With Heat Treatment Of Coating Patents (Class 204/500)
  • Patent number: 10676839
    Abstract: In an electrodeposition system, the final quality of a coating is prevented from being degraded due to a coating material-containing aqueous solution flowing out of a steel plate mating portion during a drying process, while derivative problems such as an increase in the size of the system, an increase in the initial costs and the running costs, and a decrease in reliability are avoided. A washing zone that is subsequent to an electrodeposition zone in which an object to be coated is immersed in a coating material solution for electrodeposition so that a coating is formed on a surface of the object to be coated is provided with: a hot water washing tank in which the coated object is washed by being immersed in high-temperature washing water in the tank; and a spray washer that sprays a steel plate mating portion of the coated-object with high-temperature washing water, subsequent to washing in the hot water washing tank.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: June 9, 2020
    Assignees: Mazda Motor Corporation, Taikisha Ltd.
    Inventors: Katsuo Katayama, Hiroyuki Nakagawa, Hiroaki Tsuji, Akira Kawanami, Shintarou Kouno, Shigetaka Tooka, Shizuko Kurokawa
  • Patent number: 10590227
    Abstract: The present invention suggests a curable organic polymer comprising at least one acylurea unit represented by structural formula (I): Moreover, the present invention suggests a process for the preparation of said polymer and the use of said curable organic polymer for the preparation of a cured composition and for the preparation of hydroxyurethanes.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: March 17, 2020
    Assignee: Construction Research & Technology GmbH
    Inventors: Sophie Putzien, Burkhard Walther, Heimo Woelfle
  • Patent number: 9539557
    Abstract: The disclosure provides a coating composition comprising a treated inorganic core particle, having improved dispersability, prepared by a process comprising: heating a slurry comprising porous silica treated inorganic core particle and water at a temperature of at least about 90° C., more typically about 93 to about 97° C., still more typically about 95 to about 97° C.; and adding a soluble alumina source to the slurry while maintaining the pH at about 8.0 to 9.5 to form an alumina treatment on the porous silica treated inorganic core particle; wherein the treated inorganic core particle does not comprise dense silica or alumina treatments, and has silica present in the amount of about 7% to about 14% and alumina present in the amount of about 4.0% to about 8.0%; and wherein the particle to particle surface treatments are substantially homogeneous.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 10, 2017
    Assignee: THE CHEMOURS COMPANY TT, LLC
    Inventors: Michael Patrick Diebold, Daniel C Kraiter, Eric Rusnak, Agingu Shih
  • Patent number: 9502197
    Abstract: Disclosed are ergonomic power switches for wearable electronic devices. A wearable electronic device may include a circuit including a power supply, and an ergonomic power switch to selectively close the circuit. The ergonomic power switch may comprise multiple elements that are configured to cause closure of the circuit in response to a connection event. The connection event may occur in response to a portion of a user's body being positioned between the multiple elements. A process may include determining, by a controller of a wearable electronic device, that a connection event has occurred, and setting a power state of the wearable electronic device to a power-on state where power is supplied to multiple electrical components of the wearable electronic device from a power supply of the wearable electronic device.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: November 22, 2016
    Assignee: Amazon Technologies, Inc.
    Inventor: Robert Duane Rost
  • Patent number: 9469780
    Abstract: The present invention provides coating compositions that include reactive diluents and have high performance, low VOC levels, and low irritation levels. Certain embodiments of the present invention include water and water-dispersible polymers and other embodiments do not include water.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: October 18, 2016
    Assignee: VALSPAR SOURCING, INC.
