Electrophoresis Or Electro-osmosis Processes And Electrolyte Compositions Therefor When Not Provided For Elsewhere Patents (Class 204/450)
  • Patent number: 11179721
    Abstract: Provided herein are microfluidic devices that can be configured to generate an electrophoretic flow that is in opposition to a fluid flow through a microcapillary of a microfluidic device provided herein. Also provided herein are methods that include adding an amount of particle to the inlet area of a microfluidic device as provided herein, generating a first fluid flow through a microcapillary of a microfluidic device provided herein; and applying a uniform electric field to the microfluidic device, where the uniform electric field generates an electrophoretic flow that is in opposition to the fluid flow.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: November 23, 2021
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jason E. Butler, Anthony J. Ladd, Mert Arca
  • Patent number: 11168847
    Abstract: The invention relates to a directional lighting device (10) which comprises: a light emission source (30); a cover (40) covering the light emission source (30), and provided with an inner wall (41) and an outer wall (42) which delimit an inter-wall space (44), and filled with a fluid, the cover (40) comprising transmission zones (45), each formed of an inner zone (45a) and an outer zone (45b), facing one another, and at which an electric field is capable of being applied to the functional fluid by means of a first electrode (46a) and a second electrode (46b), the functional fluid being adapted to, under the effect of an electric field sensed at a given transmission zone, form with the latter a window transparent to the luminous radiation, and be either opaque or reflective and/or diffusive to said radiation in the remainder of the inter-wall volume (43).
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: November 9, 2021
    Inventors: Marianne Consonni, Anis Daami, Frédéric Sermet
  • Patent number: 11142740
    Abstract: The present disclosure provides automated modules and instruments for improved detection of nuclease genome editing of live cells. The disclosure provides improved modules—including high throughput modules—for screening cells that have been subjected to editing and identifying and selecting cells that have been properly edited.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: October 12, 2021
    Assignee: Inscripta, Inc.
    Inventors: Andrew Garst, Michael Graige, Richard Fox, Eileen Spindler, Amy Hiddessen, Phillip Belgrader, Don Masquelier, Bruce Chabansky
  • Patent number: 11136285
    Abstract: The present invention relates to a process for the continuous production of nitrobenzene by the nitration of benzene with nitric acid and sulphuric acid under adiabatic conditions, not the entire production plant being shut down during a production stop, but the production plant being entirely or at least partly operated in recirculation mode. The invention further relates to a plant for producing nitrobenzene and to a method for operating a plant for producing nitrobenzene.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: October 5, 2021
    Assignee: Covestro Deutschland AG
    Inventors: Thomas Knauf, Peter Drinda
  • Patent number: 11119068
    Abstract: The present invention provides, in some embodiments, an isotachophoresis (ITP) apparatus, a kit comprising same and method of use thereof for the focusing analytes of interest from large sample volumes.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: September 14, 2021
    Inventors: Moran Bercovici, Govind Kaigala, Xander Frank Van Kooten, Nadya Ostromohov, Federico Paratore
  • Patent number: 11097272
    Abstract: According to an example, a microfluidic apparatus may include a fluid slot and a foyer that is in fluid communication with the fluid slot via a channel having a relatively smaller width than the foyer. The microfluidic apparatus may also include an electrical sensor to measure a change in an electrical field caused by a particle of interest in a fluid passing through the channel from the fluid slot to the foyer, an actuator to apply pressure onto fluid contained in the foyer, and a controller to receive the measured change in the electrical field from the electrical sensor, determine, from the received change in the electrical field, an electrical signature of the particle of interest, and control the actuator to control movement of the particle of interest based upon the determined electrical signature of the particle of interest.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: August 24, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chantelle Domingue, Tod Woodford, Manish Giri, Matthew David Smith, George H Corrigan, III, Masoud Zavarehi, Joshua M. Yu
  • Patent number: 11092598
    Abstract: A chemically differentiated sensor array system includes a plurality of environmentally-gated transistors and an environmental gate, wherein the environmental gate includes a liquid solution and each environmentally-gated transistor includes a drain, a source, and a Carbon-based substrate channel, the drain electrically couples to a first location on the substrate channel, the source electrically couples to a second location on the substrate channel separated by a gap from the first location on the substrate channel, the environmental gate covers and contacts the substrate channel, a first insulating layer covers and separates the drain from the environmental gate, and a second insulating layer covers and separates the source from the environmental gate.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 17, 2021
    Assignee: Cardea Bio, Inc.
