With Control Responsive To Sensed Condition Patents (Class 204/519)
  • Patent number: 11079377
    Abstract: A process for monitoring binding events, a coating compound, and a device for monitoring binding events are disclosed. The process includes providing two reservoirs that contain an electrically conductive fluid, wherein the reservoirs are separated by a membrane having a nanopore. The process also includes selecting a target compound, selecting a ligand based on the selection of the target compound, and preparing a coating that includes the coating compound, wherein the coating compound includes the ligand and a moiety that immobilizes the ligand. Additionally, the process includes applying the coating to the inner surface of the nanopore, adding the target compound to a conductive liquid in the first chamber, establishing a voltage gradient across the membrane, and electrically monitoring translocation of the target molecule. The device includes the reservoirs and the membrane having the coated nanopore.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 3, 2021
    Assignee: International Business Machines Corporation
    Inventors: Priscilla Racquel Rogers, Stefan Harrer, Ali Afzali-Ardakani, Jose Miguel Lobez Comeras, Sung Cheol Kim, Natalie J. Gunn
  • Patent number: 11008242
    Abstract: A deep sludge dewatering method using electroosmosis with filter bags, including (1) placing a filter bag on a slope on which a cathode electrode is arranged; (2) injecting sludge into the filter bag, and after the filter bag is filled with the sludge, closing an inlet of the filter bag; and (3) laying an anode electrode on the filter bag filled with the sludge, and connecting the cathode electrode and the anode electrode to a DC power supply via an electric wire, and carrying out energization for electroosmosis so that water flows down the slope. The present invention can be used for recycling of the sludge produced in underground and tunnel excavation projects, and has the advantages of large processing capacity, simple process, good treatment effect and available resource recycling.
    Type: Grant
    Filed: July 6, 2019
    Date of Patent: May 18, 2021
    Assignee: PowerChina Huadong Engineering Corporation Limited
    Inventors: Yingchun Zhuang, Rui Song, Chen Liu, Dundun Shi, Shiming Liu
  • Patent number: 10350508
    Abstract: A reactor comprising a plurality of vessels, each having a heat exchange surface for processing a fluid as a thin film flow, the vessels arranged in a concentric manner; a plurality of annular spaces situated between the vessels; and a pathway for directing a heat exchange fluid from one vessel to an adjacent vessel for creating a temperature differential between the heat exchange surfaces and the fluid being processed. A system comprising a fluid source, a reactor, and a vapor outlet and a processed fluid outlet through generated vapor and processed fluid are directed out of the reactor, respectively. A method comprising providing a plurality of concentrically arranged surfaces in spaced relation, distributing a fluid to be processed against the surfaces in a controlled manner to form a substantially uniform thin film flow thereon, and evaporating at least a portion of the fluid being processed along the plurality of surfaces.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: July 16, 2019
    Assignee: R3 Fusion, Inc.
    Inventors: Robert Campbell, Jeane A. Schalm
  • Patent number: 9962658
    Abstract: The object of the present invention is a method for recirculating a reprocessing effluent comprising chloride ions from an ion exchange resin comprising the following steps: (ii) selecting fractions A, B, and optionally B?, directly stemming from a reprocessing effluent comprising chloride ions or after one or several steps for modifying the chloride ion concentration, having concentrations of chloride ions (g/l) of respectively (a), (b) and (b?)>0 g/l, with (a)>(b); (iii) transferring by electrodialysis the chloride ions from the fraction B to fraction A for obtaining a fraction C having a chloride ion concentration (c) greater than (a); or (iv) transferring by electrodialysis the chloride ions from fraction B to fraction B?, in order to obtain a fraction B? having a concentration of chloride ions (b?) greater than (b?) and then mixing the fractions B? and A in order to obtain a fraction C having a chloride ion concentration (c) greater than (a).