    Inventors: T. Howard Killilea, James M. Bohannon
  • Patent number: 8779069
    Abstract: Disclosed herein are functionalized polymers comprising ethylene and substituted ethylene segments, which have been modified by epoxidation to enhance their crosslinking ability. These functionalized polymers are useful as film forming resins in cathodic electrocoating compositions. Also disclosed herein are aqueous dispersion compositions comprising the functionalized polymers and a process for coating various electrically conductive substrates.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 15, 2014
    Assignee: Axalta Coating Systems IP Co., LLC
    Inventors: Simona Percec, Susan H. Tilford
  • Patent number: 8574414
    Abstract: A method includes (a) contacting at least a portion of a substrate material with a solution comprising a source of copper, wherein the solution is essentially free of a source of a group IIIB metal and a source of a group IVB metal; and (b) after step (a), contacting at least a portion of the substrate with an electrodepositable coating composition comprising (i) a film-forming resin and (ii) a source of yttrium.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: November 5, 2013
    Assignee: PPG Industries Ohio, Inc
    Inventors: Terri Ziegler, Mark McMillen
  • Patent number: 8491770
    Abstract: Disclosed herein are functionalized polymers comprising ethylene and substituted ethylene segments. These functionalized polymers are useful as film forming resins in cathodic electrocoating compositions. Also disclosed herein are aqueous dispersion compositions comprising the functionalized polymers and a process for coating various electrically conductive substrates.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 23, 2013
    Assignee: Axalta Coating Systems IP Co. LLC
    Inventors: Stephen Neal Bair, Simona Percec, Susan H. Tilford
  • Patent number: 8333878
    Abstract: This invention teaches a method of coating a vehicle wheel to increase wear resistance which, in its preferred embodiment, includes the steps of providing a vehicle wheel and applying a wear resistant coating between/intermediate a primer and a topcoat. The wear resistant coating is applied to at least the tire bead flange of the vehicle wheel but may be applied to any area of the wheel. It is advantageously comprised of a MIL-P-53022B Type II lead and chromate free, corrosion inhibiting epoxy primer with an addition of 3% polytetrafluoroethylene (PTFE), and is formulated in such a manner so as to allow “wet on wet” application over a cured MIL-P-53084 primer. This application method improves adhesion through surface to surface covalent reaction between the polymerization of polyurethane top coat and the polymerization of intermediate epoxy polyamide wear resistant coating.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: December 18, 2012
    Assignee: Hutchinson, SA
    Inventors: Pascal Seradarian, Larry K. Rogers, Dawn M. DiMarco, Robert D. Holmers
  • Patent number: 8333879
    Abstract: A composition for use in electrodeposition includes a resin blend, a coalescing solvent, a catalyst, water, and a highly cross-linked microgel, wherein at least 20 percent by weight of resin solids in the composition is the highly cross-linked microgel. Another composition for use in electrodeposition includes a surfactant blend, a low ion polyol, phenoxypropanol, a catalyst, water, a flexibilizer, and a highly cross-linked microgel, wherein at least 20 percent by weight of resin solids in the composition is the highly cross-linked microgel.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 18, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Kelly L. Moore, Michael J. Pawlik, Michael G. Sandala, Craig A. Wilson
  • Patent number: 8277626
    Abstract: The present invention is directed to a method for coating a substrate wherein the substrate is electrically conductive, the method comprising simultaneously applying a plurality of electrically conductive liquid materials to different portions of the substrate wherein at least one of the electrically conductive liquid materials comprises an ionic compound; and applying an electrical current to at least one of the liquid materials thereby depositing the ionic compound onto the substrate.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 2, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Gary Orosz, Donald W. Boyd, Benjamin Kabagambe, James W. McCamy, Douglas A. McPheron
  • Patent number: 8252160
    Abstract: A microfluidic device includes a substrate and a non-valve capillary mechanism. At least a reservoir and one or more channels leading to the reservoir are formed within the substrate. The non-valve capillary mechanism is within the reservoir, and prevents fluid delivered to the reservoir from wicking from the reservoir into the channels.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 28, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Philip Harding
  • Patent number: 8236157