    Inventor: Brett Goldsmith
  • Patent number: 11079372
    Abstract: Polymers and conjugates comprising polymers are disclosed herein. In some embodiments, the conjugates disclosed are suitable for use as detection probes in immunohistochemical assays, including multiplex immunohistochemical assays.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: August 3, 2021
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Lei Tang, Wenjun Zhang
  • Patent number: 11035795
    Abstract: A method of distinguishing between proteinaceous and non-proteinaceous particulates in a fluid sample includes the steps of acquiring a brightfield background image of a membrane filter, introducing a fluid sample onto the membrane filter, acquiring a brightfield image of filtered particles resting on the membrane filter, generating a particle mask based on the brightfield background image and the brightfield image of filtered particles, introducing a fluorescent dye onto the membrane filter, detecting fluorescence on the particle mask, and distinguishing between proteinaceous and non-proteinaceous particulates based on the detected fluorescence. A method for detecting other types of particles, such as polysorbate particles, silicone oil or protein monomers is also disclosed.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: June 15, 2021
    Assignee: Optofluidics, Inc.
    Inventors: Bernardo Cordovez, Brian DiPaolo, Gjergji Konica, Alexey Aprelev, Colby Ashcroft, Robert Hart
  • Patent number: 11028432
    Abstract: Methods, devices, and kits are provided for performing PCR and other thermal cycling reactions in <20 seconds per cycle, using induction heating.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: June 8, 2021
    Assignees: BioFire Diagnostics, LLC, University of Utah Research Foundation
    Inventors: David Jones, Carl T. Wittwer
  • Patent number: 10974243
    Abstract: A sensor using electrophoresis may include a microfluidic channel and electrodes on opposite sides of the microfluidic channel to generate an electric field across, or normal to, the channel. The electric field may be used to drive charged particles of material, particularly material suspended in fluid in the microfluidic channel, toward or away from the one of the electrodes. The electric field may be modulated to allow material to continue flowing through the microfluidic channel, to remove non-target material, or to measure another target material.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: April 13, 2021
    Assignee: Qorvo US, Inc.
    Inventor: Thayne L. Edwards
  • Patent number: 10933418
    Abstract: The present invention relates to biological sensing apparatus (12) which is configured to sense particles comprised in fluent material. The biological sensing apparatus (12) comprises particle sensing apparatus (32) comprised in an integrated circuit formed by a semiconductor fabrication process, the particle sensing apparatus being configured to sense an electrical property. The biological sensing apparatus further comprises a flow arrangement 30 configured to contain and provide for flow of fluent material. The particle sensing apparatus (32) is disposed relative to the flow arrangement (30) such that the particle sensing apparatus is operative to sense an electrical property of particles comprised in the fluent material as the fluent material flows through the flow arrangement.