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: May 8, 2018
    Assignee: Eurodia Industrie SA
    Inventors: Marc André Theoleyre, Anne Gonin, Gérard Guerif
  • Patent number: 9914713
    Abstract: The production of organic acids in low-cost, high-efficiency fermentation system makes available a new route to chemical production from biomass. A process for producing a hydrogenation product involving carboxylic acid esters recovered directly from a fermentation process is described.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: March 13, 2018
    Assignee: Archer Daniels Midland Company
    Inventors: Kenneth Stensrud, Padmesh Venkitasubramanian
  • Patent number: 9011660
    Abstract: Electrochemical devices and methods for water treatment are disclosed. An electrodeionization device (100) may include one or more compartments (110) containing an ionselective media, such as boron-selective resin (170). Cyclic adsorption of target ions and regeneration of the media in-situ is used to treat process water, and may be driven by the promotion of various pH conditions within the electrochemical device.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: April 21, 2015
    Assignee: Evoqua Water Technologies LLC
    Inventors: Evgeniya Freydina, Joseph D. Gifford
  • Publication number: 20150101932
    Abstract: The disclosure provides cassettes, electrophoresis systems, methods for making the device, and methods of fractionating a sample using the cassettes and electrophoresis systems described herein.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Inventors: Douglas Grosvenor Sabin, Joshua Gomes, Todd J. Barbera, Charles Sidoti, Simranjit Singh, T. Christian Boles
  • Publication number: 20150096891
    Abstract: The present disclosure is directed at an apparatus, method and plant for desalinating saltwater and contaminated saltwater. The apparatus includes a stack and a manifolding assembly. The stack includes a product chamber, a first and second concentrate chamber, an anion exchange membrane forming a boundary between the first concentrate chamber and the product chamber and a cation exchange membrane forming a boundary between the second concentrate chamber and the product chamber. The manifolding assembly includes product and concentrate manifolding fluidly coupled to the product and concentrate chambers respectively, to convey a saltwater being desalinated to and away from the product chamber, and a concentrate to and away from the concentrate chambers. The stack may include a diluent chamber and adjacent anion or cation exchange membranes between the product chamber, diluent chamber and concentrate chamber to respectively convey anions or cations across multiple chambers.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 9, 2015
    Inventors: Benjamin Sparrow, Henry Tsin, Joshua Zoshi, Malcolm Man
  • Patent number: 8894834
    Abstract: A water treatment system provides treated or softened water to a point of use by removing a portion of any hardness-causing species contained in water from a point of entry coming from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system typically treats the water containing at least some undesirable species before delivering the treated water to a point of use. The water treatment system has a reservoir system in line with an electrochemical device such as an electrodeionization device. The water treatment system has a sensor or a set of sensors for measuring at least one property of the water or an operating condition of the treatment system.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: November 25, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventors: Evgeniya Freydina, Anil D. Jha, Frederick Wilkins, Aytac Sezgi, Reshma Madhusudan
  • Patent number: 8815067
    Abstract: Device for the removal of ions from a polar liquid, e.g. water, comprising at least one compartment which comprises at least one inlet for an entering polar liquid flow and at least one outlet for an outgoing deionized liquid flow, in which said compartment an electrochemically regenerable ion-exchange material fills a zone through which zone a liquid flow is able to pass, the device being characterized in that it comprises one sensor of at least one dimensional change of the ion-exchange material. The sensor can comprise a photo-sensor or a sensor of mechanical stress. Preferably an apparatus connected to the sensor is able to analyze this dimensional change and to control the electric current. Method of using said device, whereby the electrical current applied to the device is controlled according to the expansion of the resin.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: August 26, 2014
    Assignee: EMD Millipore Corporation
    Inventor: Andrej Grabowski
  • Publication number: 20140216934
    Abstract: Electrically-driven separation systems and methods for use in oil recovery.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 7, 2014
    Applicant: Evoqua Water Technologies LLC
    Inventors: Rongqiang Fu, Li-Shiang Liang, Kee Hoe Ng
  • Patent number: 8795531
    Abstract: An embodiment of the present invention includes: a recycle line that brings a part of salt-enriched membrane separation concentrated water 26 back to the rear flow side of a pretreatment apparatus 12; a water discharge line that discharges the remained concentrated water into a sea area; and a control apparatus 31 that controls to adjust the ratio between the discharging amount of the discharging membrane separation concentrated water to be discharged into a sea area and the supplying amount of supplying seawater. A pH is set to be equal to or less than 7.3 by adding acid 21. The salt 18 is obtained from the dryer 19, and produced water (fresh water) 29 is obtained by combining evaporated water 28 supplied from the evaporator 16 with the permeated water 24 supplied from the reverse osmosis membrane apparatus 25.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: August 5, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kazuhisa Takeuchi, Yoshiaki Ito, Hidemasa Kakigami, Hideo Iwahashi, Katsunori Matsui, Kenji Tanaka
  • Publication number: 20140197029
    Abstract: An apparatus, method and plant for desalinating saltwater and contaminated saltwater. The apparatus includes a stack and a manifolding assembly. The stack includes a product chamber, a first and second concentrate chamber, an anion exchange membrane forming a boundary between the first concentrate chamber and the product chamber and a cation exchange membrane forming a boundary between the second concentrate chamber and the product chamber. The manifolding assembly includes product and concentrate manifolding fluidly coupled to the product and concentrate chambers respectively, to convey a saltwater being desalinated to and away from the product chamber, and a concentrate to and away from the concentrate chambers. The stack may include a diluent chamber and adjacent anion or cation exchange membranes between the product chamber, diluent chamber and concentrate chamber to respectively convey anions or cations across multiple chambers.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 17, 2014
    Applicant: SALTWORKS TECHNOLOGIES, INC.
