Reversing Nonpulsed Current Or Voltage Patents (Class 205/342)
  • Patent number: 11772992
    Abstract: A deionization device is for at least partially deionizing a feed liquid in which at least one electrolyte is dissolved. The device has at least one process channel with a feed inlet for receiving the feed liquid, and a feed outlet; one or more collector channel(s) for collecting the anions and cations separated from the feed liquid; an electrolyte outlet for discharging the collected anions and cations; and at least one channel electrode, at least one separating electrode, and at least one collector electrode. The channel and separating electrodes are placed at opposite sides of the process channel, and the separating and collector electrodes are placed at opposite sides of the collector channel(s). A field generator generates an electric and/or magnetic field between the channel and separating electrodes, and between the separating and collector electrodes, to generate an ion flow from the process to the collector channel(s), which is the same for anions and cations.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: October 3, 2023
    Assignee: AVSALT AB
    Inventor: Nicolaas Jacobus Henricus Boon
  • Patent number: 11313045
    Abstract: Methods of making aliphatic compounds having two or more electron withdrawing groups and compositions comprising aliphatic organic compounds having one or more electron withdrawing groups. The methods are based on electrohydrodimerization of aliphatic olefinic compounds having one or more electron withdrawing groups using pulsed potential waveforms. A method may produce adiponitrile by electrolysis of acrylonitrile using pulsed waveforms. A composition may be an electrochemically produced organic phase composition. A composition may comprise one or more undesirable products, such as, for example, propionitrile, AN-derived oligomers, and the like. A composition may not have been subjected to any purification and/or separation after electrochemical production of one or more aliphatic compounds comprising two or more electron withdrawing groups.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: April 26, 2022
    Assignee: New York University
    Inventors: Miguel A. Modestino, Daniela Eugenia Blanco Jimenez
  • Patent number: 10239772
    Abstract: The present invention relates to an apparatus for the production of ozone from water comprising at least one cell, consisting of an anode, a cathode and an interposed cation-conducting membrane, wherein the membrane conductively connects the anode and the cathode while forming flow channels for water that are separated from one another as anode and cathode chambers and wherein the flow channels are configured to allow for the recirculation of the water flow within the chambers. The present invention further relates to an electrochemical method and apparatus for producing ozone or dissolved ozone in water in high concentrations by mean of recirculation of water between at least one chamber and at least one water tank.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: March 26, 2019
    Assignee: Advanced Diamond Technologies, Inc.
    Inventors: Donato M. Ceres, John Arthur Carlisle, Prabhu Arumugam, Matthew Hart
  • Patent number: 9945005
    Abstract: A method of recovering metal values from metal-bearing materials such as slags and drosses includes the steps of pulverizing the material to particles less than about 100 ?m; leaching the pulverized material with a solution of ammonium chloride, sodium chloride, and potassium chloride; sequentially recovering at least two metals from the leachate by the addition of zinc using a sequential cementation process; and recovering zinc from the solution by electrowinning.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: April 17, 2018
    Assignee: METALS TECHNOLOGY DEVELOPMENT COMPANY, LLC
    Inventors: Timothy Roy Hymer, Bruce David Chamberlain, Karl Friedrich Schneider, Massimo Giuseppe Maccagni
  • Patent number: 9364789
    Abstract: The present invention provides a method for recovering hydrogen from hydrogen sulfide using a supported silver catalyst, and a method for purifying a gas stream containing hydrogen sulfide using such a catalyst.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: June 14, 2016
    Assignee: Haldor Topsoe A/S
    Inventor: Poul Erik Højlund Nielsen
  • Publication number: 20140257002
    Abstract: Provided are processes for producing a lube basestock or wax from a feedstock of biological origin, the method including: providing a fatty acid originated from the feedstock of biological origin and an aromatic acid in a solvent comprising a base; and electrically coupling the fatty acid and the aromatic acid to produce a hydrocarbon, wherein the molar concentration of the fatty acid is greater than the molar concentration of the aromatic acid.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Liena Tan
  • Publication number: 20140174942
    Abstract: An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.
    Type: Application
    Filed: October 15, 2013
    Publication date: June 26, 2014
    Applicant: ADVANCED DIAMOND TECHNOLOGIES, INC.
    Inventors: Ian W. Wylie, Prabhu U. Arumugam, Hongjun Zeng, John Arthur Carlisle
  • Patent number: 8685255
    Abstract: A method of operating a capacitive deionization cell using a regeneration cycle to increase pure flow rate and efficiency of the cell.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 1, 2014
    Assignee: Voltea B.V.