    Type: Grant
    Filed: July 4, 2014
    Date of Patent: March 2, 2021
    Inventor: Keith Muir
  • Patent number: 10913062
    Abstract: Digital microfluidics system with electrodes attached to a PCB has control unit for manipulating liquid droplets by electrowetting, cartridge accommodation site for taking up a disposable cartridge having a working gap in-between two hydrophobic surfaces, and magnetic conduit/backing combination. A barrier element on an individual electrode of the PCB for narrowing the working gap. A disposable cartridge is positioned at the cartridge accommodation site, its flexible working film touching there and of the barrier element an uppermost surface. In the working gap and above a path of selected electrodes a liquid portion or liquid droplet with magnetically responsive beads moves by electrowetting on the electrode path until a magnetic field of the magnetic conduit is reached. The backing magnet is activated before and during the moving to thereby attract and remove magnetically responsive beads therefrom.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 9, 2021
    Assignee: TECAN TRADING AG
    Inventors: Thomas Perroud, Daniel Tran, Daniel Hoffmeyer, Tiffany Lay, Manjeet Dhindsa
  • Patent number: 10898894
    Abstract: Improved diagnostic assemblies are provided. More particularly, the present disclosure provides improved and highly advantageous chip based diagnostic assemblies configured to detect human diseases (e.g., cancer) and/or pathogens, and related methods of use. In exemplary embodiments, the present disclosure provides for consumable micro- or nano-fluidic chip based diagnostic assemblies having visual biosensors, with the diagnostic assemblies using continuous flow-based micro- or nano-fluidic channels and antibody-based immuno-complex designs. In certain embodiments, the diagnostic assembly includes a self-sustainable and operable chip (e.g., thumb-sized chip) that is configured to be deployed as a single use consumable with a direct all-or-none readout as an output to satisfy a point of screening method to screen a population.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: January 26, 2021
    Assignee: New Jersey Institute of Technology
    Inventors: Eon Soo Lee, Bharath Babu Nunna, K. Stephen Suh
  • Patent number: 10888863
    Abstract: This disclosure provides an apparatus and a method for quickly, efficiently and continuously fractionating biomolecules, such as DNAs and proteins based on size and other factors, while allowing imaging of the separated biomolecules as they are processed within the apparatus. The apparatus employs angled nanochannels to first preconcentrate and then separate like molecules. Its embodiments offer improved detection sensitivity and separation resolution over existing technologies and multiplexing capabilities.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: January 12, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Sung Hee Ko, Jongyoon Han
  • Patent number: 10876088
    Abstract: Fluidic multiwell bioreactors are provided as a microphysiological platform for in vitro investigation of multi-organ crosstalks for an extended period of time of at least weeks and months. The disclosed platform is featured with one or more improvements over existing bioreactors, including on-board pumping for pneumatically driven fluid flow, a redesigned spillway for self-leveling from source to sink, a non-contact built-in fluid level sensing device, precise control on fluid flow profile and partitioning, and facile reconfigurations such as daisy chaining and multilayer stacking. The platform supports the culture of multiple organs in a microphysiological, interacted systems, suitable for a wide range of biomedical applications including systemic toxicity studies and physiology-based pharmacokinetic and pharmacodynamic predictions. A process to fabricate the disclosed bioreactors is also provided.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: December 29, 2020
    Inventors: Linda Griffith, David Trumper, Collin Edington, Gaurav Rohatgi, Duncan Freake, Luis Soenksen, Mohan Brij Bhushan
  • Patent number: 10866404
    Abstract: The disclosure provides an electrowetting device in which a sealing material is formed with satisfactory precision while maintaining a good adhesive property between both substrates. In a first hydrophobic layer (12) and a second hydrophobic layer (5), opening patterns (12a, 12b, 5a, and 5b) are provided, and an active substrate (7) and a common electrode substrate (2) are bonded together with a sealing material (14) provided in the opening patterns (12a, 12b, 5a, and 5b) such that a space is formed between the active substrate (7) and the common electrode substrate (2).
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: December 15, 2020
    Inventors: Takeshi Hara, Akihiko Shibata
  • Patent number: 10852273
    Abstract: Methods, kits, and systems are provided for separating, immobilizing, and/or detecting analytes of one or more samples using dipsticks. A ‘dipstick’ is an object that can be embedded and subsequently removed from a separation medium, and to which analytes can be immobilized while the object is embedded in the separation medium. Examples of separation media include an electrophoresis gel of any format and a stationary phase for column chromatography. Embodiments of the present methods include applying a sample to a separation medium; separating analytes of the sample in the separation medium along a separation axis; immobilizing the analytes on a dipstick embedded in the separation medium; removing the dipstick from the separation medium; and detecting the analytes immobilized on the removed dipstick.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: December 1, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: William Strong
  • Patent number: 10816456
    Abstract: A reconfigurable point-of-care system, comprising an analysis device having one or more detection components to perform a diagnostic method on a sample, the sample being loaded on a microfluidic chip, wherein the analysis device provides identification information, an interface device coupled to the analysis device to provide a communication channel, and a reader unit coupled to the communication channel and having a processor to select the diagnostic method based on the identification information and reconfigure one or more components of the interface device based on the analysis device.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 27, 2020
    Inventors: Andre de Oliveira Botelho, Ricardo L. Ohta, Mathias B. Steiner, Jaione Tirapu Azpiroz
  • Patent number: 10807091