    Inventors: BENJAMIN SPARROW, HENRY TSIN, JOSHUA ZOSHI, MALCOLM MAN
  • Publication number: 20140174928
    Abstract: Various aspects of the present disclosure are directed toward apparatus and methods method for filtering water fluid by screening ionic minerals including sodium chloride from the water fluid. In one embodiment, the water fluid is passed into a work zone defined at least in part by oppositely-arranged first and second porous structures, each of which have a plurality of gated channels. The water fluid is processed in the work zone by applying respective electric voltages to electrically bias the first porous structure and the second porous structure. The respective electric voltages deplete sodium chloride ions in the water fluid in the work zone due to ion-flux continuity. In response to processing of the water fluid, ion-filtered water is collected from the work zone.
    Type: Application
    Filed: October 1, 2013
    Publication date: June 26, 2014
    Inventors: Kee-Hyun Paik, Yang Liu, Vincent Tabard-Cossa, Robert W. Dutton
  • Publication number: 20140158539
    Abstract: There are provided an active regeneration method for a deionization module, and a water treatment apparatus using the same. The water treatment apparatus may include: a power applying unit applying power to the deionization module in order to perform a regeneration process a regeneration parameter measuring unit measuring a regeneration parameter of the deionization module when the power is applied; and a controlling unit terminating the regeneration process, based on the measured regeneration parameter.
    Type: Application
    Filed: April 18, 2012
    Publication date: June 12, 2014
    Applicant: COWAY CO., LTD.
    Inventors: Kyung-Heon Lee, Tae-Yong Son, Hyoung-Min Moon, Soo-Young Lee, Hee-Do Jung, Hyun-Woo Lee
  • Publication number: 20140158538
    Abstract: Systems and methods for managing the potassium concentration of a dialysate fluid during hemodialysis therapy using cation exchange materials that do not release sodium ions.
    Type: Application
    Filed: February 2, 2013
    Publication date: June 12, 2014
    Applicant: Medtronic, Inc.
    Inventors: Kenneth J. COLLIER, Martin T. Gerber, David B. Lura, Thomas E. Meyer, Bryant J. Pudil
  • Publication number: 20140102902
    Abstract: Provided are apparatus and method for controlling total dissolved solids, and water treatment apparatus including apparatus for controlling total dissolved solids. The total dissolved solid controlling apparatus includes, a filtering unit including a deionizing filter removing dissolved solids from inflow raw water by an input current and, a control unit controlling the input current such that water discharged from the deionizing filter corresponds to target total dissolved solids.
    Type: Application
    Filed: May 24, 2012
    Publication date: April 17, 2014
    Applicant: COWAY CO., LTD.