    Inventors: Sean Knapp, Marshall L. Leffew, II
  • Publication number: 20140076734
    Abstract: An efficient and low environmental impact method is disclosed for the recovery of lithium from aqueous solution, for example, brines from high altitude salt lakes. The method comprises the use of an electrochemical reactor with electrodes which are highly selective for lithium, where lithium ions are inserted in the crystal structure of manganese oxide in the cathode, and extracted from the crystal structure of manganese oxide in the anode. Also disclosed are three-dimensional carbon electrodes embedded in manganese oxides formed by impregnating a porous support, for example a carbon felt, with a manganese oxide/carbon black slurry.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Inventors: Ernesto Julio CALVO, Florencia MARCHINI
  • Patent number: 8647490
    Abstract: The present invention relates to a method for manufacturing a micro wire, a sensor including the micro wire, and a method for manufacturing the sensor, having improved production efficiency. According to an embodiment of the present invention, a method for manufacturing a micro wire includes applying a three-dimensional electric field to a solution for forming a micro wire. The method for manufacturing the micro wire may further include providing an electrode assembly comprising a substrate, a first electrode and a second electrode formed on the substrate, and providing the solution to a space. The first electrode and the second electrode may form the space therebetween, and the space may have a first width and a second width that is smaller than the first width. The three-dimensional electric field is applied to the solution by applying a voltage to the first electrode and the second electrode.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: February 11, 2014
    Assignee: Postech Academy-Industry Foundation
    Inventors: WooSeok Choi, Guenbae Lim, Tae-Chang An
  • Publication number: 20140014525
    Abstract: A method is taught of introducing an alternating voltage between a first electrode and a second electrode in a mixture comprising a depolarizing agent. The method then alternates between forming hydrogen gas at the first electrode while simultaneously oxidizing a depolarizing agent at the second electrode and forming hydrogen gas at the second electrode while simultaneously oxidizing the depolarizing agent at the first electrode.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Applicant: Phillips 66 Company
    Inventors: Danielle Kristin Smith, Neal Donald McDaniel, Mahaprasad Kar, Dennis Schultz, Bruce B. Randolph
  • Publication number: 20130206605
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R. Hardy, Heather D. Willauer, M. Kathleen Lewis, Frederick Williams
  • Publication number: 20130186862
    Abstract: An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of at least one acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, woven carbon fibers, lead and lead alloy. Once the electrolyte is oxidized to form a metastable complex of manganese(III) ions, a platable plastic may be contacted with the metastable complex to etch the platable plastic. In addition, a pretreatment step may also be performed on the platable plastic prior to contacting the platable plastic with the metastable complex to condition the plastic surface.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Applicant: MACDERMID ACUMEN, INC.
    Inventor: MACDERMID ACUMEN, INC.
  • Publication number: 20130118908
    Abstract: An electro-catalytic membrane system for preparing fuel gas from water operates at normal levels of pressure and temperature. The system includes a high frequency power source, a power supply system, a programmable control unit, an electro-catalytic membrane module, and a module for processing the fuel gas. The electro-catalytic membrane module includes metallic electrodes in a concentric arrangement. The space between the concentric electrodes includes granular carbon and metallic particles. A fixed membrane is arranged at a lower end of the space while a mobile membrane is arranged at an upper end of the space. The electro-catalytic membrane module is further provided with sensors for measuring process parameters, conduits, and valves for supplying and removing liquids. A system for cooling the metallic electrodes is also provided.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 16, 2013
    Applicant: S.C. CENTRUL DE CERCETARE PENTRU MATERIALE MACROMOLECULARE SI MEMBRANE S.A. (S.C. CCMMM S.A.)
    Inventors: Marin Radu, Florica Radu, Valentin Radu, Daniela Radu, Florian Cioroianu, Mariana Cioroianu
  • Patent number: 8414860
    Abstract: Methods and apparatus for controlling a catalytic layer deposition process are provided. A feed stream comprising a carbon source is provided to a catalyst layer. An asymmetrical alternating current is applied to the catalyst layer. A polarization impedance of the catalyst layer is monitored. The polarization impedance can be controlled by varying the asymmetrical alternating current. The controlling of the polarization impedance provides control over the structure and amount of carbon particles deposited on the catalyst layer. The carbon particles may be in the form of nanotubes, fullerenes, and/or nanoparticles.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: April 9, 2013
    Assignee: Catelectric Corp.
