Metal Or Metal Salt Recovered Or Removed Patents (Class 204/529)
  • Patent number: 10125428
    Abstract: Electrodialysis stacks comprising a series of electrodialysis cells and anaerobic digestion systems incorporating the electrodialysis stacks are provided. Also provided are methods of using the electrodialysis stacks and systems to recover nitrogen, in the form of ammonia, from separated anaerobic digestate. The electrodialysis stacks use monovalent-selective cation exchange membranes to concentrate ammonium ions and other monovalent ions in a concentrate stream, while discriminating against multivalent cations, which, as a result, are retained in a diluate stream. The electrodialysis stacks may use monovalent-selective anion exchange membranes to discriminate against multivalent anions, which, as a result, are selectively retained in a diluate stream.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: November 13, 2018
    Assignee: Nutrient Recovery & Upcycling, LLC
    Inventor: Phillip Barak
  • Patent number: 9580822
    Abstract: An electrodialytic buffer generator is described. The buffer generator may include a central buffer-generating channel having an inlet and outlet, a second chamber, and a third chamber. The buffer-generating channel, the second chamber, and the third chamber may each include an electrode. The buffer generator may also include a first ion exchange barrier and a second ion exchange barrier. The first ion exchange barrier can be disposed between the second chamber and the buffer-generating channel. The second ion exchange barrier can be disposed between the third chamber and the buffer-generating channel.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: February 28, 2017
    Assignees: Board of Regents, The University of Texas System, Dionex Corporation
    Inventors: Purnendu K. Dasgupta, Yongjing Chen, Kannan Srinivasan
  • Patent number: 8980095
    Abstract: A process for producing ultrapure water, in which a stream of water is purified in a reverse osmosis device, wherein the water stream is subject to pretreatment including splitting the water stream into at least two partial streams, partial exchange of cations present in at least one of the partial streams for H+ ions by a cation exchanger operated in the H+ mode, and complete exchange of the anions present in at least one further of the partial streams for OH? ions by a softener operative in parallel to the cation exchanger, and treating the partial streams treated by the cation exchanger and the softener by at least one anion exchanger operating in the OH? mode, and wherein the water stream obtained from the pretreatment is fed into the reverse osmosis device.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 17, 2015
    Assignee: BWT Aktiengesellschaft
    Inventor: Jürgen Johann
  • Patent number: 8951399
    Abstract: A method for continuously manufacturing lithium transition metal phosphates of the formula LiMPO4, comprising the steps of providing an aqueous reaction mixture containing LION, H3PO4, and a transition metal sulphate, converting the reaction mixture into a lithium transition metal phosphate, separating the solid lithium transition metal phosphate from the soluble part of the reaction mixture, subjecting the soluble part (diluate) to an electrodialysis, and isolating the part of the electrodialysate that contains an aqueous LiOH solution.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 10, 2015
    Assignee: Sud-Chemie AG
    Inventors: Josef Fischer, Johannes Hartel
  • Patent number: 8864971
    Abstract: A treatment system provides treated or softened water to a point of use by removing at least a portion of any undesirable species contained in water from a water source. The treatment system can be operated to reduce the likelihood of formation of any scale that can be generated during normal operation of an electrochemical device. The formation of scale in the treatment system, including its wetted components, may be inhibited by reversing or substituting the flowing liquid having hardness-causing species with another liquid having a low tendency to produce scale, such as a low LSI water. Various arrangements of components in the treatment system can be flushed by directing the valves and the pumps of the system to displace liquid having hardness-causing species with a liquid that has little or no tendency to form scale.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 21, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventors: Anil D. Jha, Frederick C. Wilkins, Evgeniya Freydina, Aytac Sezgi, Reshma Madhusudan
  • Patent number: 8801909
    Abstract: The invention describes processes for the production of basic aluminum compounds, including aluminum chlorohydrate, basic zirconium compounds, and basic aluminum zirconium compounds. The process produces products of a wide range of basicities. The products formed by the present invention are comprised of low molecular weight species characteristic of enhanced efficacy antiperspirant salt compositions. The products of this process are suitable for use as water purification agents, as binders in catalyst applications, and in antiperspirant applications. In addition, the invention is directed to the products made by the disclosed process.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 12, 2014
    Assignee: Nextchem, LLC
    Inventors: William E. Pratt, Joseph J. Stevens, Peter G. Symons
  • Publication number: 20140209462
    Abstract: A desalination system is provided. The desalination system comprises a desalination apparatus. The desalination apparatus comprises first and second electrodes, and a first group of paired ion exchange membranes disposed between the first and second electrodes to form a first group of alternating first and second channels. The first channels are configured to receive a first stream for desalination and the second channels are configured to receive a second stream to carry away ions removed from the first stream, respectively. The desalination apparatus further comprises a plurality of spacers disposed between each pair of the adjacent ion exchange membranes and between the first and second electrodes and the respective ion exchange membranes. Wherein each of the ion exchange membranes in the first group is a cation exchange membrane. A desalination system and a method for removing ions from an aqueous stream area also presented.
