Biological Material Prepared, Recovered, Or Treated (e.g., Urine, Etc.) Patents (Class 204/527)
  • Patent number: 11261109
    Abstract: The present invention relates to a single module, flow-electrode apparatus for continuous water desalination, ion separation and selective ion removal and concentration by capacitive deionization, comprising: a first current collector (1), a first compartment (1?) for a flow electrode, a first ion exchange membrane (AEM, CEM), a first liquid-permeable channel (6a) next to the first ion exchange membrane (AEM, CEM), a second ion exchange membrane (CEM, AEM) with a fixed charge opposite to that of the first ion exchange membrane (AEM, CEM) next to the first liquid-permeable channel (6a), a second liquid-permeable channel (6b) next to the second ion exchange membrane (CEM, AEM), a third ion exchange membrane (AEM, CEM) having the same fixed charge as the first ion exchange membrane (AEM, CEM) next to the second liquid-permeable channel (6b), a second compartment (2?) for a flow electrode, and a second current collector (2), wherein a fluid (4) containing suspended conductive particles or a mixture of conductive
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: March 1, 2022
    Inventors: Matthias Wessling, Youri Gendel, Alexandra Rommerskirchen
  • Patent number: 10543460
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. Systems, methods and equipment are described for upgrading process streams using electrodialysis or electrodialysis reversal.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: January 28, 2020
    Assignee: XYLECO, INC.
    Inventors: Marshall Medoff, Thomas Craig Masterman, Maia Stapleton Mukherjee, Christopher Cooper
  • Patent number: 10105653
    Abstract: A system for rinsing electrodialysis electrodes includes an anode input coupled to an anode of an electrodialysis (ED) system for receiving a first fluid from the anode. The first fluid is for removing ions from the anode. The system also includes an anode output coupled to the anode of the ED system for providing the first fluid to the anode. The system includes a cathode input coupled to a cathode of the ED system for receiving a second fluid from the cathode. The second fluid is for removing ions from the cathode of the ED system. The system also includes a cathode output coupled to the cathode of the ED system for providing the second fluid to the cathode. The system includes an air stripper for receiving the first and/or second fluid, and for removing oxygen and/or a chlorine gas from the first and/or second fluid.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 23, 2018
    Assignee: Enviro Water Minerals Company, Inc.
    Inventor: Paul Steven Wallace
  • Patent number: 9685676
    Abstract: Bioelectrochemical systems (BES) having configurations with spiral wound structures and with frame-and-plate structures are provided. Systems may allow for production of an electrical current that is at least partially generated by microorganisms connected directly or indirectly to an electrode. A spiral wound or frame-and-plate type bioelectrochemical system that may be used for energy or chemical production, and/or desalination may include an anolyte influent point, a catholyte influent point, electrodes, ion selective membranes, mesh separators, gas collection devices, an exterior containment vessel, and one or more external electrical devices.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 20, 2017
    Assignee: The Regents of the University of Colorado
    Inventors: Zhiyong Ren, Casey Forrestal, Pei Xu
  • Patent number: 9475711
    Abstract: A desalination system comprises a silica removal unit. The silica removal unit comprises first and second electrodes, a plurality of ion exchange membranes disposed between the first and second electrodes and a plurality of spacers disposed between adjacent ion exchange membranes and between the first and second electrodes and the respective ion exchange membranes. The plurality of the ion exchange membranes comprises a pair of cation exchange membranes and a pair of anion exchange membranes disposed between the pair of cation exchange membranes. A first channel is defined between the anion exchange membranes and second and third channels are defined between each anion exchange membrane and an adjacent cation exchange membrane. A silica removal apparatus and a desalination method are also presented.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 25, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Chengqian Zhang, Hai Yang, Rihua Xiong
  • Patent number: 8808517