    Abstract: A method of driving an active matrix electro-wetting on dielectric (AM-EWOD) device comprises (i) setting a reference electrode to a first reference voltage; (ii) writing a set of data to array element electrodes of array elements of the device; and (iii) either (a) maintaining the voltages written to the array element electrodes until a time t0 or (b) re-writing the set of data N?1 times (where N?2). The reference electrode is then set to a second reference voltage different from the first reference voltage, and features (i) to (iii) are repeated. When the data are first written, there is a delay between the time when the voltage on the reference electrode is transitioned and the time when a given array element is next written with data.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: October 20, 2020
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Jonathan Buse
  • Patent number: 10794895
    Abstract: A nanopore sensor is provided, including a nanopore disposed in a support structure. A fluidic passage is disposed between a first fluidic reservoir and the nanopore to fluidically connect the first fluidic reservoir to the nanopore through the fluidic passage. The fluidic passage has a passage length that is greater than the passage width. A second fluidic reservoir is fluidically connected to the nanopore, with the nanopore providing fluidic communication between the fluidic passage the second reservoir. Electrodes are connected to impose an electrical potential difference across the nanopore. At least one electrical transduction element is disposed in the nanopore sensor with a connection to measure the electrical potential that is local to the fluidic passage.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: October 6, 2020
    Assignee: President and Fellows of Harvard College
    Inventor: Ping Xie
  • Patent number: 10773214
    Abstract: A technology that provides various modular biomimetic microfluidic modules emulating varieties of microvasculature in body. These microfluidic-base capillaries and lymphatic Technology modules are constructed as multilayered-microfluidic microchannels of various shapes, and aspect ratios using diverse biocompatible microfluidic polymers. Then, various semipermeable membranes are sandwiched in between these multilayered microfluidic microchannels. These membranes have different chemical, physical characteristics and MWCO values. Consequently, this design will produce much smaller dimension channels similar to human vasculature to achieve biomimetic properties like of human organs and tissues. By interchanging microfluidic-layers or the membranes various diverse modules are designed that act as building blocks for constructing various medical devices, various forms of dialysis devices including albumin and lipid dialysis, water purification, bioreactors, bio-artificial organ support systems.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: September 15, 2020
    Inventor: Saeid Mordechai Nosrati
  • Patent number: 10767940
    Abstract: A method of operating a heat exchanger is disclosed in which an electric field is applied to a hydrophobic surface having condensed water droplets thereon to reduce a contact angle between the individual droplet surfaces and the hydrophobic surface, and to increase droplet surface energy to a second surface energy level. The electric field is removed to increase the contact angle between the individual droplet surfaces and the hydrophobic surface, and to reduce droplet surface energy to a third surface energy level. The third surface energy level is greater than the first surface energy level and greater than a surface energy level for a free droplet. A portion of the droplet surface energy is converted to kinetic energy to detach droplets from the hydrophobic surface. The detached droplets are removed from the heat rejection side fluid flow path.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: September 8, 2020
    Inventors: Abbas A. Alahyari, Miad Yazdani, Craig R. Walker
  • Patent number: 10761092
    Abstract: Provided is a multi-flux micro-fluidic chip including a chip body. The chip body includes a fluid inflow cavity communicated with an external air path, reaction-quantification cavities, waste liquid cavities, and a fluid path distribution cavity disposed at a middle position of the chip body. The two or more reaction-quantification cavities are distributed on two sides of the fluid path distribution cavity in rows to form the first and second row of reaction-quantification cavities respectively; and they are communicated with a fluid outlet of the fluid path distribution cavity through fluid path branches, and a fluid inlet of the fluid path distribution cavity through fluid path branches, and a fluid inlet of the fluid path distribution cavity is communicated with a fluid outlet of the fluid inflow cavity and an external fluid path, which making it possible to detect multiple items simultaneously and greatly improving the flux of the micro-fluidic chip.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 1, 2020
    Inventors: Xingshang Xu, Jeffery Chen, Long Wang, Weiyan Sun, Qilu Wan, Shen Yang
  • Patent number: 10737261
    Abstract: The present disclosure concerns embodiments of reversibly bonded devices that comprise a reversible bonding component. The reversible bonding component is able to exhibit strong adhesive properties so as to couple device components, but upon exposure to an energy source, the strong adhesive properties are weakened. By weakening the adhesive strength of the reversible bonding component, the device can be deconstructed to access internal biological samples for analysis and characterization.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 11, 2020
    Assignee: Triad National Security, LLC
    Inventors: Pulak Nath, Jen-Huang Huang
  • Patent number: 10739240
    Abstract: A particle analyzer (1) includes a measurement cell (2) and a measurement section (10). The particle analyzer (1) further includes a migration section. The migration section includes magnets (3a and 3b), electrodes (4a, 4b, and 4c), a power source (5), and a laser light source (6). The migration section causes migration of particles contained in a medium loaded into the measurement cell (2) by at least two of a magnetophoresis method, a dielectrophoresis method, an electromagnetophoresis method, and a photophoresis method. The measurement section (10) performs determination of a physical quantity of the particles and determination of a migration rate of the particles.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: August 11, 2020
    Assignee: KAWANO Lab. Inc.