    Type: Application
    Filed: August 13, 2012
    Publication date: July 31, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rihua Xiong, Linglu Yang
  • Patent number: 8778156
    Abstract: A process for producing a gas using an electrodialysis apparatus includes flowing at least two solutions and an electrode solution into the apparatus, pressurizing the apparatus at a stack pressure, applying a voltage to the apparatus's electrodialysis stack so a dissolved gas is generated in the second solution, flowing the second solution out of the apparatus, regenerating the gas out of the second solution, and collecting the gas. A process for generating a product, like a gas, liquid, or supercritical fluid, using an electrodialysis apparatus includes flowing at least two solutions and an electrode solution into the apparatus, adjusting the temperature and pressure so the product will be generated from the second solution, applying a voltage to the electrodialysis stack of the apparatus so that the product is generated in the second solution, flowing the second solution out of the apparatus, and regenerating the product from the second solution.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: July 15, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Matthew D. Eisaman, Karl A. Littau
  • Patent number: 8591721
    Abstract: The invention relates, in particular, to a process for treating a liquid medium loaded with nitrates via a chemical route that mainly comprises a step of electrolysis of the liquid medium in the presence of a metal salt, the electrolysis being carried out at a pH below 5. The invention also relates to a device for treating a liquid medium loaded with nitrates and also to the applications of this process and device, in particular for reducing the level of nitrates in drainage waters.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 26, 2013
    Assignee: Firmus S.A.M.
    Inventors: Michel Reynes, Dimiter Hadjiev
  • Patent number: 8535502
    Abstract: A system and method for recovery of CO2 includes an aqueous capture device having a capture solution. The aqueous capture device is arranged to receive gas and to capture components from the gas including at least CO2. An electrodialysis unit in operative connection with the capture device performs an electrodialysis operation on the capture solution including at least the CO2, wherein a CO2 rich process stream and a regenerated capture solution are generated from the capture solution including at least the CO2. The CO2 rich process stream is a pressurized process stream at a pressure which maintains the CO2 substantially within the CO2 rich process stream, while in the electrodialysis unit. In another alternative, at least the pH of the capture stream is controlled.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: September 17, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Karl A. Littau, Francisco E. Torres
  • Patent number: 8430946
    Abstract: The process, according to the invention, comprises the following stages: (a) processing (1) of the laterite ore (O) by crushing, scrubbing, attrition, separation, and high-intensity magnetic separation; (b) Leaching (2) of the non-magnetic fraction (CN) obtained form the previous stage (a); (c) optionally, neutralization (3) of the effluent from the leaching and/or solid-liquid separation stages (4); (d) treatment of the effluents from stages (b) or (c) using an ion-exchange hybrid system (5) comprising at least one circuit for removal of impurities and at least one circuit for recovery of nickel and cobalt; (e) elution (6) of the ion-exchange resin used; (f) separation, purification, and recovery (7) of the nickel and cobalt.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: April 30, 2013
    Inventor: Flavia Dutra Mendes
  • Patent number: 8329042
    Abstract: Sludge is treated in a treatment chamber by providing a pair of electrodes in the treatment chamber and applying an electrical current between the electrodes such that one of the electrodes functions as an anode and one of the electrodes functions as a cathode in proximity to the outlet. A flow of water is induced from the sludge towards the outlet by the electrical current. An ion exchange textile comprising exchangeable functional groups grafted thereon is located in proximity to at least one of the electrodes such that the ionic forms of the metals are exchanged with the functional groups on the ion exchange textile. Accordingly the sludge is dewatered and metals in the sludge are captured commonly in the treatment chamber while the electrical current simultaneously inactivates pathogens in the treatment chamber.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: December 11, 2012
    Inventors: Maria Elektorowicz, Jan Oleszkiewicz
  • Patent number: 8236158
    Abstract: Described herein are a method and system for desalinating saltwater using concentration difference energy. A “five stream” dialytic stack is described that can be used to desalinate saltwater at a relatively high recovery ratio. The dialytic stack may include, for example, one or more drive cells having a paired concentrate and a diluent-c chamber in ionic communication with a product chamber that is adjacent to an anion and a cation discharge chamber each filled with diluent-p. The drive cell applies a drive voltage across the product chamber, and when the drive voltage exceeds a desalination voltage of the product chamber, the saltwater in the product chamber is desalinated. The diluent-p may be at a lower ionic concentration than the diluent-c, which may be at a lower concentration than the concentrate.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 7, 2012
    Assignee: Saltworks Technologies Inc.