    Abstract: The invention is directed to a process for the removal of ammonia from an ammonia-containing gas stream by treating the ammonia in the ammonia-containing gas stream with an acid, during which treatment an aqueous stream comprising an ammonium salt, wherein the aqueous stream comprising the ammonium salt is treated with electrodialysis, whereby the acid is recovered and an aqueous stream comprising an ammonium hydroxide salt is formed.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: August 19, 2014
    Assignees: Stamicarbon B.V., UHDE GmbH
    Inventors: Jozef Hubert Meesen, Axel Erben, John Krijgsman, Winfried Liebig
  • Patent number: 8404091
    Abstract: Dialysis treatment devices and methods for removing urea from dialysis waste streams are provided. In a general embodiment, the present disclosure provides a dialysis treatment device including a first cell having a first electrodialysis unit, a second cell having at least one of a urease compartment and a sorbent compartment and in fluid communication with the first cell, and a third cell having a second electrodialysis unit and in fluid communication with the second cell.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: March 26, 2013
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Yuanpang Samuel Ding, Ying-Cheng Lo
  • Publication number: 20120292187
    Abstract: Systems and methods for microbial processes of generating products such as electrical power, hydrogen gas and methane, are provided according to aspects of the present invention which include a reaction chamber having a wall defining an interior of the reaction chamber and an exterior of the reaction chamber; an anode at least partially contained within an anode compartment of the reaction chamber; a plurality of exoelectrogenic microorganisms disposed in the anode compartment; a cathode at least partially contained within a cathode compartment of the reaction chamber; a conductive conduit for electrons in electrical communication with the anode and the cathode; and a reverse electrodialysis stack comprising a plurality of plurality of alternating anion selective barriers and cation selective barriers disposed between the anode and the cathode defining one or more saline material compartments and one or more lower-saline material compartments.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 22, 2012
    Applicant: The Penn State Research Foundation
    Inventors: Younggy Kim, Roland D. Cusick, Bruce Logan
  • Patent number: 8142633
    Abstract: A treatment system and method for continuous deionization of a biologically derived feed stream includes a plurality of electrodialysis units (3, 9, 10, 11, 12, 13) arranged in stages along a treatment line, and stages are controlled such that the feed stream attains a certain quality before entering the next stage. The feed and concentrate streams move in generally opposite sense along the line, matching fluid characteristics of dilute and concentrate cells. The treatment line has two or more stages. Systems may have phased staging operations, and cell constructions may adapt the electrodialysis units for enhanced processing of difficult process fluids. A controller sets operating potentials in different electrical stages, and simple control parameters optimize ion removal and current efficiency without polarization of the fluid. The invention also includes phased staging of reversal operation, and cell constructions or fillings that adapt the treatment cells for enhanced processing.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: March 27, 2012
    Assignee: GE Ionics, Inc.
    Inventors: Bruce Batchelder, Li Zhang, William W. Carson
  • Patent number: 8057680
    Abstract: The scope of the invention is to apply an electric current or to use a kind of iontophoresis system with the hemodialysis cartridge and system (the proposed method is also applicable to peritoneal dialysis or other similar methods) to remove unwanted molecules from blood, plasma or serum or other body fluids and to increase the effectiveness of the process. This cartridge can be used for patients with uremia and cartridge fixed to the conventional hemodialysis machine and additionally the electric current applied to the electrodes placed in to the cartridge or electrode connectors placed to the conventional cartridge. When the system activated, the molecules in the blood or other body fluid migrates to the hemodialysis solution. Charged ions or uncharged molecules move together with electroosmotic flow. The sterilized electrodes preferably made by Ag/AgCl to prevent pH changing effect. Other apparatus can also be used for providing an electropotential gradient.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: November 15, 2011
    Assignee: Dizayn Teknik Plastik Boru Ve Elemanlari Sanayi Ve Ticaret A.S.
