Depositing Predominantly Alloy Coating Patents (Class 205/232)
  • Patent number: 10711358
    Abstract: Provided is low alpha-ray emitting bismuth having an alpha dose of 0.003 cph/cm2 or less. Additionally provided is a method of producing low alpha-ray emitting bismuth, wherein bismuth having an alpha dose of 0.5 cph/cm2 or less is used as a raw material, the raw material bismuth is melted in a nitric acid solution via electrolysis to prepare a bismuth nitrate solution having a bismuth concentration of 5 to 50 g/L and a pH of 0.0 to 0.4, the bismuth nitrate solution is passed through a column filled with ion-exchange resin to eliminate polonium contained in the solution by an ion-exchange resin, and bismuth is recovered by means of electrowinning from the solution that was passed through the ion-exchange resin. Recent semiconductor devices are of high density and high capacity, and therefore are subject to increased risk of soft errors caused by the effects of alpha rays emitted from materials in the vicinity of semiconductor chips.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: July 14, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventor: Yu Hosokawa
  • Patent number: 9263610
    Abstract: The present invention describes a method of producing a photovoltaic solar cell with stoichiometric p-type copper indium gallium diselenide (CuInxGa1-xSe2) (abbreviated CIGS) as its absorber layer and II-IV semiconductor layers as the n-type layers with electrodeposition of all these layers. The method comprises a sequence of novel procedures and electrodeposition conditions with an ionic liquid approach to overcome the technical challenges in the field for low-cost and large-area production of CIGS solar cells with the following innovative advantages over the prior art: (a) low-cost and large-area electrodeposition of CIGS in one pot with no requirement of post-deposition thermal sintering or selenization; (b) low-cost and large-area electrodeposition of n-type II-VI semiconductors for the completion of the CIGS solar cell production; and (c) low-cost and large-area deposition of a buffer layer of CdS or other compounds with a simple chemical bath method.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: February 16, 2016
    Assignee: CHENGDU ARK ETERNITY PHOTOVOLTAIC TECHNOLOGY COMPANY LIMITED
    Inventors: Leo Lau, Zhifeng Ding, David Anthony Love, Mohammad Harati, Jun Yang
  • Patent number: 8821707
    Abstract: Disclosed herein is an electric Al or Al alloy plating bath which comprises (A) an aluminum halide; (B) one kind of compound or at least two kinds of compounds selected from the group consisting of N-alkylpyridinium halides, N-alkylimidazolium halides, N,N?-alkylimidazolium halides, N-alkyl-pyrazolium halides, N,N?-alkylpyrazolium halides, N-alkylpyrrolidinium halides and N,N-alkyl-pyrrolidinium halides; and (C) a high boiling point aromatic hydrocarbon solvent, wherein the molar ratio of the aluminum halide (A) to the compound (B) ranges from 1:1 to 3:1 and the flash point of the plating bath is not less than 50° C. The plating bath never involves any risk of causing an explosion, can be handled industrially with safety and can provide a smooth and fine Al of Al alloy plated film.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: September 2, 2014
    Assignees: Dipsol Chemicals Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Manabu Inoue, Tadahiro Ohnuma, Tsutomu Miyadera
  • Patent number: 8778164
    Abstract: Methods for producing a high temperature oxidation resistant coating on a superalloy component and the coated superalloy component produced thereby are provided. Aluminum or an aluminum alloy is applied to at least one surface of the superalloy component by electroplating in an ionic liquid aluminum plating bath to form a plated component. The plated component is heat treated at a first temperature of about 600° C. to about 650° C. and then further heat treated at a second temperature of about 700° C. to about 1050° C. for about 0.50 hours to about two hours or at a second temperature of about 750° C. to about 900° C. for about 12 to about 20 hours.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 15, 2014
    Assignee: Honeywell International Inc.
    Inventors: James Piascik, Derek Raybould, George Reimer
  • Patent number: 8226750
    Abstract: A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: July 24, 2012
    Assignee: Genesis Fueltech, Inc.
    Inventor: Peter David DeVries
  • Publication number: 20120076946
    Abstract: A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.
    Type: Application
    Filed: November 7, 2011
    Publication date: March 29, 2012
    Applicant: Lawrence Livermore National Security, LLC
    Inventor: Joseph C. Farmer
  • Publication number: 20120052324
    Abstract: Provided herein is an electric Al—Zr—Mn alloy-plating bath which comprises (A) an aluminum halide; (B) one or at least two kinds of compounds selected from the group consisting of N-alkylpyridinium halides, N-alkylimidazolium halides, N,N?-dialkyl-imidazolium halides, N-alkyl-pyrazolium halides, N,N?-dialkyl-pyrazolium halides, N-alkylpyrrolidinium halides and N,N-dialkyl-pyrrolidinium halides; (C) a zirconium halide; and (D) a manganese halide, in which the molar ratio of the aluminum halide (A) to the compound (B) ranges from 1:1 to 3:1. The plating bath never involves any risk of causing an explosion and can provide a smooth and fine Al—Zr—Mn alloy-plated film. Moreover, the resulting film has high resistance to corrosion even when it does not contain any chromium and therefore, it is quite suitable from the viewpoint of the environmental protection and it can thus be used in a wide variety of applications including the plating of parts for motorcars, and the plating of parts for electrical appliances.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicants: HONDA MOTOR CO., LTD., DIPSOL CHEMICALS CO., LTD.