    Inventors: Benjamin Stuart Sparrow, Joshua Aniket Zoshi, James Hing Bong Tang
  • Patent number: 8137522
    Abstract: A method and apparatus for desalinating saltwater using concentration difference energy is disclosed. In order to desalinate saltwater that is contained within a product chamber, a drive cell is used to generate a drive voltage. The product chamber has a desalination voltage such that when a sufficient voltage is applied to the product chamber, anions and cations migrate out of the product chamber, thereby desalinating the water. The sufficient voltage, which includes the drive voltage and which is equal to or greater than the desalination voltage, is applied to the product chamber, consequently effecting desalination. Beneficially, concentration difference energy can be generated using a concentrated solution, which can be generated using, for example, solar energy.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 20, 2012
    Assignee: Saltworks Technologies Inc.
    Inventors: Benjamin Stuart Sparrow, Joshua Zoshi, James Tang
  • Patent number: 7901577
    Abstract: Desalination is carried out by a hybrid ion exchange-nanofiltration process in which ion exchange is followed by pressure-driven nanofiltration. Monovalent ions of sodium and chloride of saline water are exchanged for equivalent concentrations of poly-valent ions (for example, sodium ions for magnesium ions or chloride ions for sulfate ions) when passed through ion exchangers in the form of those poly-valent ions. The resultant solution has a lower osmotic pressure than the initial solution containing monovalent sodium and chloride ions, and requires less transmembrane pressure for membrane desalination compared to traditional reverse osmosis. The concentrated reject stream from the membrane process is used as regenerant for the exhausted ion exchanger, which has been converted to monovalent anionic or cationic form.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: March 8, 2011
    Inventors: Arup K. SenGupta, Sudipta Sarkar
  • Patent number: 7807032
    Abstract: A process is provided for separating, concentrating and recovery of boron compound from aqueous solution containing boron, strongly dissociated anions and some cations. The process specifically integrates electrodialysis with ion exchange to selectively separate boron from aqueous solution that contains a wide concentration range of boron, strongly ionised anions such as chloride, nitrate and sulfate, and cations like lithium. The process is adapted for controlling boron concentration in an industrial process, for the recovery or purification of boron and some cations like lithium form aqueous solutions, and for wastewater treatment.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: October 5, 2010
    Assignee: Vattenfall AB
    Inventors: Jinying Yan, Anna Velin, Bernt Bengtsson
  • Patent number: 7722751
    Abstract: An apparatus for regulating salt concentration, a lab-on-a-chip including the same and a method of regulating salt concentration using the apparatus are provided. The apparatus includes: a reaction chamber that is defined by a cation exchange membrane and an anion exchange membrane and is selected from the group consisting of a biomolecule extraction chamber, an amplification chamber, a hybridization chamber, and a detection chamber; a first electrode chamber that is defined by the anion exchange membrane and a first electrode and includes an ion exchange medium; and a second electrode chamber that is defined by the cation exchange membrane and a second electrode and includes an ion exchange medium. Even without injecting solutions with different salt concentrations into the reaction chamber by operating pumps and valves for each operation stage, the salt concentration can be reversibly regulated in situ by adjusting the polarity, intensity and application time of a voltage.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: May 25, 2010
    Assignee: Samung Electronics Co., Ltd.