    Inventors: Tae-Yong Son, Soo-Young Lee, Hyoung-Min Moon, Kyung-Heon Lee, Hee-Do Jung, Hyun-Woo Lee, Jin-Pyo Hong
  • Patent number: 8658043
    Abstract: A water treatment system provides treated water to a point of use by removing at least a portion of any hardness-causing species contained in water from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system typically receives water from the water source or a point of entry and purifies the water containing at least some undesirable species before delivering the treated water to a point of use. The water treatment system has a pressurized reservoir system in line with an electrochemical device such as an electrodeionization device. The water treatment system can have a controller for adjusting or regulating at least one operating parameter of the treatment system or a component of the water treatment system. The electrochemical device can be operated at a low current and low flow rate to minimize water splitting or polarization, which minimizes scale formation.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 25, 2014
    Assignee: Siemens Water Technologies LLC
    Inventors: Frederick Wilkins, Evgeniya Freydina, Aytac Sezgi, Reshma Madhusudan, Anil D. Jha
  • Publication number: 20140008228
    Abstract: An electrodialysis unit for treating water comprises a membrane cell, a temperature monitoring device for monitoring the temperature of incoming water and a heater for increasing the temperature of the incoming water before it reaches the membrane cell; wherein the heater is arranged to operate to increase the temperature of the incoming water when the original water temperature is below a predetermined level.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 9, 2014
    Applicant: OCEANSAVER AS
    Inventor: Aage Bjorn Andersen
  • Publication number: 20130277219
    Abstract: Apparatuses and methods for purifying proteins and other target molecules based on pI are provided.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 24, 2013
    Inventors: Aran Paulus, Roumen Bogoev, Elad Brod, Uri Sivan
  • Patent number: 8557098
    Abstract: A capacitive deionization device includes; at least one flow path configured to receive influent fluid, at least one pair of electrodes, at least one charge barrier disposed between the at least one flow path and a corresponding electrode of the at least one pair of electrodes, at least one electrolyte solution disposed between at least one of the at least one pair of electrodes and a corresponding charge barrier of the at least one charge barrier, and at least one electrolyte compensation device in fluid communication with the at least one electrolyte solution, wherein the at least one electrolyte solution differs from the influent fluid.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-hyun Kim, Hyo-rang Kang, Ho-jung Yang, Hyun-seok Kim
  • Publication number: 20130264208
    Abstract: Electrochemical devices and methods for water treatment are disclosed. An electrodeionization device (100) may include one or more compartments (110) containing an ionselective media, such as boron-selective resin (170). Cyclic adsorption of target ions and regeneration of the media in-situ is used to treat process water, and may be driven by the promotion of various pH conditions within the electrochemical device.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 10, 2013
    Applicant: SIEMENS INDUSTRY, INC.
    Inventors: Evgeniya Freydina, Joseph D. Gifford
  • Publication number: 20130256118
    Abstract: Described are techniques for optical detection of single molecule signals from a nanopore array for analysis of nucleic acid sequences. These techniques are useful for rapid multiplexed DNA sequencing.
    Type: Application
    Filed: May 11, 2011
    Publication date: October 3, 2013
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Amit Meller, Zhiping Weng, Alon Singer, Benjamin McNally
  • Patent number: 8480873
    Abstract: Device for the removal of ions from a polar liquid, e.g. water, including at least one compartment which includes at least one inlet for an entering polar liquid flow and at least one outlet for an outgoing deionized liquid flow, in which the compartment an electrochemically regenerable ion-exchange material fills a zone through which zone a liquid flow is able to pass, the device including one sensor of at least one dimensional change of the ion-exchange material. The sensor can include a photo-sensor or a sensor of mechanical stress. Preferably an apparatus connected to the sensor is able to analyze this dimensional change and to control the electric current. Also disclosed is a method of using the device, whereby the electrical current applied to the device is controlled according to the expansion of the resin.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 9, 2013
    Assignee: EMD Millipore Corporation
    Inventor: Andrej Grabowski
  • Publication number: 20130062207
    Abstract: A reverse electrodialyzer has a plurality of concentrated compartments and diluted compartments arranged alternatively. The concentrated compartments and the diluted compartments are formed by successive alternatively arranged oppositely charged ion exchange membranes between two electrodes. A brine solution is fed into the concentrated compartments, and a diluted solution is into the diluted compartments, the salinity of the diluted solution being lower than the salinity of the brine solution. Ions from the brine solution in the concentrated compartments pass through the membranes to the diluted solution in the diluted compartments forming a diluted brine solution in the concentrated compartments. The brine solution is extracted from the concentrated compartments for disposal. An electrical energy is produced due to the concentration difference of the brine solution and the diluted solution.
    Type: Application
    Filed: May 12, 2010
    Publication date: March 14, 2013
    Inventor: Rongqiang Fu
  • Publication number: 20120273354
    Abstract: A dialysis device for operation in multiple modes and for maintaining a known gradient of potassium ion or other electrolyte between the blood of a patient and a dialysate fluid is described. The dialysis device is capable of being used for hemodialysis or peritoneal dialysis, and the dialysis device is capable of operation with a dialysate purification unit outside of a clinical setting or with a supply of water that can be supplied in a clinical setting. The dialysis device has a composition sensor containing a potassium-sensitive electrode for measuring a potassium ion concentration in one or more of the patient's blood and the dialysate fluid and an infusate pump operated to adjust a potassium ion concentration in the dialysate fluid based at least in part on data from the composition sensor.