    Inventors: Tuncer Degim, Rusen Dundaroz, Metin Denli, Sibel Ilbasmis, Tanju Ozcelikay, Zelihagul Degim
  • Patent number: 7722751
    Abstract: An apparatus for regulating salt concentration, a lab-on-a-chip including the same and a method of regulating salt concentration using the apparatus are provided. The apparatus includes: a reaction chamber that is defined by a cation exchange membrane and an anion exchange membrane and is selected from the group consisting of a biomolecule extraction chamber, an amplification chamber, a hybridization chamber, and a detection chamber; a first electrode chamber that is defined by the anion exchange membrane and a first electrode and includes an ion exchange medium; and a second electrode chamber that is defined by the cation exchange membrane and a second electrode and includes an ion exchange medium. Even without injecting solutions with different salt concentrations into the reaction chamber by operating pumps and valves for each operation stage, the salt concentration can be reversibly regulated in situ by adjusting the polarity, intensity and application time of a voltage.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: May 25, 2010
    Assignee: Samung Electronics Co., Ltd.
    Inventors: Jung-im Han, Young-sun Lee, Joon-ho Kim
  • Patent number: 7544278
    Abstract: The invention includes novel anion exchange membranes formed by in situ polymerization of at least one monomer, polymer or copolymer on a woven support membrane and their methods of formation. The woven support membrane is preferably a woven PVC membrane. The invention also includes novel cation exchange membranes with or without woven support membranes and their methods of formation. The invention encompasses a process for using the membranes in electrodialysis of ionic solutions and in particular industrial effluents or brackish water or seawater. The electrodialysis process need not include a step to remove excess ions prior to electrodialysis and produces less waste by-product and/or by-products which can be recycled.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: June 9, 2009
    Assignee: Seventy-Seventh Meridian Corporation, LLC
    Inventors: Tejraj Aminabhavi, Padmakar V. Kulkarni, Mahadevappa Y. Kariduraganavar
  • Patent number: 7223327
    Abstract: A releaseable membrane structure for producing a free membrane containing a substrate, a release stratum on the substrate and a membrane stratum on the release stratum. The release stratum and the membrane stratum contain oppositely-charged polyelectrolytes that are associated. The oppositely-charged polyelectrolytes of the release stratum are selected to dissociate upon application of stimulus whereas those of the membrane stratum are selected to remain associated upon application of the stimulus. Thus, when the stimulus is applied the polyelectrolytes in release stratum dissociate and the membrane stratum is released from the substrate and is a free membrane.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: May 29, 2007
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Joseph B. Schlenoff, Stephen T. Dubas
  • Patent number: 7169614
    Abstract: A convenient and commonly applicable method for the specific detection of a nucleic acid with an arbitrary sequence is provide. This method comprises attaching at least a nucleic acid single strand to an electrode, bringing the thus-obtained modified electrode in contact with a solution containing the analyte single-stranded nucleic acid, and measuring the redox reaction of the redox marker.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: January 30, 2007
    Assignee: Japan Science and Technology Corporation
    Inventors: Yoshio Umezawa, Hiroshi Aoki
  • Patent number: 7066900
    Abstract: An electrophoresis system for removing or reducing concentration of a metabolic component from blood or plasma of a subject is provided. A method for removing or reducing concentration or amount of a metabolic component in blood or plasma of a subject is also provided. The system and method include use of a set of ion permeable barriers and the application of an electrical potential across these barriers to selectively remove metabolic components from blood or plasma.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: June 27, 2006
    Assignee: Life Therapeutics
    Inventors: Steven Anthony Botto, Philip John Roeth, Ellie Louise Faramus, Chenicheri Hariharan Nair
  • Patent number: 6969453
    Abstract: An electrophoresis apparatus for processing compounds in small sample volumes comprising a cathode in a static cathode buffer zone or compartment, an anode in a static anode buffer zone or compartment. The cathode disposed relative to the anode so as to be adapted to generate an electric field in an electric field area therebetween upon application of a voltage potential between the cathode and anode. A removable cartridge disposed in the electric field area between the anode and the cathode. The cartridge containing a first non-isoelectric separation barrier and also a second non-isoelectric separation barrier disposed between a selected one of the cathode buffer zone and the anode buffer zone and the first barrier so as to define a first chamber having an interstitial volume of less than 5 ml therebetween.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: November 29, 2005