    Inventor: Makoto Kawano
  • Patent number: 10730046
    Abstract: A fluid handling system for applying a plurality of pulses of fluid shear stress to a fluid sample may comprise a first sample chamber; a second sample chamber; a plurality of conduits mounted between and in fluid communication with the first sample chamber and the second sample chamber; and a force delivery system mounted to the first sample chamber and configured to apply a force sufficient to push the fluid sample from the first sample chamber through each of the conduits at a substantially constant flow rate to the second sample chamber. The plurality of conduits may be arranged in series and separated by additional sample chambers or arranged such that the conduits are substantially parallel to one another. The force delivery system may be a gas delivery system or a linear drive assembly.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: August 4, 2020
    Assignee: University of Iowa Research Foundation
    Inventors: Michael D. Henry, Sarah C. Vigmostad, Michael Cable, Benjamin L. Krog, Eric Leopold, Rupesh Desai
  • Patent number: 10730044
    Abstract: An assay plate assembly comprising a plurality of microfluidic modules arranged in a rectilinear matrix of rows and columns microfluidic channels. Each microfluidic module has an inlet well leading to a serpentine microfluidic channel that is set at a cant angle. The well is laterally offset from the detection area to avoid optical interference. The geometric center of each detection area is positioned according to ANSI/SLAS standards for well-centers. A drain from each microfluidic channel is located so that it does not interfere with any detection areas. An array of optically-transmissive micro-posts are disposed within each microfluidic channel. The micro-posts extend perpendicularly from the top surface of the top plate toward the underside and are equally distributed throughout the entire detection area. The plate assembly provides reduced assay time and sample volume, and increased sensitivity and specificity in biological and chemical assays.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: August 4, 2020
    Inventors: Maung Kyaw Khaing Oo, Xudong Fan
  • Patent number: 10724957
    Abstract: A micro-droplet fluorescence detection system, comprising a microfluidic chip (1), an optical path device, and a movement control device for controlling the chip (1) and an optical path device to move, so that the chip (1) moves relative to the optical path device during a fluorescence scanning detection process of micro-droplets in the chip (1), and the micro-droplets inside the chip (1) remains stationary relative to the chip (1). The micro-droplet fluorescence detection system has advantages of avoiding cross contamination due to closed detection, high detection rate, high throughput and high sensitivity.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: July 28, 2020
    Inventors: Shisheng Su, Yong Guo, Gaoshan Jing, Bo Wang, Miaoqi Zhang, Zhe Liu, Huafang Gao, Lingxiang Zhu, Wenjun Yang, Yongdou Wang
  • Patent number: 10703105
    Abstract: A liquid ejection head is provided with an ejection orifice array having multiple ejection orifices in order to eject a liquid; multiple energy-generating elements for generating energy in order to eject the liquid; a substrate provided with the energy-generating elements; a through-port array having multiple through-ports penetrating the substrate; multiple linear liquid flow paths positioned between the through-port array and the ejection orifice array and connected to respective ejection orifices of the ejection orifice array and respective through-ports of the through-port array; and first and second electrodes arranged in each of the multiple liquid flow paths for generating an electroosmotic flow in the liquid.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: July 7, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshiyuki Nakagawa, Kazuhiro Yamada, Noriyasu Nagai, Takuro Yamazaki, Toru Nakakubo, Akira Yamamoto, Masafumi Morisue, Ryo Kasai
  • Patent number: 10705098
    Abstract: Artificial microvascular network (AMVN) devices are provided and related methods of making and methods of using such devices are provided. The present disclosure generally relates to an AMVN device comprising a substrate including a capillary network configured so as to simulate those actually encountered in the circulation of various humans and animal model systems. In certain aspects, the AMVN devices may be used, e.g., to investigate the effect of storing RBCs under aerobic and anaerobic conditions. However, the use of such AMVN devices is not so limited.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: July 7, 2020
    Assignee: Hemanext Inc.