    Type: Application
    Filed: April 19, 2012
    Publication date: November 1, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Soykan Orhan, Bryant J. Pudil, Thomas E. Meyer
  • Publication number: 20120232458
    Abstract: Systems and methods utilize semipermeable nanotubes in conjunction with application of controlled electrical potentials across semipermeable nanotube walls allow selective transport of charged impurities (e.g., charged impurities, ions, etc.) from a fluid into these nanotubes. Impurities collected in these nanotubes can then be removed from the fluid, (e.g., blood) as a waste stream. A collection of semipermeable nanotubes each carrying a waste stream can be aggregated and merged into a ureter for excretion thereby providing an artificial kidney system. Sensors that detect/measure various impurities may be included in the system to feed information to a microprocessor to inform on concentrations of impurities, and thereby control electrical potentials applied to the system.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Inventor: Zvi Herschman
  • Publication number: 20120199483
    Abstract: A nanopore capture system may include a material configured to pass through a nanopore device in a controlled manner based upon its interaction with the nanopore device. The system may also include a capture mechanism connected to one end of the material. The capture mechanism may be configured to catch a particular type of molecule while ignoring other types of molecules. The system may also include a controller to manipulate and/or detect the particular type of molecule.
    Type: Application
    Filed: April 21, 2012
    Publication date: August 9, 2012
    Applicant: International Business Machines Corporation
    Inventors: Stanislav Polonsky, Ali Afzali-Ardakani, Hongbo Peng, Gustavo A. Stolovitzky, Ajay A. Royyuru, Mark N. Wegman
  • Publication number: 20120138467
    Abstract: Device (2) for the removal of ions from a polar liquid (F), e.g. water, comprising at least one compartment (14?) which comprises at least one inlet for an entering polar liquid flow and at least one outlet for an outgoing deionized liquid flow (D), in which said compartment (14?) an electrochemically regenerable ion-exchange material fills a zone through which zone a liquid flow is able to pass, the device (2) being characterized in that it comprises one sensor (1) of at least one dimensional change of the ion-exchange material. The sensor can comprise a photo-sensor or a sensor of mechanical stress. Preferably an apparatus (100, 10, 11) connected to the sensor is able to analyze this dimensional change and to control the electric current. Method of using said device (2), whereby the electrical current applied to the device (2) is controlled according to the expansion of the resin.
    Type: Application
    Filed: June 8, 2011
    Publication date: June 7, 2012
    Applicant: MILLIPORE CORPORATION
    Inventor: Andrej Grabowski
  • Publication number: 20110278171
    Abstract: A method and a system for process parameter control of a liquid composition in a reverse electro-enhanced dialysis (REED) system comprising at least two Reverse Electro-Enhanced Dialysis (REED) membrane stacks, wherein the direction of the electric field within any one membrane stack is reversed at asynchronical intervals of time relative to the current reversals for any other membrane stack.
    Type: Application
    Filed: September 4, 2009
    Publication date: November 17, 2011
    Applicant: JURAG SEPARATION A/S
    Inventors: Arvid Garde, Jens-Ulrik Rype
  • Publication number: 20110162964
    Abstract: Electrochemical devices and methods for water treatment are disclosed. An electrodeionization device (100) may include one or more compartments (110) containing an ionselective media, such as boron-selective resin (170). Cyclic adsorption of target ions and regeneration of the media in-situ is used to treat process water, and may be driven by the promotion of various pH conditions within the electrochemical device.
    Type: Application
    Filed: December 1, 2008
    Publication date: July 7, 2011
    Inventors: Evgeniya Freydina, Joseph D. Gifford
  • Patent number: 7846340
    Abstract: A water treatment system provides treated or softened water to a point of use by removing a portion of any hardness-causing species contained in water from a point of entry coming from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system typically treats the water containing at least some undesirable species before delivering the treated water to a point of use. The water treatment system has a reservoir system in line with an electrochemical device. The electrochemical device of the water treatment system is operated at a low current and low flow rate to minimize water splitting or polarization, which minimizes scale formation.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 7, 2010
    Assignee: Siemens Water Technologies Corp.