    Assignee: Gradipore Limited
    Inventors: David Ogle, Dennis Rylatt
  • Patent number: 6638408
    Abstract: The invention provides a novel solution isoelectric focusing device and method that can reproducibly fractionate charged molecules into well-defined pools. This approach can be applied to mixtures of charged molecules, such as eukaryotic proteome samples where reproducible resolution and quantitation of greater than 10,000 protein components is feasible.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: October 28, 2003
    Assignee: The Wistar Institute
    Inventors: David W. Speicher, Xun Zuo
  • Patent number: 6551803
    Abstract: A process is described for purifying an amino acid-containing solution by means of electrodialysis, wherein an amino acid-containing solution is employed which is obtained from the fermentation for producing at least one amino acid.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: April 22, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Fischer, Christoph Martin, Jürgen Müller
  • Patent number: 6331236
    Abstract: An electrodialysis cell is operated in the presence of organic compounds that bind or chelate with the multivalent metals to form metal-chelate buffers. Among other things, this binding or chelating reduces power consumption, produces a stable cell operation, and avoids a fouling of the membranes while significantly improving membrane life, reliability, and operating costs. When a chelating agent is added to a salt solution containing multivalent cations, the chelating agent strongly binds with the cations, forming large size complexes. An ion exchange membrane retains these complexes within the compartment of the electrodialysis cell containing the feed solution. The multivalent cations is greatly inhibited from being transported across the cation exchange membrane, thus reducing the fouling of the cation membranes. Concurrently, the precipitation of the metals in the base loop is substantially abated.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: December 18, 2001
    Assignee: Archer Daniels Midland Company
    Inventor: K. N. Mani
  • Patent number: 6294066
    Abstract: An apparatus and the process produces salts by an electrodialysis operation. The basic electrodialysis apparatus is a cell having a number of compartments separated by membranes. A DC source is connected to drive a current through a feed stream passing through the cell which splits the salt stream into an acid and a base. The incoming feed may be nanofiltered to remove divalent metal. The base loop may be in communication with an ion exchange column packed with a material that removes multivalent cations. Depending upon the material being processed and the desired end result either or both the nanofiltration and the ion exchanged column may be used in the apparatus.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: September 25, 2001
    Assignee: Archer Daniels Midland Company
    Inventor: K. N. Mani
  • Patent number: 6270672
    Abstract: A method for removing pathogens from biological liquids and an apparatus for performing such a method, said method comprising the steps of providing a biological liquid, wherein pathogens are potentially present, in an apparatus comprising an anode and a kathode and a separation means suitable for separating said pathogens from said pharmaceutically active molecule, said separation means being positioned between said anode and said kathode, applying current between said anode and said kathode, thereby causing one of said pathogens or said pharmaceutically active molecule to pass said separation means and recovering said pharmaceutically active molecule in a form being free of said pathogens as well as an apparatus carrying out the present method.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: August 7, 2001
    Assignee: Baxter Aktiengesellschaft
    Inventors: Peter Turecek, Erwin Mattes, Hans Peter Schwarz
  • Patent number: 6139714
    Abstract: A process for adjusting the pH of an aqueous flowable fluid includes an electrochemical mechanism for adjusting the pH of an aqueous flowable fluid and a mechanism for then electrochemically stabilizing the adjusted pH of the fluid. A device for performing the process is also included. The device includes an inlet and a channel in fluid communication with the inlet. The channel has the appearance and properties of a U-shaped connected vessel. The U-shaped connected vessel includes an inlet accumulating passage in fluid communication with an active zone between two spaced electrodes wherein the active zone has a small volume relative to the passage for accelerating fluid flow from the passage through the active zone complying with the physics of connected vessels.
    Type: Grant
    Filed: December 2, 1997
    Date of Patent: October 31, 2000
    Assignee: Gemma Industrial Ecology Ltd.