    Abstract: A pigment dispersing resin is disclosed along with pigment dispersion, electrodepositable coating compositions using the pigment dispersing resin, and methods for applying the electrodepositable coating composition. The pigment dispersing resin consists essentially of the carboxylic acid salt of an aminated bisphenol epoxy resin and an alkoxylated styrenated phenol. Pigment dispersions made from the dispersing resin are especially useful for forming low or no volatile organic content electrocoating baths.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 7, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventor: Taddesse Gebregiorgis
  • Publication number: 20120145545
    Abstract: Disclosed herein are functionalized polymers comprising ethylene and substituted ethylene segments. These functionalized polymers are useful as film forming resins in cathodic electrocoating compositions. Also disclosed herein are aqueous dispersion compositions comprising the functionalized polymers and a process for coating various electrically conductive substrates.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Stephen Neal BAIR, Simona Percec, Susan H. Tilford
  • Patent number: 8197654
    Abstract: Methods for preparing an electrodepositable coating composition are provided comprising: (a) mixing a flatting agent with an electrodepositable resin; (b) combining the mixture of (a) with a pigment paste to form a flatting agent-pigment paste mixture; and (c) combining the flatting agent-pigment paste mixture of (b) with an electrodepositable resin. Methods of coating articles including electrodepositable coating compositions prepared by these methods, as well as processes for coating electroconductive substrates with compositions prepared by these methods are also provided.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: June 12, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Charles R. Hickenboth, Walter F. Kasper, James E. Poole
  • Patent number: 8187440
    Abstract: A method of coating a magnesium-based substrate includes applying a first potential of electric current to the substrate and, after applying, immersing the substrate in an electrocoat coating composition. After immersing, a second potential of electric current is applied between the substrate and a counter electrode to deposit the electrocoat coating composition onto the substrate. The second potential is greater than the first potential. The method also includes curing the electrocoat coating composition to form a cured film and thereby coat the substrate. An electrocoat coating system includes the magnesium-based substrate, and the cured film disposed on the substrate and formed from the electrocoat coating composition. The substrate exhibits a negative charge from an applied first potential of electric current of ? approximately 40 V prior to contact with the electrocoat coating composition.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 29, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Guangling Song
  • Patent number: 8057654
    Abstract: A method includes: immersing a semiconductive substrate in an electrodeposition composition, wherein at least 20 percent by weight of resin solids in the composition is a highly cross-linked microgel component, and applying a voltage between the substrate and the composition to form a dielectric coating on the substrate. A composition for use in electrodeposition includes a resin blend, a coalescing solvent, a catalyst, water, and a highly cross-linked migrogel, wherein at least 20 percent by weight of resin solids in the composition is the highly cross-linked microgel. Another composition for use in electrodeposition includes a surfactant blend, a low ion polyol, phenoxypropanol, a catalyst, water, a flexibilizer, and a highly cross-linked migrogel, wherein at least 20 percent by weight of resin solids in the composition is the highly cross-linked microgel.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 15, 2011
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Kelly L. Moore, Michael J. Pawlik, Michael G. Sandala, Craig A. Wilson
  • Patent number: 7862851
    Abstract: A process for coating electrically conductive substrates by (1) applying an electrocoat film to an electrically conductive substrate and curing it to give an electrocoat and then (2) applying a layer of a pulverulent coating material to the electrocoat and curing it to give a powder coat or alternatively (1) applying an electrocoat film to an electrically conductive substrate and drying it without fully curing it, (2) applying a layer of a pulverulent coating material to the dried electrocoat film(s) and (3) jointly curing the dried electrocoat film and the layer of the pulverulent coating material to give the electrocoat and the powder coat wherein the pulverulent coating material comprises (A) at least one epoxy resin having a melting point, melting range or glass transition temperature>30° C., (B) at least one carboxyl-containing polyester resin having a melting point, melting range or glass transition temperature>30° C.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: January 4, 2011
    Assignee: BASF Coatings AG
    Inventors: Heinrich Wonnemann, Lars Hof, Werner Blömer
  • Patent number: 7771577