    Inventors: Evgeniya Freydina, Anil D. Jha, Frederick Wilkins, Aytac Sezgi, Reshma Madhusudan
  • Publication number: 20100288640
    Abstract: A system having a reactor for continuous processing of fluid is provided herein. The reactor, in general, includes an outer vessel to accommodate fluids to be processed or used in connection therewith, an inner vessel situated within the outer vessel to serve as an energy exchange surface, and an annular space defined between the outer and inner vessels and along which processing of the fluids can be implemented. The continuous thin film reactor can be used to perform, for example, distillation and evaporation, fluid-fluid or solid-fluid-fluid reactions, organic reactions, cooling, and desalination.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Inventors: Roshan J. J. Jachuck, Supriya Jachuck
  • Patent number: 7658828
    Abstract: The present disclosure generally relates to methods, systems, and devices for electrically purifying liquids containing species such as minerals, salts, ions, organics, and the like. One aspect of the invention provides methods of regenerating media within an electrical purification device, for example, exposing the media to one or more eluting solutions, and/or selectively desorbing ions, organics, and/or other species from the media by exposing the media to certain eluting conditions. In yet another aspect, methods of selectively removing one or more ions, organics, and/or other species from a liquid to be purified are provided, e.g., by selective removal of one or more ions, or organics, and the like from solution that can easily precipitate, and/or cause scaling or fouling to occur.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: February 9, 2010
    Assignee: Siemens Water Technologies Holding Corp.
    Inventors: Evgeniya Freydina, Aytac Sezgi
  • Publication number: 20090308745
    Abstract: A system and process for enhancing total organic carbon (“TOC”) removal from raw, untreated water while maintaining optimum membrane filter performance. The present invention overcomes many of the disadvantages of prior art water filtration systems by controlling the pH level of the water, prior to the water being directed through said membrane filter, so that the particulate charge of the water aligns with the electromagnetic surface charge of membrane filter. Maintaining the particulate charge of the water within an optimum charge window for the particular membrane filter enhances the membrane filter's performance by decreasing the fouling rate of the membrane filter.
    Type: Application
    Filed: August 21, 2009
    Publication date: December 17, 2009
    Inventor: Gregg A. McLeod
  • Publication number: 20090127117
    Abstract: The present invention provides an electrical deionization apparatus suitable for an ultra pure water production system allowing high pressure raw water from an atomic power plant to be reused as the ultra water. The electric deionization stack 10 comprises a plurality of compartments defined by a compartment frame 11 and an ion exchange membrane 12. The compartments at the opposite ends construct an anode compartment 13 and a cathode compartment 14. The compartments, which are located between the anode compartment 13 and the cathode compartment 14, construct at least one concentrating compartment 15 and at least one deionizing compartment 16. Each compartment frame 11a constructing the concentrating compartment 15 has a concentrated water outlet 17. Each compartment frame 11b constructing the deionizing compartment 16 has a treated water outlet 18. In the pressure vessel 20, a concentrated water chamber 24 and a treated water chamber 25 are partitioned by a partition plate 23.
    Type: Application
    Filed: October 9, 2008
    Publication date: May 21, 2009
    Applicant: EBARA CORPORATION
    Inventors: Shinji MIURA, Syuichi Ueno
  • Patent number: 7407585
    Abstract: The invention relates to a method and a system for purifying water whereby: the water to be purified is pressurized (13); a pressurized flow of said water is directed onto at least one selective permeability membrane to divide (11) the flow of pressurized water into a permeate flow and a retentate flow; the permeate flow is electrodeionized (12) to produce a flow of purified water consisting of the electrodeionized permeate flow; the flowrate of the retentate flow (19) is reduced; a substantially constant predetermined pressure (21) is maintained on the selective permeability membrane(s); and a substantially constant predetermined permeate flowrate is maintained. It also relates to a tangential filtration module suitable for the above kind of system.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: August 5, 2008
    Assignee: Millipore Corporation
    Inventor: Yves Gaignet
  • Patent number: 7354509
    Abstract: A wastewater treatment system comprising means of decontaminating wastewater; means of measuring control parameters of the wastewater; means for controlling said decontamination means; and a programmable logic controller. The user is able to receive control parameter data and control the various processes of the wastewater treatment system from a remote location.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: April 8, 2008
    Inventor: Ronald C Mehl
  • Patent number: 7214300
    Abstract: Devices with electrokinetic elements are disclosed as well as their method of microfabrication for use in micro-scale analysis, mixture separation and reaction. The devices consist of solid hydrophilic-matrix films that have been microfabricated into a variety of micro-scale structures. These structures include hydrophilic-matrix conductors for electrokinetic species transport and separation. They also include hydrophilic-matrix cladding containing chemical species adjacent to either an open conduit or a hydrophilic matrix conductor. Also described are other integrated microstructures consisting of hydrophilic-matrix materials such as micro-reaction zones for retaining chemical species for on-chip chemical reactions and integrated detection structures for on-chip species detection. In general, a hydrophilic matrix on a substrate functions as a conductor that is covered by an electrically insulating, preferably water permeable material.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: May 8, 2007
    Assignee: Epocal Inc.