    Inventors: Tatsuro Yoshida, Sergey S. Shevkoplyas, Jennie M. Burns
  • Patent number: 10698555
    Abstract: An organic light-emitting diode (OLED) display device and a pressure touch driving method, the OLED display device includes: a silicon substrate; a pixel unit and a magneto-dependent sensor disposed on one side of the silicon substrate; and a magnetic field generator configured to provide magnetic fields running through a plane provided with the magneto-dependent sensor to the magneto-dependent sensor; the magneto-dependent sensor is configured to detect magnetic variation and convert the magnetic variation into a voltage difference for output.
    Type: Grant
    Filed: April 1, 2017
    Date of Patent: June 30, 2020
    Assignees: BOE Technology Group Co., Ltd., Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Pengpeng Wang, Xue Dong, Xiaochuan Chen, Haisheng Wang, Yingming Liu, Xiaoliang Ding, Weijie Zhao, Shengji Yang, Changfeng Li, Wei Liu, Jian Gao
  • Patent number: 10677708
    Abstract: A microfluidic device for detecting rare cells in a fluid sample comprises the rare cell and other cells. The microfluidic device comprises an inlet for receiving the fluid sample, a labyrinth channel structure in fluid communication with the inlet, and an outlet in fluid communication with the labyrinth channel structure for collecting the rare cells separated from the other cells in the fluid sample. The labyrinth channel structure comprises at least one channel through which the fluid sample flows. The at least one channel has a plurality of segments and a plurality of corners with each corner defined between adjacent segments. The presence of the plurality of corners induces separation of the rare cells from the other cells in the fluid sample as the rare cells move to a first equilibrium position within the at least one channel when a ratio of inertial lift forces (FZ) and Dean flow (FD) of the fluid sample is from 2 to 10.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: June 9, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Sunitha Nagrath, Hyeun Joong Yoon, Eric Lin, Max S. Wicha, Lianette Rivera Baez, Diane M. Simeone
  • Patent number: 10676352
    Abstract: Constricted nanochannel devices suitable for use in analysis of macromolecular structure, including DNA sequencing, are disclosed. Also disclosed are methods for fabricating such devices and for analyzing macromolecules using such devices.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: June 9, 2020
    Inventors: Han Cao, Parikshit A. Deshpande, Michael David Austin, Michael Boyce-Jacino
  • Patent number: 10661273
    Abstract: Methods of forming two-dimensional nanopatterns are provided. The method may comprise periodically contacting a vibrating tool comprising a patterned grating edge with a substrate along a first direction in a grating-vibrational indentation patterning process. The patterned grating edge defines a plurality of rows and a plurality of interspersed troughs. The periodic contacting creates a two dimensional array of discontinuous voids in a single-stroke across the surface of the substrate. In other aspects, a microfluidic device for selective arrangement of a microspecies or nanospecies is provided, that includes a substrate comprising a surface defining a two-dimensional pattern of microvoids or nanovoids. In yet other aspects, the present disclosure provides a method for selective arrangement of a microspecies or nanospecies on a substrate.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 26, 2020
    Inventors: Jong G. Ok, Lingjie J. Guo, Long Chen, Ashwin Panday
  • Patent number: 10661245
    Abstract: A method of driving an element of an active matrix electro-wetting on dielectric (AM-EWOD) device comprise applying a first alternating voltage to a reference electrode of the AM-EWOD device; and either (i) applying to the element electrode a second alternating voltage that has the same frequency as the first alternating voltage and that is out of phase with the first alternating voltage or (ii) holding the element electrode in a high impedance state. The effect of applying the second alternating voltage to the element electrode is to put the element in an actuated state in which the element is configured to actuate any liquid droplet present in the element, while the effect of holding the element electrode in the high impedance state is to put the element in a non-actuated state.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 26, 2020
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Christopher James Brown
  • Patent number: 10654711