    Abstract: Processes for forming a coating on electroconductive flat blanks having two major surfaces and sheared edges are provided. Also provided is a process for forming a multi-composite coating on a pre-sheared, electroconductive, flat blank having two major surfaces and sheared edges. Methods for forming and coating metal blanks are also provided. The present invention further provides a pre-sheared, flat electroconductive blank having two major surfaces and coated with a multi-layer composite coating composition on one major surface. The present invention also provides a method for coating a continuous metal strip, optionally, thereafter forming a coated blank therefrom, and, optionally, applying a second coating to the blank.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: August 10, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Donald D. Emmonds, Catharine A. Palmer, Linda K. Anderson, Robin M. Peffer, Donald W. Boyd, Paul R. Kerr
  • Patent number: 7291252
    Abstract: Steel cabinet parts and other steel objects are electrocoated in a cationic resin-containing bath. The steel objects are chromium-coated, free of phosphate and preferably free of chromium oxide. The products are not significantly subject to filiform corrosion, and the process is economically beneficial because throwpower is more easily controlled than in previous processes.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: November 6, 2007
    Assignee: United States Steel Corporation
    Inventors: Jian X. Li, Daniel E. Bullard, Chyang J. Wu
  • Patent number: 7241371
    Abstract: Corrosion resistance of metallic components such as stainless steel components of vehicles, and especially aluminum-based components of aircraft, is enhanced by application of an e-coat paint or primer which is enhanced by incorporation of cerium ions into the e-coat electrolytic bath. The resulting overall coating includes a cerium-based layer under a cerium-enhanced e-coat paint or primer layer.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: July 10, 2007
    Assignee: The Curators of University of Missouri
    Inventors: James O. Stoffer, Thomas J. O'Keefe, Eric L. Morris, Xuan Lin, Scott A. Hayes, Pu Yu
  • Patent number: 7211182
    Abstract: A process for the production of a CED (cathodic electrodeposition) coating with improved adhesion towards subsequent layers by cathodic electrodeposition of a coating layer of a CED coating composition onto an electrically conductive substrate and thermal curing by baking in an indirectly heated circulating air oven operated with a proportion of fresh air in the circulating air of the oven of 0 to 20 vol. %, wherein the CED coating composition used contains at least one water-soluble metal nitrate corresponding to a quantity of 1 to 10 mmol of nitrate per 100 g of resin solids content, wherein the metal is selected from the group consisting of metals of atomic numbers 20 to 83, with the exception of chromium, arsenic, rubidium, ruthenium, rhodium, palladium, cadmium, antimony, caesium, osmium, iridium, platinum, mercury, thallium and lead, and wherein at most 50 area-% of the CED-coated substrate surface are rinsed with water prior to thermal curing.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: May 1, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Horst Lehmann, Klausjoerg Klein, Rudolf Schipfer
  • Patent number: 7070683
    Abstract: The present invention is directed to a curable electrodepositable coating composition having a resinous phase dispersed in an aqueous medium. The resinous phase includes (a) one or more ungelled, active hydrogen-containing cationic salt group-containing resins which are electrodepositable on a cathode; (b) one or more at least partially blocked polyisocyanate curing agents; (c) at least one substantially non-volatile antioxidant; and (d) at least one volatile antioxidant. The present invention also provides a process for electrodeposition using the coating and substrates coated therewith.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: July 4, 2006
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Robin M. Peffer, Brian G. Thebaud, Steven R. Zawacky, Gregory J. McCollum, Al J. Kaylo
  • Patent number: 7067047
    Abstract: Use of water-insoluble organic nitrites and/or nitrates as additives for electrodeposition coating compositions, and process for the production of an electrodeposition lacquer with improved adhesion for subsequent coats in which one or more water-insoluble organic nitrites and/or nitrates is added to the electrodeposition coating composition and the coating film obtained by electrodeposition is stoved in an indirectly heated circulating air oven.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: June 27, 2006
    Assignee: E. I. duPont de Nemours and Company
    Inventors: Norbert David, Klausjörg Klein, Walter Kühhibi
  • Patent number: 6947203
    Abstract: To provide an electrophoretic dispersion capable of reducing or preventing the aggregation of electrophoretic particles, an electrophoretic display device using the electrophoretic dispersion, a method of manufacturing the electrophoretic display device, and an electronic system superior in display performance; an electrophoretic display device (electrophoretic display unit) has: a first substrate with a first electrode; a second substrate with a second electrode opposite the first electrode; and an electrophoretic dispersion provided between the first substrate and second substrate. The electrophoretic dispersion (dispersion for electrophoretic display units) includes a liquid phase insulative dispersion medium and electrophoretic particles dispersed in the dispersion medium, the particles electrophoretically migrated under an influence of an electric field.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: September 20, 2005