    Inventor: Imants R Lauks
  • Patent number: 6896814
    Abstract: A liquid treatment process is described for sequential removal of ionic species of progressively decreasing ionic strength without precipitation or “scaling.” An aspect of the invention includes dual electrodeionization operations. The first electrodeionization operation is performed at a voltage calculated to remove strongly ionized species such as calcium and magnesium from the feed water without scaling. The product of the first electrodeionization operation is then subjected to a second electrodeionization operation. The second electrodeionization operation is performed at a voltage greater than the first electrodeionization operation, and is designed to remove more weakly ionized species such as silica and carbon dioxide, preventing scaling. More than two successive electrodeionization operations may be performed if desired. Multiple electrodeionization operations may occur in a single electrodeionization stack or in multiple electrodeionization stacks.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: May 24, 2005
    Assignee: Aquatech International Corporation
    Inventors: Ravi Chidambaran, Devesh Sharma, Pavan Raina
  • Patent number: 6890417
    Abstract: An electrolytic bath is divided into an anodic chamber and a cathodic chamber by a cation-exchange membrane. A base alkaline solution of high impurity concentration is supplied into the anodic chamber from a tank of a base material as well as a circulating anolyte overflowed from the anodic chamber is supplied and circulated from an anode circulating tank, and NaOH solution of low impurity concentration is supplied and circulated into the cathodic chamber through a tank of a refined solution. The concentration of the circulating anolyte is detected, and based on this detected value the supplying amount of the base NaOH solution is controlled and electrolysis is performed. Thus, the concentration of NaOH solution in the anodic chamber is kept stable, and the refined NaOH solution of low impurity concentration can be obtained in the cathodic chamber.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: May 10, 2005
    Assignee: Tsurumi Soda Co., Ltd.
    Inventors: Tatsuro Yamashita, Takumi Manabe
  • Patent number: 6726822
    Abstract: An improved electrodeionization system for removing ions from liquids passed therethrough, comprising a flow-through electrodeionization module, and a power supply electrically connected to the electrodeionization module electrodes so as to establish a voltage gradient thereacross. The invention includes a monitoring device such as a resistivity sensor for monitoring the value of a property (e.g. resistivity) of the liquid output flow from the electrodeionization module, and a controller responsive to the monitoring device, for controlling the amount of time that the power supply is turned on, to maintain output quality within a predetermined range, while conserving power and simplifying power supply design.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 27, 2004
    Assignee: Millipore Corporation
    Inventors: Benny Garcia, Andrew Proulx
  • Patent number: 6727451
    Abstract: To manipulate microparticles in a fluid that intersects a first channel or several first channels as a stream, one or more microparticles (14) are exposed to electrical field barriers that change their direction from the direction of flow toward the edge of the flow to a lateral hole (17) of the respective first channel. As a result, microparticles can be moved back and forth between streaming fluids. Preferred applications include treatment, separating, sorting or confinement procedures.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: April 27, 2004
    Assignee: Evotec Technologies GmbH
    Inventors: Günter Fuhr, Rolf Hagedorn, Torsten Müller, Thomas Schnelle, Gabriele Gradl
  • Publication number: 20020092769
    Abstract: An improved electrodeionization system for removing ions from liquids passed therethrough, comprising a flow-through electrodeionization module, and a power supply electrically connected to the electrodeionization module electrodes so as to establish a voltage gradient thereacross. The invention includes a monitoring device such as a resistivity sensor for monitoring the value of a property (e.g. resistivity) of the liquid output flow from the electrodeionization module, and a controller responsive to the monitoring device, for controlling the amount of time that the power supply is turned on, to maintain output quality within a predetermined range, while conserving power and simplifying power supply design.