    Inventors: Jung-im Han, Young-sun Lee, Joon-ho Kim
  • Patent number: 7691246
    Abstract: In one embodiment, a system comprises a filter and at least one electrodeionization (EDI) unit for chemical recovery. The filter is adapted to receive a fluid and to remove a selected chemical element or contaminant from the fluid. The EDI unit is coupled to the filter and adapted to recover a chemical element from the fluid and to separate the recovered chemical element from the fluid.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: April 6, 2010
    Assignee: Exergy Technologies Corporation
    Inventor: Fred P. Reinhard
  • Patent number: 7632387
    Abstract: A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: December 15, 2009
    Assignee: Uchicago Argonne, LLC
    Inventors: John N. Hryn, Edward J. Daniels, Greg K. Krumdick
  • Patent number: 7544278
    Abstract: The invention includes novel anion exchange membranes formed by in situ polymerization of at least one monomer, polymer or copolymer on a woven support membrane and their methods of formation. The woven support membrane is preferably a woven PVC membrane. The invention also includes novel cation exchange membranes with or without woven support membranes and their methods of formation. The invention encompasses a process for using the membranes in electrodialysis of ionic solutions and in particular industrial effluents or brackish water or seawater. The electrodialysis process need not include a step to remove excess ions prior to electrodialysis and produces less waste by-product and/or by-products which can be recycled.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: June 9, 2009
    Assignee: Seventy-Seventh Meridian Corporation, LLC
    Inventors: Tejraj Aminabhavi, Padmakar V. Kulkarni, Mahadevappa Y. Kariduraganavar
  • Patent number: 7214301
    Abstract: Filter or filter-element designated for Modified Electro-Dialysis (MED) purposes characterized in that the filter or filter-element comprises a porous, ceramic, mainly uniform material with functional, preferably ion selective groups grafted onto the inner, porous surface of the ceramic body. The outer surface of the filter or filter-element may be completely or partly covered by layers of porous, ceramic membranes with a pore size of less than 1 ?m and thickness less than 1 mm, and/or anion, cation or bipolar groups or membranes. The thickness of the filter-element is larger than 1 mm and has pores of size larger than 1 ?m. The invention also relates to a method for the manufacture of such a filter either continuously by tape-casting, extruding, rolling or calendaring or single-bodied by casting, pressing or forging, of a paste containing a non-conductive, ceramic material.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: May 8, 2007
    Inventor: Bernt Thorstensen
  • Patent number: 7083772
    Abstract: An aqueous zinc nitrite solution which contains substantially no calcium (Ca) ions is provided, in which, in terms of the aqueous zinc nitrite [Zn(NO2)2] solution having an NO2 concentration of 10% by weight, the sodium (Na) ion concentration is 200 to 2000 ppm and the sulfate (SO4) ion concentration is 20 ppm or less in the solution. The aqueous zinc nitrite solution can be prepared by providing a zinc compound and an alkali nitrite as raw materials and subjecting the raw materials to electrolytic synthesis through a double decomposition reaction using an ion-exchange membrane as a diaphragm. As the aqueous zinc nitrite solution is provided, an extremely efficient metal surface treatment is made possible which has a reduced amount of sodium ions. In particular, it contains substantially no sulfate ions and no calcium ions.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: August 1, 2006
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Yutaka Kinose, Toru Hata, Eriko Okuno
  • Patent number: 6984300
    Abstract: The present invention provides means for recovering and reusing useful component ions in electrolytic phosphate chemical treatment bath without subjecting them to waste water treatment. In the present invention, a phosphate chemical treatment bath which contains phosphate ions and phosphoric acid, metal ions that form a phosphate crystal to provide a film, metal ions that are reduced from cations in the solution to form a film as metals, and ions that are involved in the reaction of the above-mentioned phosphoric acid and various metal ions to form a film, but which does not substantially contain ions that are not involved in film formation, is used as the phosphate chemical treatment bath.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: January 10, 2006
    Assignee: DENSO Corporation
    Inventors: Shin Nishiya, Shigeki Matsuda
  • Patent number: 6878258
    Abstract: The present invention generally provides an apparatus and method for removing contaminants from a plating solution. The apparatus generally includes a plating cell having an electrolyte inlet and an electrolyte drain, an electrolyte storage unit in fluid communication with the electrolyte inlet, and an electrodialysis chamber in fluid communication with the electrolyte drain, wherein the electrodialysis chamber is generally configured to receive a portion of used electrolyte solution and remove contaminants therefrom. The method generally includes supplying an electrolyte solution to a copper plating cell, plating copper onto a substrate in the plating cell with the electrolyte solution, removing used electrolyte solution from the plating cell, and refreshing a portion of the used electrolyte solution with an electrodialysis cell.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: April 12, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Nicolay Kovarsky