    Assignee: Seiko Epson Corporation
    Inventor: Sadao Kanbe
  • Patent number: 6849169
    Abstract: Use of homopolymers or copolymers of 2-ethyl hexyl acrylate as an additive in aqueous cathodically depositable coatings to suppress the formation of surface defects in coating films, in which the proportion by mass of the comonomers in the monomer mixture used for the preparation of the copolymers does not exceed 35%.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: February 1, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Helmut Hoenig, Georg Pampouchidis, Gerald Hobisch
  • Publication number: 20040159548
    Abstract: The present invention is directed to a curable electrodepositable coating composition having a resinous phase dispersed in an aqueous medium. The resinous phase includes (a) one or more ungelled, active hydrogen-containing cationic salt group-containing resins which are electrodepositable on a cathode; (b) one or more at least partially blocked polyisocyanate curing agents; (c) at least one substantially non-volatile antioxidant; and (d) at least one volatile antioxidant. The present invention also provides a process for electrodeposition using the coating and substrates coated therewith.
    Type: Application
    Filed: February 13, 2003
    Publication date: August 19, 2004
    Inventors: Robin M. Peffer, Brian G. Thebaud, Steven R. Zawacky, Gregory J. McCollum, Al J. Kaylo
  • Patent number: 6746588
    Abstract: The invention provides a cationic electrodeposition method requiring the immersion of a conductive substrate in a coating composition, applying a voltage between an anode and the conductive substrate, and removing the substrate from the coating composition. The coating composition of the invention comprises, in an aqueous medium, an aqueous dispersion of a resin composition comprising: (A) a polymer having at least one primary carbamate group and one or more quaternary ammonium groups, (B) a carbamate functional reactive additive which is generated insitu during the production of polymer (A) and (C) a compound having a plurality of active methylol or methylalkoxy groups that are reactive with said carbamate groups.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: June 8, 2004
    Assignee: BASF Corporation
    Inventor: Timothy S. December
  • Patent number: 6736950
    Abstract: Method of electro-dipcoating while reducing edge migration on stoving by 1) electro-deposition of a coating layer from an electrically depositable coating composition containing a heat-curable binder system having a content of olefinically unsaturated double bonds that are radically polymerisable under UV irradiation, on an electrically conductive substrate having edges, 2) UV irradiation of at least part of the electrically deposited coating layer, avoiding complete curing, 3) complete curing of the electrically deposited coating layer by stoving.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: May 18, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Klausjörg Klein, Walter Kühhiri, Siegfried Kuphal
  • Patent number: 6713587
    Abstract: The present invention relates to an electrodepositable coating composition having a resinous phase dispersed in an aqueous medium. The resinous phase includes (a) an ungelled, active hydrogen-containing, ionic salt group-containing resin; and (b) a curing agent reactive with the active hydrogens of the resin (a). The resinous phase has a covalently bonded halogen content based on total weight of resin solids present in the resinous phase such that when the composition is electrodeposited and cured, the cured film passes flame resistance testing in accordance with IPC-TM-650, and has a dielectric constant of less than or equal to 3.50. The invention also is directed to a method for forming a dielectric coating on an electroconductive substrate using the electrodepositable coating composition, as well as to a substrate coated with the electrodepositable composition.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: March 30, 2004
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Gregory J. McCollum, Thomas C. Moriarity, Kevin C. Olson, Michael G. Sandala, Alan E. Wang, Craig A. Wilson, Steven R. Zawacky
  • Publication number: 20030150730
    Abstract: Novel electrodeposition coating material preparable by (i) melting at least one self-crosslinking binder, or (ii) separately melting at least one externally crosslinking binder and at least one crosslinking agent and supplying the melts to a mixing unit in which the melts are homogenized, introducing the resultant melt into an aqueous medium, and emulsifying it therein; and the use of the novel electrodeposition coating material to coat electrically conductive substrates.