    Type: Application
    Filed: January 29, 2002
    Publication date: July 18, 2002
    Inventors: Benny Garcia, Andrew Proulx
  • Patent number: 6391177
    Abstract: An electrodialytic cell and process for its use in regenerating electroless plating solutions, particularly nickel-hypophosphite electroless plating solutions, are disclosed. The process is capable of operating at high temperatures and in a continuous fashion such that the plating operation is not interrupted and the steady state condition in the plating bath is achieved.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: May 21, 2002
    Inventor: David Crotty
  • Patent number: 6274019
    Abstract: Water to be treated (feed water) flows through a series of desalination chambers filled with ion exchange resins on which impurity ions in the feed water are removed. Each desalination chamber consists of a cation-permeable membrane on one side with an anion-permeable membrane on the other side. The space between the two membranes is filled with the ion exchange resins and there are concentrate chambers on either side of the membranes. There is a cathode chamber or an anode chamber each located at either end of the assembly of alternating desalination and concentrate chambers. By circulating the concentrate water while adding acid to the concentrate water to maintain its acidity, scale deposition within the concentrating chambers and the electrode chamber is prevented so that deionizing capability of the entire assembly can be maintained.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: August 14, 2001
    Assignee: Organo Corporation
    Inventor: Masahiro Kuwata
  • Patent number: 6255551
    Abstract: A process treats contaminated media and comprises detecting a non-uniform contaminated media property selected from electrical conductivity or electroosmotic permeability; and selectively applying an electric field to the contaminated media to effect the process in a selected area of the contaminated media.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: July 3, 2001
    Assignee: General Electric Company
    Inventors: Andrew Philip Shapiro, Joseph James Salvo
  • Patent number: 6129828
    Abstract: Systems and methods for the electronic sample preparation of biological materials utilize the differential charge-to-mass ratio and/or the differential affinity of sample constituents to separation materials for sample preparation. An integrated system is provided for performing some or all of the processes of: receipt of biological materials, cell selection, sample purification, sample concentration, buffer exchange, complexity reduction and/or diagnosis and analysis. In one embodiment, one or more sample chambers adapted to receive a buffer solution are formed adjacent to a spacer region which may include a trap or other affinity material, electrophoretic motion of the materials to be prepared being effected through operation of electrodes. In another aspect of this invention, a transporter or dipstick serves to collect and permit transport of materials, such as nucleic acids, most preferably DNA and/or RNA.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: October 10, 2000
    Assignee: Nanogen, Inc.
    Inventors: Edward L. Sheldon, III, Thomas R. Jackson, Paul D. Swanson, Bradley S. Scott, Michael J. Heller
  • Patent number: 5766439
    Abstract: A process is described for producing organic acids such as lactic acid. The process includes the steps of producing lactic acid by fermentation, resulting in an aqueous fermentation broth containing lactic acid, and adding a calcium base, such as calcium carbonate, to the fermentation broth, thereby producing calcium lactate in the broth. Biomass is removed from the broth, thereby leaving an aqueous solution or dispersion of calcium lactate. The calcium lactate is reacted with a source of ammonium ions, such as ammonium carbonate, or a mixture of ammonia and carbon dioxide, thereby producing an ammonium lactate. Contaminating cations can be removed by ion exchange. The free lactic acid or a derivative thereof can be separated from the ammonium ions, preferably by salt-splitting electrodialysis.
    Type: Grant
    Filed: November 20, 1996
    Date of Patent: June 16, 1998
    Assignee: A. E. Staley Manufacturing Co.
    Inventors: Aharon M. Eyal, William F. Lehnhardt
  • Patent number: 5725748
    Abstract: In a process for an electrochemical treatment of cellulose waste lye, mass transport takes place through a diaphragm or membrane between a cathode chamber and an anode chamber, and optionally through a middle chamber. Cationogenic components are removed from cellulose waste lye containing lignin sulfonates and being located in at least one of the chambers. Lignin sulfonic acids are produced from the waste lye. In an installation for an electrochemical treatment of cellulose waste lye, at least one diaphragm divides at least one reaction vessel into at least one cathode chamber and at least one anode chamber. At least one cathode electrode is disposed in the at least one cathode chamber, and at least one anode electrode is disposed in the at least one anode chamber. The at least one cathode electrode is formed of iron or aluminum and the at least one anode electrode is formed of special steel, in particular V4A steel.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: March 10, 1998
    Assignee: Chemische Werke Zell-Wildhausen GmbH
    Inventors: Burkhard Brandt, Gerhard Born