  • Patent number: 6824662
    Abstract: An electrodeionization apparatus and method for purifying a fluid. A fluid, such as water, can be purified by removing weakly ionizable species from the fluid. Weakly ionizable species may be dissociated at different pH levels to facilitate removal from the fluid in an electrodeionization device.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: November 30, 2004
    Assignee: USFilter Corporation
    Inventors: Li-Shiang Liang, Anil Jha, John Arba, Stephane Dupont
  • Patent number: 6764584
    Abstract: Two concentration techniques, adsorption and electrodialysis, are combined to enrich lithium ions in brine from a level of several ppm to about 1.5%. At beginning brine is subjected to an adsorption, so that Li content is increased to 1200-1500 ppm, followed by two stages of electrodialysis in series to increase Li ions to about 1.5%. Li depleted solution from the second stage of electrodialysis having a Li content of 1200-1500 ppm is recycled to the first stage of electrodialysis as a feed. Li depleted water from the first stage of electrodialysis is subjected to a residue recovery electrodialysis to form a Li enriched solution of 1200-1500 ppm, which is also recycled to the first stage of electrodialysis as a feed. Li depleted solution from the residue recovery electrodialysis is recycled as a feed of the adsorption, so as to sufficiently recover Li ions from brine.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: July 20, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: I-Long Chang, Yu-Lin Jiang, Jer-Yuan Shiu, Jiunn-Ren Lin
  • Patent number: 6755951
    Abstract: An electrodialysis cell is operated in the presence of organic compounds that binds or chelates with the multivalent metals to form a metal chelating buffer. Among other things, this binding or chelating reduces power consumption, produces a stable cell operation, and avoids a fouling of the membranes while significantly improving membrane life, reliability, and operating costs. When a chelating agent is added to a salt solution containing multivalent cations, the chelating agent strongly binds with the cations, forming large size complexes. An ion exchange membrane retains these complexes within the compartment of the electrodialysis cell containing the feed solution. The multivalent cations is greatly inhibited from being transported across the cation exchange membrane, thus reducing the fouling of the cation membranes. Concurrently, the precipitation of the metals transported to the base loop is substantially abated.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: June 29, 2004
    Assignee: Archer-Daniels-Midland Company
    Inventor: K. N. Mani
  • Publication number: 20040074774
    Abstract: Two concentration techniques, adsorption and electrodialysis, are combined to enrich lithium ions in brine from a level of several ppm to about 1.5%. At beginning brine is subjected to an adsorption, so that Li content is increased to 1200-1500 ppm, followed by two stages of electrodialysis in series to increase Li ions to about 1.5%. Li depleted solution from the second stage of electrodialysis having a Li content of 1200-1500 ppm is recycled to the first stage of electrodialysis as a feed. Li depleted water from the first stage of electrodialysis is subjected to a residue recovery electrodialysis to form a Li enriched solution of 1200-1500 ppm, which is also recycled to the first stage of electrodialysis as a feed. Li depleted solution from the residue recovery electrodialysis is recycled as a feed of the adsorption, so as to sufficiently recover Li ions from brine.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: I-Long Chang, Yu-Lin Jiang, Jer-Yuan Shiu, Jiunn-Ren Lin
  • Patent number: 6712946
    Abstract: A method for electrodialysis is conducted in a multi-compartment, preferably a four compartment, electrodialysis cell configuration wherein an inexpensive source of protons, preferably from a strong inorganic acid enables the conversion of multivalent metal salts into valuable acid products, such as 2-keto-L-gluconic acid, a vitamin C precursor, and useful by-products, like calcium chloride.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: March 30, 2004
    Assignee: The Electrosynthesis Company, Inc.
    Inventors: J. David Genders, Dan Hartsough
  • Publication number: 20030150736
    Abstract: The present invention generally provides an apparatus and method for removing contaminants from a plating solution. The apparatus generally includes a plating cell having an electrolyte inlet and an electrolyte drain, an electrolyte storage unit in fluid communication with the electrolyte inlet, and an electrodialysis chamber in fluid communication with the electrolyte drain, wherein the electrodialysis chamber is generally configured to receive a portion of used electrolyte solution and remove contaminants therefrom. The method generally includes supplying an electrolyte solution to a copper plating cell, plating copper onto a substrate in the plating cell with the electrolyte solution, removing used electrolyte solution from the plating cell, and refreshing a portion of the used electrolyte solution with an electrodialysis cell.