    Type: Application
    Filed: January 29, 2003
    Publication date: August 14, 2003
    Inventors: Michael Hartung, Karl-Heinz Grosse-Brinkhaus, Reinhard Polke, Heiko Wolf, Michael Stang
  • Publication number: 20030132115
    Abstract: A barrel with small parts is rotatably mounted in an e-coating line including a coating section and a curing section. After coating of the parts within the coating section, the barrels are moved directly through the curing section. In both the coating section and the curing section, the barrels are rotated to create a complete coating of each part and to subsequently cure th coating within the same barrel.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Inventors: Bradley M. Andreae, Bradley S. Andreae, Karl M. Wisniewski, Roger A. Kelly
  • Patent number: 6588095
    Abstract: A method, and structure formed thereof, for processing an exposed conductive connection between an thermal inkjet head device and a flexible tape circuit connectable to control signals for driving the inkjet device. According to the method of processing, the exposed conductive connection is electrophoretically plated with a polymer to protect it against corrosive damage by coupling the exposed conductive connection to a first voltage potential and immersing it into an electrophoretic polymer solution in contact with an electrode at a second voltage potential thereby establishing a current between the electrode and the exposed connection such that the exposed connection is coated with a thin film of polymer of uniform thickness.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: July 8, 2003
    Assignee: Hewlett-Packard Development Company, LP.
    Inventor: Alfred I-Tsung Pan
  • Publication number: 20030121786
    Abstract: Aqueous electrophoretic lacquer capable of being deposited cataphoretically, containing
    Type: Application
    Filed: November 4, 2002
    Publication date: July 3, 2003
    Inventors: Andreas Fieberg, Volker Rekowski, Dietrich Saatweber, Hans-Ulrich Simmrock, Bettina Vogt-Birnbrich
  • Publication number: 20030102216
    Abstract: A process of coating the surface of articles made of glass pieces assembled in a came to minimize breakage of glass during application and hardening of the coating The process includes the steps of preprocessing the article, electrodepositing the coating on the article, and hardening the electrodeposited and coated article glass step-by-step.
    Type: Application
    Filed: November 27, 2001
    Publication date: June 5, 2003
    Inventor: Kwang Soon Kim
  • Publication number: 20030098238
    Abstract: The invention provides a photodegradation resistant curable electrodepositable coating composition which includes one or more ungelled, active hydrogen-containing cationic sulfonium salt group-containing resins which are electrodepositable on a cathode, and one or more curing agents having cationic groups or groups which are capable of forming cationic groups. The invention also provides processes for coating an electroconductive substrate with the coating composition, to form single layer or multi-layer composite coatings. Also provided is a multi-layer composite coating in which the electrodepositable coating composition is used to form the primer layer. The compositions have improved throw power versus typical sulfonium salt electrodepositable compositions.
    Type: Application
    Filed: November 8, 2001
    Publication date: May 29, 2003
    Inventors: Anthony D. Kulfan, Ellor J. Van Buskirk, Craig A. Wilson
  • Publication number: 20030034249
    Abstract: An image forming method wherein an aqueous dispersion is prepared in a vessel of an apparatus. The aqueous dispersion contains an electrodeposition material including a fine particle coloring material, and a polymer which is chemically dissolved, or is deposited and precipitated, by a change in pH. The vessel is able to hold a liquid, and has therein an image supporting member. The image supporting member has at least an electrode, which can supply current or an electric field in accordance with an image pattern, and a surface which can support an image; and a counter electrode which forms a pair of electrodes together with the electrode. The electrodeposition material is deposited and precipitated to form an image by supplying current or an electric field in accordance with an image pattern to the image supporting member and the counter electrode and by changing the pH value of the aqueous dispersion in the vicinity of the image supporting surface of the image supporting member.
