulphide or thiols create a redox reaction resulting in an electrical current dependent upon the amount of hydrogen sulphide or thiols in the fluid. Measurement is made by passing formation fluid along the flow path and repeatedly applying varying potential to one electrode and measuring the peak current flowing between that electrode and a second electrode.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: September 18, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Li Jiang, Timothy Gareth John Jones, Jonathan Webster Brown, Andrew Gilbert
  • Publication number: 20120228140
    Abstract: A gas sensor is disclosed. The gas sensor includes a gas sensing electrode and a counter electrode disposed within a housing, and respective conductors that connects the gas sensing electrode and the counter electrode to a sensing circuit. The housing includes walls defining a cavity containing electrolyte in fluid communication with the gas sensing electrode and counter electrode and wherein the walls further comprise one or more coatings or second layers superimposed on the walls. The one or more coatings or second layers have a lower water vapor transport rate than that of the walls, such that, in use, water vapor transport between the electrolyte and atmosphere through the walls of the housing is reduced.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 13, 2012
    Applicant: Life Safety Distribution AG
    Inventors: Paul Westmarland, Dan Hawkinson, Tony Downer
  • Publication number: 20120228139
    Abstract: An electrochemical oxygen sensor is provided. The electrochemical sensor includes a housing having first and second compartments, a sensing electrode disposed within the first compartment of the housing, a consumable anode disposed within the second compartment of the housing, a porous separator between the sensing electrode and consumable electrode that separates the first and second compartments and an electrolyte saturating the porous separator and consumable anode. A first aperture on a first end of the housing extends between an outside surface of the housing and first compartment that allows gas access to the sensing electrode. A venting system on a second, opposing end of the housing includes a second aperture extending between the outside surface of the housing and second compartment and has a predetermined permeability that controls pressure in the second compartment and loss of moisture from the sensor.
    Type: Application
    Filed: February 28, 2012
    Publication date: September 13, 2012
    Applicant: Life Safety Distribution AG
    Inventors: Graeme Ramsay Mitchell, Martin Williamson, Stuart Harris
  • Publication number: 20120211374
    Abstract: An apparatus and method for individually detecting NO and NO2 concentrations as NOX components of an object gas. An NO concentration corresponding value is obtained from a first detection element not having a reduction section. An NO concentration corresponding value is obtained from a second detection element having a reduction section, and having an NO2/NO sensitivity ratio greater than that of the first detection element. The difference ?C between the NO concentration corresponding values of the two detection elements is obtained, and divided by the difference ?S between the NO2/NO sensitivity ratios of the two detection elements, whereby an NO2 concentration corresponding value is obtained. A value obtained by multiplying the NO2 concentration corresponding value by the NO2/NO sensitivity ratio of the second detection element is subtracted from the NO concentration corresponding value of the second detection element, whereby an NO concentration corresponding value is obtained.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 23, 2012
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Kenji KATO, Kouji SHIOTANI, Takeshi KAWAI, Satoshi TERAMOTO
  • Publication number: 20120205244
    Abstract: The present invention relates to a gas-monitoring assembly (100) and method for selectively determining the presence of a target gas in a gaseous environment that potentially comprises one or more interfering gases. Such gas-monitoring assembly and method specifically employ one or more gas sensors (S1) one or more getters (G1) arranged and constructed to reduce cross-interference caused by potential presence of the interfering gases in such gaseous environment to be monitored. The gas-monitoring assembly and method of the present invention are capable of monitoring a gaseous environment with respect to potential presence of multiple target gases that may interfere with one another.
    Type: Application
    Filed: April 24, 2012
    Publication date: August 16, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Stefan Stromereder, Peter Koller
  • Publication number: 20120193229
    Abstract: An electrochemical sensor includes a micro-porous plastic membrane supported on a disk and located between a gas inflow port and an electrolyte having a gelled oxygen diffusion barrier. The oxygen diffusion barrier, formed of gelled agar, minimizes thermal shock effects by impregnating any porous materials in the sensor.