    Type: Application
    Filed: February 11, 2002
    Publication date: August 14, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Nicolay Kovarsky
  • Patent number: 6569301
    Abstract: The present invention provides a cation exchange membrane which has excellent durability, a high limiting current density, a low direct current membrane resistance and excellent selectivity to monovalent cations. In the present invention, a cation exchange membrane excellent in selective permeability to monovalent cations is produced by bringing high molecular cations into contact with a surface of a cation exchange membrane in the presence of anions of an oxyacid or anions of an organic sulfonic acid.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 27, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshio Sugaya, Motoo Fukui, Yoshiharu Aoki
  • Patent number: 6565725
    Abstract: A method for producing deionized water by an electro-regenerating deionization method, which comprises employing a deionized water producing apparatus comprising an electrodialyzer, and ion exchangers being accommodated in the demineralizing compartments, supplying water to be treated in the demineralizing compartments and supplying a concentrated water to the concentrating compartments, wherein the concentrated water at the outlet of the concentrating compartments has a S value of 7 or more as defined by the following formula (1) and a pH of 2.5 or more: S value=(&ggr;−420000×A)/(B×(1−(A/0.004))3)  Formula(1), wherein &ggr; is electro-conductivity(&mgr;S/cm), A is hydrogen ion concentration (mol/l), and B is magnesium ion concentration (ppb).
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: May 20, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshio Sugaya, Yukio Matsumura, Hiroshi Toda
  • Publication number: 20030070928
    Abstract: A process for preparing salts of methallylsulfonic acid in which the reaction mixture produced from the sulfonation is diluted with water and neutralized with a base.
    Type: Application
    Filed: July 24, 2002
    Publication date: April 17, 2003
    Inventors: Claus York Werninger, Lothar Kerker, Hartmut Steinbeisser, Wilfried Bueschken, Franz-Felix Kuppinger, Peter Ernst Esser
  • Patent number: 6471844
    Abstract: Processes are provided for the electrodialysis of a (di)alkali metal salt of an aromatic hydroxycarboxylic acid to produce a free aromatic hydroxycarboxylic acid and the alkali metal hydroxide, in the presence of a selected alkali metal salt. These various embodiments represent efficient and economical methods for recovering the alkali metal hydroxide, as well as the parent organic compound, from these dialkali metal salts. These processes also desirably prevent overvoltage during the electrodialysis.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: October 29, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Michael Robert Samuels, Ronald M. Yabroff
  • Patent number: 6461491
    Abstract: An electrodialysis apparatus includes a stack of alternating cation and anion semi-permeable, ion-selective membranes disposed between a positive DC potential anode electrode and a negative DC potential cathode electrode. The cation and anion selective membranes can be selective for monovalent or multivalent ions and form compartments therebetween through alternate compartments of which flow concentrate and diluate solutions such that the concentrate and diluate solutions are separated from each other by the ion selective membranes. Due to the potential maintained across each of the compartments and the cation and anion selective membranes separating the compartments, cations and anions as well as water will migrate from the diluate solution to the concentrate solution.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: October 8, 2002
    Assignee: The University of Chicago
    Inventors: John N. Hryn, Kandipati Sreenivasarao
  • Patent number: 6391177
    Abstract: An electrodialytic cell and process for its use in regenerating electroless plating solutions, particularly nickel-hypophosphite electroless plating solutions, are disclosed. The process is capable of operating at high temperatures and in a continuous fashion such that the plating operation is not interrupted and the steady state condition in the plating bath is achieved.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: May 21, 2002
    Inventor: David Crotty
  • Patent number: 6340420
    Abstract: This invention relates to methods of controlling the oxidation of hydrocarbons to respective dibasic acids, such as adipic acid for example, by removing the catalyst from the reaction mixture, outside the reaction zone, after the oxidation has taken place at least partially. The catalyst is precipitated substantially in its totality by using a base, preferably sodium hydroxide, to form the catalyst hydroxide, such as cobalt hydroxide for example. Preferably, the precipitated catalyst is recycled to the reaction zone with or without further treatment. The method may also include steps for treatment of the reaction mixture by hydrolysis and/or electrodialysis.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: January 22, 2002
    Assignee: RPC Inc.