    Abstract: A droplet control and detection device and an operating method thereof are provided. The droplet control and detection device includes: a light source; a first electrode; a second electrode; a droplet arranged on a light-exiting side of the light source, where the droplet is movable under the effect of an electric field formed between the first electrode and the second electrode; a photoelectric detection structure configured to detect light emitted by the light source and reflected by the droplet; and a processing circuit configured to obtain droplet information according to a detection result of the photoelectric detection structure and control an electrical signal applied on the first electrode and the second electrode according to the droplet information.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: May 19, 2020
    Inventors: Xiaoliang Ding, Xue Dong, Haisheng Wang, Yingming Liu, Xueyou Cao, Yuzhen Guo, Ping Zhang, Pengpeng Wang, Yanling Han, Chihjen Cheng, Likai Deng, Yangbing Li
  • Patent number: 10625256
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: April 21, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Patent number: 10597339
    Abstract: A method is described for chiral resolution of chiral species contained in a liquid placed in a cell formed by an inner wall and an outer wall surrounding the inner wall over at least a portion of the inner wall, where each of the outer and inner walls are a solid of revolution about a longitudinal axis and are coaxial to one another, where the method comprises rotating the outer wall in one direction of rotation with respect to the inner wall for generating a Taylor-Couette flow within the liquid; collecting at least one of the chiral species.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: March 24, 2020
    Assignees: Universite de Strasbourg, Centre National de la Recherche Scientifique—CNRS
    Inventors: Thomas Marinus Hermans, Akihiro Sato, Vincent Marichez
  • Patent number: 10591488
    Abstract: Devices and methods for characterization of samples are provided. Samples may comprise one or more analytes. Some methods described herein include performing enrichment steps on a device. Some methods described herein include performing mobilization of analytes. Analytes may then be further processed and characterized.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 17, 2020
    Assignee: Intabio, Inc.
    Inventors: Erik Gentalen, Scott Mack
  • Patent number: 10591401
    Abstract: The present disclosure relates to a device for chromatic discrimination and counting of organisms in a liquid medium with application to organisms belonging to the genus Daphnia, Ceriodaphnia, Artemia, as well Collembola; or similar organisms. The device can be applied in the field of ecotoxicology and involves technologies in the areas of analytical instrumentation, electronics, computer science and biology.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: March 17, 2020
    Inventors: Miguel Augusto Mendes Oliveira E Silva, Rui Manuel Escadas Ramos Martins, Amadeu Mortágua Velho Da Maia Soares, Sizenando Nogueira De Abreu
  • Patent number: 10576470
    Abstract: An AM-EWOD device comprises: first and second substrates (72,36); first and second array element electrodes (38A, 38B) disposed on the first substrate (72) and defining first and second array elements in the AM-EWOD device; a reference electrode (28) disposed on the first substrate (72); a sensor; and a reference electrode drive circuit (50). The reference electrode drive circuit (50) is configured to drive the reference electrode with a first voltage waveform for actuating an array element or with a second voltage waveform different from the first voltage waveform when performing a sensing operation.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: March 3, 2020
    Assignee: Sharp Life Science (EU) Limited
    Inventor: Benjamin James Hadwen
  • Patent number: 10557167
    Abstract: Devices, systems and methods for sequencing protein samples are provided. In some examples, currents generated when a monomer passes through between electrodes of a nanogap electrode pair are measured for each of several different distances, so that monomers are identified when compared to a reference physical quantity of a known monomer, which may be obtained from a current measured with a similar inter-electrode distance(s) at which each of plural kinds of monomers are identifiable and ordered with predetermined accuracy and based on a detected physical quantity obtained from a tunneling current, which may be further normalized by the use of one or more reference substances.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 11, 2020
    Inventors: Tomoji Kawai, Masateru Taniguchi, Takahito Ohshiro, Mark Oldham, Eric Nordman
  • Patent number: 10551319