    Type: Application
    Filed: January 12, 2001
    Publication date: February 20, 2003
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Eiichi Akutsu, Shigemi Ohtsu, Lyong Sun Pu
  • Patent number: 6512048
    Abstract: The invention provides a polymer (a) having a polymer backbone having appended thereto at least one carbamate functional group, the polymer represented by randomly repeating units according to the formula: R1 represents H or CH3, R2 represents H, alkyl, or cycloalkyl, L represents a divalent linking group, A represents repeat units comprising at least one repeat unit having a pendant cationic salting group, x represents 10 to 90 weight %, and y represents 90 to 10 weight %. The invention further provides a cathodic electrocoat coating composition comprising an aqueous dispersion of a polymer (a) and (b) a compound having a plurality of functional groups that are reactive with said carbamate groups, wherein the repeat units A of polymer (a) having a pendant cationic salting group are salted with an acid.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: January 28, 2003
    Assignee: BASF Corporation
    Inventors: Timothy S. December, Walter H Ohrbom, Gregory G. Menovcik
  • Publication number: 20030008156
    Abstract: A composition for electrophoretic deposition of a protective coating. The composition comprises a cationic resin emulsion; and a curative mixed with the cationic resin emulsion. The composition after electrophoretic deposition and curing provides the protective coating that has a concentration of extractable ionic contaminants less than about 200 nanograms/cm2; and a concentration of labile components less than about 36,000 nanograms/cm2.
    Type: Application
    Filed: June 26, 2001
    Publication date: January 9, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Alphonsus V. Pocius, Rita A. Latourelle
  • Publication number: 20020166770
    Abstract: A process for the production of a multi-layer coating, wherein a primer layer which is electrically conductive in the at least partially cured state is applied by electrodeposition from an electrodeposition coating agent (I) to an electrically conductive three-dimensional object, at least partially cured exclusively by the action of near infra-red radiation substantially only on the surfaces of the object exposed to the radiation, and an additional coating layer is applied by electrodeposition from an electrodeposition coating agent (II) which is different from electrodeposition coating agent (I), and then this additional coating layer as well as completely uncured or incompletely cured area parts of the primer layer produced from electrodeposition coating agent (I) are cured.
    Type: Application
    Filed: May 10, 2001
    Publication date: November 14, 2002
    Inventors: Matthias Kimpel, Martin Wulf, Oliver Reis
  • Patent number: 6471843
    Abstract: The invention provides a cathodic electrocoat coating composition having (A) a polymer comprising at least one primary carbamate group and at least one cationic salting site, (B) a curing agent having groups that are reactive with said functional groups on (A), and (C) a reactive additive comprising at least one compound having a molecular weight of from 131 to 2000 and comprising at least one primary carbamate group and at least one alkyl group selected from the group consisting of branched alkyl groups of from 5 to 30 carbons, straight chain alkyl groups of more than 10 carbons, and mixtures thereof, wherein one or both of (A) and (B) comprise groups that are reactive with the primary carbamate group of (C).
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: October 29, 2002
    Assignee: BASF Corporation
    Inventors: Timothy S. December, Walter H Ohrbom
  • Patent number: 6447931
    Abstract: The present invention discloses a plural layer coating film-forming method comprising applying a cationically electrodepositable coating material (A) which provides a cured coating film having a volume resistivity value of 1012 &OHgr;.cm or less on a coated article and then applying an anionically electrodepositable coating material (B) on a cured coating film surface thereof.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: September 10, 2002
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Shinji Miyatake, Hidehiko Haneishi, Akira Tominaga
  • Publication number: 20020027077
    Abstract: An electrodeposition coating composition that is excellent in bath stability and that can give a cured film enhanced in hardness and an electrodeposition coating process is provided.
    Type: Application
    Filed: August 16, 2001
    Publication date: March 7, 2002
    Inventors: Hiroyuki Sakamoto, Ichiro Kawakami, Koji Izumiya, Takao Saito, Masahiro Nishio
  • Publication number: 20020014412
    Abstract: The invention provides a cured multilayer coating having improved properties and a process for the production of said cured multilayer coating.