    Type: Application
    Filed: January 20, 2012
    Publication date: August 2, 2012
    Applicant: Life Safety Distribution AG
    Inventors: John Anthony Tillotson, Ian Andrew McLeod, John Chapples
  • Publication number: 20120186999
    Abstract: The invention provides an electrochemical sensor comprising an electrode assembly which comprises at least two electrodes, one of the electrodes comprising a metal species capable of catalysing the oxidation of hydrogen and/or methane. The sensor may be used in the detection and quantification of hydrogen and/or methane in exhaled breath, for example as a means of diagnosing lactose malabsorption or lactose intolerance.
    Type: Application
    Filed: April 27, 2010
    Publication date: July 26, 2012
    Applicant: KANICHI RESEARCH SERVICES LIMITED
    Inventors: David John Walton, Xiaobo Ji, Craig Edward Banks
  • Patent number: 8205480
    Abstract: The measuring device 1 includes a measurement vessel 13 contained a liquid 12 filled therein, and a sensor 11 provided in the measuring vessel 13 and for detecting components of a gaseous sample dissolved in the liquid 12. The measuring device 1 also includes a bubble-generating unit 14, which is supplied with a gaseous sample and has an aperture 141 for discharging the gaseous sample in form of bubbles into the liquid. The aperture 141 faces the sensor 11 and the bubble-generating unit 14 is disposed to have a predetermined clearance with the sensor 11. A relation of 1/2Y?X?3/2Y is satisfied, where X represents a distance of a clearance between the bubble-generating unit 14 and the sensor 11 and Y represents a diameter of the aperture 141 of the bubble-generating unit 14.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 26, 2012
    Assignee: NEC Corporation
    Inventors: Toru Matsumoto, Hideyuki Sato
  • Patent number: 8197653
    Abstract: Cartridge unit for an electrochemical sensor includes a cartridge (2) prefilled with electrolyte and having a first end closed by a selectively permeable membrane (7), and a second end (6) having a fastening device (11) arranged for fastening the cartridge to the electrochemical sensor (24). The cartridge unit further has a supporting member (3) to which the cartridge (2) is detachably fastened, and closing devices (4, 20) for closing the second end (6) of the cartridge (2). These closing devices (4, 20) are able to be opened by a user to allow the cartridge (2) to be fastened to the electrochemical sensor (24) and then to be detached from the supporting element (3).
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: June 12, 2012
    Assignee: Hach Lange Sarl (Hach Lange GmbH)
    Inventors: Yannick Delessert, Daniel Rosset, Gérard Stehlé, James Hide, Serge Hediger
  • Patent number: 8187437
    Abstract: A mediator-based electrochemical gas sensor reacts selectively with hydrogen sulfide. The gas sensor has an electrolyte solution (9), which contains a mediator compound in the form of metallates of transition metals.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: May 29, 2012
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Herbert Kiesele, Frank Mett, Sabrina Sommer
  • Publication number: 20120125770
    Abstract: A hydrogen gas sensor comprising a detection electrode, a reference electrode, and an electrolyte contacting with these electrodes, in which the reference electrode and the detection electrode are composed of a material having a property that hydrogen molecule doesn't voluntarily dissociate into atomic hydrogen on a surface of the electrode in Standard State such as nickel, titanium, copper, tungsten and the like, in which hydrogen gas is detected by an electromotive force generated between the reference electrode and the detection electrode while at least the detection electrode is maintained at a temperature not less than a temperature that hydrogen molecule begins to dissociate into atomic hydrogen voluntarily on the surface of the detection electrode.
    Type: Application
    Filed: May 21, 2010
    Publication date: May 24, 2012
    Applicant: NATIONAL UNIVERSITY CORPORATION NIIGATA UNIVERSITY
    Inventors: Shuji Harada, Tatsuya Ishiduka, Tsuneo Nakamura
  • Publication number: 20120111738
    Abstract: Techniques are generally described for a gas sensor testing device. In some examples, the gas sensor testing device comprises a chamber including a wall having an inside surface and an outside surface, the inside surface defining a gas channel, the wall including at least one water molecule. In some examples, the gas sensor testing device includes a first electrode wire coupled to the outside surface of the wall. In some examples, the gas sensor testing device includes a second electrode wire coupled to the inside surface of the wall. In some examples, the wires are operable to generate a current through the wall when a voltage is applied across the wires. In some examples, the current is effective to electrolyze the at least one water molecule to generate a gas.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Nathan C Schattke