    Abstract: A fluidic chip includes at least one nanochannel array, the nanochannel array including a surface having a nanofluidic area formed in the material of the surface; a microfluidic area on said surface; a gradient interface area having a gradual elevation of height linking the microfluidic area and the nanofluidic area; and a sample reservoir capable of receiving a fluid in fluid communication with the microfluidic area. In another embodiment, a fluidic chip includes at least one nanochannel array, the nanochannel array includes a surface having a nanofluidic area formed in the material of the surface; a microfluidic area on said surface; and a gradient interface area linking the microfluidic area and the nanofluidic area, where the gradient interface area comprises a plurality of gradient structures, and the lateral spacing distance between said gradient structures decreases towards said nanofluidic area; and a sample reservoir capable of receiving a fluid in fluid communication with the microfluidic area.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: February 4, 2020
    Assignee: Princeton University
    Inventors: Han Cao, Jonas O. Tegenfeldt, Stephen Chou, Robert H. Austin
  • Patent number: 10537869
    Abstract: A micro-channel reaction apparatus includes a first mixing device and a first jetting device. The first mixing device includes a first inflow channel and a second inflow channel respectively used to direct a first fluid and a second fluid into the micro-channel reaction apparatus. The first jetting device includes a first tapering portion and a first flared portion, wherein one end of the first tapering portion is connected to the first inflow channel and the second inflow channel; another end of the first tapering portion is connected to the first flared portion; and the first tapering portion has a contract ratio of inner diameter ranging from 0.1 to 0.75.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: January 21, 2020
    Inventors: Mu-Jen Young, Te-Lung Chang, Chen-Ji Kao, Jinn-Jong Wong, Jenn-Line Sheu, Ping-Shan Lai
  • Patent number: 10525462
    Abstract: Disclosed herein are devices, systems, and methods for sorting a particle based on a characteristic of a particle.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: January 7, 2020
    Inventors: Kenneth R. Brown, Robert Clark, Alexa Harter, Kellie McConnell, Brian McMahon, Christine K. Payne, Gang Shu, Curtis Volin
  • Patent number: 10527584
    Abstract: A system comprising a protein and a channel. The channel has a domain that binds a membranal component. The channel is configured to carry a liquid sample to an isotachophoresis (ITP) apparatus. The liquid sample comprising or suspected of comprising a cell, a cell membrane or a fraction of a cell membrane. The ITP apparatus comprises a first zone and a second zone. The first zone is configured to contain a solution of high effective mobility leading electrolyte (LE) ion. The second zone is configured to contain a solution of low effective mobility trailing electrolyte (TE) ion. The first zone and the second zone are configured to be operably connected to at least one anode and at least one cathode.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: January 7, 2020
    Assignee: Technion Research and Development Foundation Limited
    Inventors: Moran Bercovici, Ortal Schwartz
  • Patent number: 10520441
    Abstract: Devices to detect a substance and methods of producing such a device are disclosed. An example device to detect a substance includes a housing defining a first chamber and a substrate coupled to the housing. The substrate includes nanostructures positioned within the first chamber. The nanostructures are to react to the substance when exposed thereto. The device includes a first heater positioned within the first chamber. The heater is to heat at least a portion of the substance to ready the device for analysis.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 31, 2019
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zhiyong Li, Ning Ge, Steven J. Barcelo, Huei Pei Kuo
  • Patent number: 10518264
    Abstract: A microreactor includes: a substrate (2; 102; 202) made of semiconductor material; a plurality of wells (5; 105; 205) separated by walls (6; 106; 206) in the substrate (2; 102; 202); a dielectric structure (7; 107; 207a, 207b) coating at least the top of the walls (6; 106; 206); a cap (3; 103; 203), bonded to the substrate (2; 102; 202) and defining a chamber (10; 110; 210) above the wells (5; 105; 205); and a biasing structure (2, 8, 13; 102, 108, 113; 202, 208a, 208b, 213), configured for setting up a voltage (VB) between the substrate (2; 102; 202) and the chamber (10; 110; 210).
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: December 31, 2019
    Inventors: Sabrina Conoci, Maria Eloisa Castagna, Massimo Orazio Spata
  • Patent number: 10501716
    Abstract: Methods for introducing exogenous material into a cell are provided, which include exposing the cell to a transient decrease in pressure in the presence of the exogenous material. Also provided are devices for performing the method of the invention.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 10, 2019
    Assignee: Indee. Inc.
    Inventor: Ryan Pawell