    Inventors: Mark W. Dassel, Eustathios Vassiliou
  • Patent number: 6221225
    Abstract: An apparatus and process produces salts by an electrodialysis operation. The basic electrodialysis apparatus is a cell having a number of compartments separated by ion exchange membranes. A DC source is connected to drive a current through a feed stream passing through the cell which splits the salt stream into an acid and a base. The incoming feed may be nanofiltered to remove divalent metal. The base loop may be in communication with an ion exchange column packed with a material that removes multivalent cations. Monovalent selctive cation membranes may be used to effect preferential treatment of the monovalent cations to the base loop. Depending upon the material being processed and the desired end result either or both the nanofiltration and the ion exchanged column may be used in the apparatus.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: April 24, 2001
    Assignee: Archer Daniels Midland Company
    Inventor: K. N. Mani
  • Patent number: 6214190
    Abstract: The present invention relates to a process for isolating, by membrane electrodialysis, a catalyst from a solution containing it. More precisely, it relates to the isolation of a catalyst used in a homogeneous phase molecular oxidation reaction. The invention consists of a process for isolating a homogeneous catalyst dissolved in a mixture also containing at least one aliphatic diacid, characterized in that the catalyst contains cobalt and the isolation is performed by membrane electrodialysis.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: April 10, 2001
    Assignee: Rhodia Fiber and Resin Intermediates
    Inventors: Eric Fache, Dominique Horbez, Philippe Leconte
  • Patent number: 6200448
    Abstract: The method of manufacturing nickel hypophosphite from a solution of hexahydrated nickel sulfate and a solution of monohydrated sodium hypophosphite by an electro-membrane technique, consists: a) in introducing respectively the hexahydrated nickel sulfate solution and the monohydrated sodium hypophosphite solution into each of two dilution circuits of four-compartment electrodialysis cells formed by alternating stacks of cationic and anionic homopolar membranes in an electrodialysis apparatus having an anode and a cathode that are insoluble; b) in applying an electrical current from the anode to the cathode without regulating the pH of the solutions contained in the dilution and concentration circuits but regulating the electricity supply, either in voltage or in current; and c) in recovering a hexahydrated nickel hypophosphite solution from one of the concentration circuits.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: March 13, 2001
    Inventor: André Emile Joseph Richard
  • Patent number: 6187201
    Abstract: A system for producing ultra-pure water having an electrodialysis unit 1, which has a membrane selectively permeable to monovalent cations and a membrane selectively permeable to monovalent anions, and a reverse osmosis unit 5 which is connected after the electrodialysis unit 1 in series.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: February 13, 2001
    Assignee: Nomura Micro Science Co., Ltd.
    Inventors: Mitsugu Abe, Yoshiaki Noma
  • Patent number: 6045684
    Abstract: An on-site process and apparatus for producing hydrogen peroxide at a high efficiency substantially from brine and oxygen-containing gas alone as raw materials while removing alkaline earth metals. Sea water concentrated by an electrodialytic apparatus 2 or the like as a raw material is supplied to an impurity removing apparatus 10 where caustic soda produced in an acid-alkali producing apparatus 11 at a subsequent stage and/or carbon dioxide gas is added to remove alkaline earth metals contained in sea water in the form of a hydroxide or carbonate precipitate. Separately, the acid-alkali producing apparatus 11 performs a salt separating operation to produce caustic soda which is then supplied to a hydrogen peroxide generator 28 to produce an alkaline aqueous solution of hydrogen peroxide.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: April 4, 2000
    Assignees: Permelec Electrode Ltd., Katayama Chemical, Inc.
    Inventors: Shuhei Wakita, Masaharu Uno, Takayuki Shimamune, Yoshinori Nishiki, Kunio Nishimura
  • Patent number: 6036830
    Abstract: In order to remove the salts (in particular NH.sub.4 Cl) present in an aqueous sulphonamide solution (in particular CH.sub.3 SO.sub.2 NH.sub.2), the solution is subjected to a two-compartment electrodialysis. By maintaining the pH at a value below 7, the formation of ammonia is avoided. The demineralized solution can be concentrated in order to receover after crystallization, the sulphonamide.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: March 14, 2000
    Assignee: Elf Atochem S.A.