    Type: Application
    Filed: July 17, 2001
    Publication date: February 7, 2002
    Inventor: Timothy S. December
  • Patent number: 6248225
    Abstract: A process for applying two electrodeposited coatings, one on top of the other, to an electrically conductive substrate is provided. An electrically conductive first coating is applied to provide for corrosion resistance and a second polyurethane-based coating is applied to the first coating to provide chip resistance. Also, aqueous dispersions of the polyurethane coating compositions are disclosed.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: June 19, 2001
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Thomas Palaika, Ellor J. Van Buskirk, Victor G. Corrigan, Venkatachalam Eswarakrishnan, Gregory J. McCollum, Robert R. Zwack, Philippe Faucher, Craig A. Wilson, Chester J. Szymanski, James E. Poole, Keith S. Ritter, Richard F. Syput
  • Patent number: 6190525
    Abstract: Disclosed are improved electrodeposition bath compositions comprising a resinous phase dispersed in an aqueous medium, the resinous phase being comprised of an active hydrogen containing ionic electrodepositable resin and a curing agent, where the improvement comprises the addition to an electrodeposition bath of at least one source of yttrium in an amount of about 10 to 10,000 parts per million of total yttrium based on electrodeposition bath weight. The electrodeposition bath compositions are preferably cationic and provide for excellent corrosion resistance over a variety of metal substrates including untreated steel. Also disclosed is a method of electrocoating a conductive substrate using the improved electrodeposition bath compositions of the invention. Metallic substrates which are coated using the method of the invention are also disclosed.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: February 20, 2001
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Richard F. Karabin, Alan J. Kaylo
  • Patent number: 6190524
    Abstract: A composition is provided comprising a reaction product of (1) a bismuth compound; and (2) an heterocyclic compound having mercapto functionality. Such compositions are useful in electrodepositable compositions further comprising an active hydrogen-containing, cationic salt group-containing resin and a capped polyisocyanate curing agent. These electrodepositable compositions may be prepared without the use of conventional lead or tin catalysts and exhibit excellent properties as cured coatings.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: February 20, 2001
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Raphael O. Kollah, Brian E. Woodworth, Lawrence G. Anderson, Matthew S. Scott
  • Patent number: 6132581
    Abstract: Disclosed are electrodepositable coating compositions containing a polymer prepared from the polymerization of an ethylenically unsaturated monomer having a heterocyclic ring containing at least one ring nitrogen atom bonded to a vinyl group or a mixture of monomers comprised of such a monomer, the compositions further including contaminants capable of forming defects in the electrodeposited coating surface. The polymer is present in an amount effective to abate formation of the surface defects caused by the contaminants. A method of electrocoating a conductive substrate using the electrodepositable coating compositions of the invention is also disclosed.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: October 17, 2000
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Alan J. Kaylo, Thor G. Lingenfelter
  • Patent number: 6090253
    Abstract: A work is dipped in electrodeposition paint, and then the work is baked. Between the dipping step and baking step of the work, there is provided a step for spraying hot water mist to the work. It is preferable that the temperature of the hot water mist is in a range equal to or higher than 40.degree. C. and lower than 100.degree. C. Water or vapor may be used instead of the hot water mist.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: July 18, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kenshichiro Shima, Takashi Arakawa, Hirokazu Sugiyama
  • Patent number: 6013167
    Abstract: A stable emulsion comprising a polyetherimide resin, neutralization agent, cosolvent, solvent, ring opening agent, and water, for use in a cataphoretic deposition process for forming a polyetherimide coating on a substrate, particularly a substrate having a complex geometry.
    Type: Grant
    Filed: July 31, 1998
    Date of Patent: January 11, 2000
    Assignee: General Electric Co.
    Inventors: Christian Bailly, Gert De Wit, Francois Guy-Marie Schue, Rossitza Schue, El Houssain Qariouh