    Inventors: Manabu Inoue, Tadahiro Ohnuma, Tsutomu Miyadera
  • Publication number: 20100282085
    Abstract: A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 11, 2010
    Inventor: Peter David DeVries
  • Publication number: 20100077547
    Abstract: Stainless steel sinks are disclosed which have a chrome surface coating layer. In one highly preferred form the layer is electroplated in a non-uniform manner such that high wear areas automatically receive an extra thickness of the chrome. The layer improves stain resistance and scratch resistance well beyond what conventional chromium mixed throughout the stainless steel itself will do. Processes for applying the layer are also described, as are the effects of different brushing finishes.
    Type: Application
    Filed: July 28, 2009
    Publication date: April 1, 2010
    Inventors: Nathan F. Tortorella, Christopher T. Wagner
  • Publication number: 20090101514
    Abstract: An objective of the present invention is to provide an electrodeposition method for metals using a molten salt, which easily enables the electrodeposition of various types of metals such as refractory metals and rare earth metals. In order to solve this problem, the invention is characterized in that it is effected at the electrodeposition temperature in a range of from 100° C. to 200° C.
    Type: Application
    Filed: September 5, 2006
    Publication date: April 23, 2009
    Applicant: KYOTO UNIVERSITY
    Inventors: Toshiyuki Nohira, Rika Hagiwara, Jun Shimano
  • Patent number: 7361626
    Abstract: The present invention relates to a Catalyst comprising a, preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 22, 2008
    Assignee: Engelhard Corporation
    Inventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
  • Patent number: 7294250
    Abstract: A very small amount of copper chloride or zinc oxide is added to a mixture of magnesium chloride, potassium chloride, sodium chloride and magnesium borate, a mixed salt is melted under heat, electrodes are inserted into a molten salt and a metallic material employed as a cathode is electroplated with a magnesium diboride (MgB2) film.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: November 13, 2007
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Hideki Abe, Hideaki Kitazawa, Kenji Yoshii, Junichiro Mizuki
  • Publication number: 20030121789
    Abstract: An electrodeposited copper foil to be laminated on an insulation substrate for printed circuit boards, comprises a barrier layer formed of ternary alloy of Zn—Co—As on the copper foil. According to another aspect of the invention a surface treatment method of an electrodeposited copper foil for printed circuit boards is performed comprises the steps of electrolytically treating the copper foil in the electrolytic solution containing pyrophosphoric acid potassium of 10˜200 g/l, Zn of 0.1˜20 g/l, Co of 0.1˜20 g/l and As of 0.05˜5 g/l. Further, the electrolytic solution remains at the temperature of 20˜50° C. and pH=9˜13, and the copper foil is electrolytically treated for 2˜20 seconds at the cathode current density of 0.5˜20 A/dm2.
    Type: Application
    Filed: October 23, 2002
    Publication date: July 3, 2003
    Inventors: Sang-Kyum Kim, Chang-Hee Choi
  • Publication number: 20030010645
    Abstract: A damascene process for introducing copper into metallization layers in microelectronic structures includes a step of forming an enhancement layer of a metal alloy, such as a copper alloy or Co—W—P, over the barrier layer, using PVD, CVD or electrochemical deposition prior to electrochemically depositing copper metallization. The enhancement layer has a thickness from 10&mgr; to 100&mgr; and conformally covers the discontinuities, seams and grain boundary defects in the barrier layer. The enhancement layer provides a conductive surface onto which a metal layer, such as copper metallization, may be applied with electrochemical deposition. Alternatively, a seed layer may be deposited over the enhancement layer prior to copper metallization.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 16, 2003
    Applicant: Mattson Technology, Inc.