    Inventors: Christian Gancet, Didier Lauranson, Frederic Perie
  • Patent number: 6030844
    Abstract: Method of pre-treating a sample for metal analysis, the sample including a volatile alkali, by permeating the volatile alkali through a gas permeable membrane, dissolving the volatile alkali in an absorbent, passing ions through a first cation exchange membrane in electrical contact with an anode, reacting the volatile alkali with the ions, and passing the reacted volatile alkali through a second cation exchange membrane in electrical contact with a cathode, whereby the volatile alkali is removed from the sample.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: February 29, 2000
    Assignee: NEC Corporation
    Inventor: Ushio Hase
  • Patent number: 6017433
    Abstract: The invention is a process for desalting aqueous solutions, which are initially acidified to a pH of about 3 or less. Then, the acidified solution is fed into a desalting compartment of an electrodeionization cell which contains a suitable ion exchange material and is isolated from an adjacent concentrating compartments by an anion and a cation exchange membrane. The concentrate compartment contains a netting or another suitable material that promotes turbulence in a flowing feed stream. Water is supplied to the concentrate compartment. A DC current passes through the electrodeionization cell to produce a substantial desalination of the feed solution. A less acidic desalted solution and a concentrate waste solution are withdrawn from the electrodeionization cell.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: January 25, 2000
    Assignee: Archer Daniels Midland Company
    Inventor: Krishnamurity Nagasubramanian Mani
  • Patent number: 5961805
    Abstract: An apparatus for producing deionized water consisting essentially of an electrodialyzer having cation exchange membranes and anion exchange membranes alternately arranged between a cathode and an anode to form demineralizing compartments and concentrating compartments, and ion exchangers accommodated in the demineralizing compartments, wherein a pressure of from 0.1 to 20 kg/cm.sup.2 is exerted between the ion exchangers accommodated in the demineralizing compartments and the cation exchange membranes and anion exchange membranes defining the demineralizing compartments.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: October 5, 1999
    Assignees: Ashai Glass Company Ltd., Glegg Water Conditioning, Incorporated
    Inventors: Ichiro Terada, Hiroshi Toda, Junjiro Iwamoto, Kazuo Umemura, Ken Komatsu, Tohru Hoshi, Mark Philip Huehnergard, David Florian Tessier, Ian Glenn Towe
  • Patent number: 5961803
    Abstract: An increasing problem with the pulping chemical recovery system, is the presence of chloride and potassium in the recovery boiler. Chloride and potassium increase inter alia the stickiness of carryover deposits and dust particles to the recovery boiler tubes, which accelerate fouling, corrosion and plugging of the recovery boiler. As the environmental legislation becomes more stringent, the degree of system closure increases. The present invention relates to a process by which the collected precipitator dust is leached, at a temperature exceeding 50.degree. C., for a residence time sufficient to get a chloride and potassium enriched leach solution and to remove at least a part of the content of metal ions in a solid phase. Said leach solution is electrochemically treated, preferably in an electrodialysis cell, in order to remove at least a part of the chloride and potassium therein. By the present process, the problem of sticky deposits in the recovery boiler can be substantially reduced.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: October 5, 1999
    Assignee: Eka Chemicals AB
    Inventors: Johan Landfors, Roy Hammer-Olsen, Kimona Haggstrom
  • Patent number: 5948230
    Abstract: Improved electrodialysis (ED) stacks are disclosed having one or more components selected from the group:a) cation exchange membranes having ion exchange groups predominantly sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups or membranes which are selective to monovalent cations and simultaneously therewith, cation exchange granules selective to monovalent cations as packing in the dilute compartments;b) anion exchange membranes having as ion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and substantially no primary, secondary and/or tertiary amine and/or phosphine groups or membranes which are selective to monovalent anions simultaneously therewith, anion exchange granules selective to monovalent anions as packing in the dilute compartments;c) as packing in the dilute compartment, anion exchange granules which are selective to monovalent anions, or cation exchange granules which are selective to monovalent cations, or cation exchange granules
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: September 7, 1999
    Assignee: Ionics, Incorporated
    Inventor: Wayne A. McRae
  • Patent number: 5858191
    Abstract: An improved electrodeionization apparatus and method are provided. The electrodeionization apparatus includes an ion-concentrating compartment, an ion-depleting compartment, and electrolyte compartments, wherein alternating layers of anion exchange resins and cation exchange resins are positioned in the ion-depleting compartment, and the anion exchange resins comprise Type II anion resins. The incorporation of Type II anion material, alone or with Type I anion material, in anion permeable membranes and/or resins improves the electric current distribution, degree of resin regeneration, and deionization performance.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: January 12, 1999
    Assignee: United States Filter Corporation
    Inventors: Felice DiMascio, Gary C. Ganzi
  • Patent number: 5851372
    Abstract: A process of demineralizing a liquid containing organic matter and inorganic salts in solution, in which the treatment of the liquid comprises the following steps:the liquid is percolated over a strong cationic ion exchange resin for monovalent ions;both a batch of liquid from the preceding step and a brine for receiving ions from that liquid are caused to circulate in loops through at least one "two-compartment" electrodialyzer comprising a plurality of anionic membranes interposed between a plurality of cationic membranes; andthe brine whose salt concentration lies in the range 90 grams per liter (g/l) to 110 g/l is used to regenerate the ion exchange resin.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: December 22, 1998
    Assignee: Societe Anonyme Francaise D'Ingenierie et de Recherche
    Inventor: Roland Noel