    Inventor: David Livshits
  • Patent number: 6110342
    Abstract: The invention uses a stack of three compartment electrodialysis cells in a process for the production amino acid hydrochloride and an alkali. The electrodialysis cell contains bipolar, cation and anion membranes which are arranged to form acid, base and salt compartments. The process begins with supplying a salt solution to the salt compartment, water to the base compartment, and a liquid comprising an amino acid to the acid compartment. Preferably, the feed salt is sodium chloride or potassium chloride or lithium chloride. A direct current driving force is applied across the cell to convert the salt solution to an alkali in the base compartments and an amino acid hydrochloride in the acid compartment. The acid and alkali solutions and a depleted salt solution are withdrawn from their respective compartments. A chelating agent may be added to the salt solution before it is fed into the electrodialysis cell.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: August 29, 2000
    Assignee: Archer Daniels Midland Company
    Inventor: K. N. Mani
  • Patent number: 5814197
    Abstract: Improved electrodialysis (ED) stacks are disclosed having one or more components selected from the group:a) cation exchange membranes having ion exchange groups predominantly sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups or membranes which are selective to monovalent cations and simultaneously therewith, cation exchange granules selective to monovalent cations as packing in the dilute compartments;b) anion exchange membranes having as ion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and substantially no primary, secondary and/or tertiary amine and/or phosphine groups or membranes which are selective to monovalent anions simultaneously therewith, anion exchange granules selective to monovalent anions as packing in the dilute compartments;c) as packing in the dilute compartment, anion exchange granules which are selective to monovalent anions, or cation exchange granules which are selective to monovalent cations, or cation exchange granules
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: September 29, 1998
    Assignee: Ionics, Incorporated
    Inventors: Bruce T. Batchelder, Irving D. Elyanow, Arthur L. Goldstein, Russell J. MacDonald, Wayne A. McRae, Keith J. Sims, Li Zhang
  • Patent number: 5814498
    Abstract: A process recovers organic acid and ammonia from their salts preferably obtained from microbial fermentation of a saccharide in a nutrient. The fermented materials is passed through a nanofiltration or a chelating resin ion-exchange bed or a combination of both a nanofilter and a chelating resin ion-exchange bed in order to reduce divalent or multivalent metal contaminants. Then, the filtered material is processed in a multi compartment electrodialysis containing bipolar and anion membranes.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: September 29, 1998
    Assignee: Archer Daniels Midland Company
    Inventors: K. N. Mani, D. Kent Hadden
  • Patent number: 5766439
    Abstract: A process is described for producing organic acids such as lactic acid. The process includes the steps of producing lactic acid by fermentation, resulting in an aqueous fermentation broth containing lactic acid, and adding a calcium base, such as calcium carbonate, to the fermentation broth, thereby producing calcium lactate in the broth. Biomass is removed from the broth, thereby leaving an aqueous solution or dispersion of calcium lactate. The calcium lactate is reacted with a source of ammonium ions, such as ammonium carbonate, or a mixture of ammonia and carbon dioxide, thereby producing an ammonium lactate. Contaminating cations can be removed by ion exchange. The free lactic acid or a derivative thereof can be separated from the ammonium ions, preferably by salt-splitting electrodialysis.
    Type: Grant
    Filed: November 20, 1996
    Date of Patent: June 16, 1998
    Assignee: A. E. Staley Manufacturing Co.
    Inventors: Aharon M. Eyal, William F. Lehnhardt
  • Patent number: 5681728
    Abstract: The present invention relates to methods and apparatus for reducing the fouling of ion-selective membranes used in the electrodialytic purification of organic acids. More particularly, the present invention relates to the use of nanofiltration and chelating agents for removal of impurities from an organic acid-containing feed material to reduce the fouling of ion-selective membranes used in electrodialysis.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 28, 1997
    Assignee: Chronopol, Inc.
    Inventor: Fudu Miao