    Inventors: Chiu H. Ting, Igor Ivanov
  • Patent number: 6277510
    Abstract: The present invention provides a porous electrode used for a conductive material-filled polymer composite. At least one surface of the porous electrode is an open porous structure, which includes a plurality of macropores and micropores randomly distributed and interconnected with each other. The conductive material-filled polymer composite includes a polymer substrate and conductive particles filled therein. When the surface of the open porous structure of the porous electrode is bonded with the conductive material-filled polymer composite, the conductive particles in the conductive material-filled polymer composite can be trapped in the macropores of the porous structure, and the polymer substrate in the conductive material-filled polymer composite can be immersed into the micropores of the porous structure. This enables a better direct contact between the conductive particles and the porous electrode.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: August 21, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Huang Chang, Wei-Wen Yeh, Shu-Chin Chou, Chen-Ron Lin
  • Patent number: 6207035
    Abstract: A method for manufacturing a metal composite strip for the production of electrical contact components. A film made of tin or a tin alloy is first applied onto an initial material made of an electrically conductive base material. A film of silver is then deposited thereonto. Copper or a copper alloy is preferably used as the base material. The tin film can be applied in the molten state, and the silver film by electroplating. Furthermore, both the tin film and the silver film can be deposited by electroplating. A further alternative provides for manufacturing the tin film in the molten state and the silver film by cathodic sputtering. The diffusion operations which occur in the coating result in a homogeneous film of a tin-silver alloy. This formation can be assisted by way of a heat treatment of the composite strip.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: March 27, 2001
    Assignee: Stolberger Metallwerke GmbH & Co. KG
    Inventors: Udo Adler, Klaus Schleicher
  • Patent number: 6176994
    Abstract: A conductive electrode wire is passed through a molten salt bath maintained at a temperature above the melting point of the salts. A main electrical power supply passes an electric current between the electrode wire and an anode in the molten salt bath so that a metal coating layer is electrolytically deposited onto the core of the electrode wire. The high temperature of the molten salt bath ensures inter-diffusion of the metals of the core and the coating. This enables diverse coating structures to be obtained by choosing electrolysis and diffusion parameters.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: January 23, 2001
    Assignee: Thermocompact, societe anonyme
    Inventor: Louis Lacourcelle
  • Patent number: 5827413
    Abstract: A low hydrogen overvoltage cathode is provided which comprises an electroconductive base material coated with an alloy layer containing cobalt and tin at least at a content of tin ranging from 0.01 to 95% by weight. A process is also provided for producing the low hydrogen voltage cathode, wherein cobalt and tin at least are electrolytically co-deposited onto a surface of an electroconductive base material from a plating bath containing cobalt ions, tin ions, and a complexing agent.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: October 27, 1998
    Assignee: Tosoh Corporation
    Inventors: Kazuhisa Yamaguchi, Kanji Yoshimitsu, Satoshi Yoshida, Kazumasa Suetsugu, Takashi Sakaki
  • Patent number: 5413700
    Abstract: A method for reforming hydrocarbons comprising coating portions of a reactor system with a material more resistant to carburization, reacting the material with metal oxides existing in the portions of the reactor system prior to coating, fixating or removing at least a portion of the oxide in the metal oxides, and reforming hydrocarbons in the reactor system under conditions of low sulfur.
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: May 9, 1995
    Assignee: Chevron Research and Technology Company
    Inventors: John V. Heyse, Bernard F. Mulasky
  • Patent number: 5405525
    Abstract: A method for reforming hydrocarbons comprising coating portions of a reactor system with a material more resistant to carburization, reacting the material with metal sulfides existing in the portions of the reactor system prior to coating, fixating and removing at least a portion of the sulfur in the metal sulfides, and reforming hydrocarbons in the reactor system under conditions of low sulfur.
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: April 11, 1995
    Assignee: Chevron Research and Technology Company
    Inventors: John V. Heyse, Bernard F. Mulaskey
  • Patent number: 5378328
    Abstract: A process is provided for the recovery of bismuth from an ion exchange eluent solution consisting of at least 50% sulfuric acid maintained at a temperature of 95.degree.-100.degree. C. The process comprises the step of electrowinning bismuth from the sulfuric acid solution in an electrochemical cell at a current density up to 30 A/m.sup.2 using an insoluble anode and a cathode that is impervious to the highly corrosive environment of hot sulfuric acid, for a time interval such as to reduce the bismuth content of the solution down to about 3-5 g/L.
    Type: Grant
    Filed: August 4, 1993
    Date of Patent: January 3, 1995
    Assignee: Noranda Inc.
    Inventors: Varujan Baltazar, John L. Cromwell
  • Patent number: 5264111
    Abstract: A method of electrodepositing a film including the steps of immersing a conductive substrate opposite a counterelectrode in an organochloroindate melt comprising a salt of at least one metal selected from the group consisting of phosphorus, arsenic, and antimony, and an InCl.sub.3 -dialkylimidazolium chloride wherein the alkyl groups each comprise no more than four carbons, and the molar ratio of the InCl.sub.3 to the organic chloride ranges from about 45/55 to 2/3; and cathodizing said substrate at a potential selected to codeposit In and said metal. In addition, substitution of a small amount of InCl.sub.3 with a trichloride salt of another Group III metal can be employed to obtain deposits containing other Group III metals. For molar ratios of the metal salt to InCl.sub.3 other than 45/55, the melt is heated to 45.degree. C. or greater.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: November 23, 1993
    Assignee: General Motors Corporation
    Inventors: Michael K. Carpenter, Mark W. Verbrugge