    Inventor: Victor Stancovski
  • Publication number: 20120048744
    Abstract: Provided is an electrochemical cell for generating hydrogen peroxide (H202) directly from water, and an application thereof. The electrochemical cell includes: water-soluble electrolyte; an electrode structure A, in which hydrogen peroxide is generated by oxidizing water containing city water (CW) or electrolytes when voltage of time dependant polarity is applied; and an electrode structure B, in which hydrogen peroxide is generated by reducing water of the water-soluble electrolyte when the voltage of time dependant polarity is applied, wherein the polarity reversal of the voltage Ve is performed periodically or non-periodically according to the time between positive (+) voltage and negative (?) voltage.
    Type: Application
    Filed: May 12, 2010
    Publication date: March 1, 2012
    Applicant: PETRATRON, INC.
    Inventors: Kyu-Jung Kim, Nie Luo, Ji Cui
  • Publication number: 20110174633
    Abstract: An electrolytic cell is provided that can include: a first electrode plate including a first surface that can include a graphite material; a second electrode plate including a second surface that can include a graphite material opposing the first surface; an electrolytic reaction zone between the first surface and the second surface; and an inlet to and an outlet from the electrolytic reaction zone. The first electrode plate and the second electrode plate can include resin-impregnated monolithic graphite plates. The first electrode plate and the second electrode plate can form opposite internal walls of a chamber for the electrolytic reaction and thus can be provided without a container for containing the electrode plates. Methods are also provided for flow-through-resin-impregnating porous, monolithic graphite plates to form electrode plates.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: ProChemTech International, Inc.
    Inventor: Timothy Edward KEISTER
  • Publication number: 20100065436
    Abstract: A method of extracting platinum group metals from waste catalysts through an electrochemical process is disclosed. The extracting method includes positioning the waste catalysts between both electrodes in an electrolytic cell, leaching the platinum group metals as regularly changing polarities of the electrodes to each other, and precipitating the platinum group metals on a cathode by circulating the electrolyte from an anode to a cathode. According to the method, the platinum group metals can be extracted with high efficiency and high yield. Also, the extracting process is simplified to remarkably reduce costs required to extract the platinum group metals.
    Type: Application
    Filed: October 2, 2007
    Publication date: March 18, 2010
    Inventor: In-Soo Jin
  • Patent number: 6620305
    Abstract: An electrolytic process for the preparation of a compound having a charged electrolytic cell fitted with at least one anode and at least one cathode in a single compartment with a reaction mixture. An electric potential is applied to the at least one anode and at least one cathode under conditions to promote formation of a compound on one of the cathodes or the anode to define a formation electrode. The formation electrode is then agitated.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: September 16, 2003
    Assignee: Cornell Development Corporation LLC
    Inventors: Paul W. Cornell, Stephen W. Cornell
  • Publication number: 20020157962
    Abstract: A mineral ionizing device (10) consisting of a container (20) filled with water and containing a solid-mineral, cylindrical first electrode (50), a second electrode (58) coaxially located within the first electrode (50), a vibration unit (100) which produces a vibration within the container (20), a set of protrusions (64) located on the surface of the second electrode (58) and a periodic current reversing unit (84) which applies a d-c current across the first and second electrodes (50,58). The combination of the vibration unit (100), the protrusions (64) and the current reversing unit (84) aids in releasing gaseous bubbles which form on the surface of the second electrode (58). The application of the d-c current causes the mineral in the first electrode (50) to release mineral ions into the water which results in the production of very clean mineral water.
    Type: Application
    Filed: March 19, 2001
    Publication date: October 31, 2002
    Inventors: Marvin Robey, Ralph Kuttner
  • Publication number: 20020139689
    Abstract: An electrode having an electrocatalytic surface or coating composed of a mixture with iridium oxide is used in a reversible polarity electrolytic cell to selectively produce an alkali metal hypohalite, preferably sodium hypochlorite, from brine made from hard water. The mixture also may have a platinum group metal oxide and a valve metal oxide, preferably, ruthenium oxide and titanium oxide respectively.
    Type: Application
    Filed: February 1, 2001
    Publication date: October 3, 2002
    Inventors: Vadim Zolotarsky, Irina A. Ivanter, Mark J. Geusic
  • Patent number: 6346187
    Abstract: An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: February 12, 2002
    Assignee: The Regents of the University of California
    Inventors: Tri D. Tran, David J. Lenz
  • Publication number: 20010035354
    Abstract: Deposition of conductive material on or removal of conductive material from a wafer frontal side of a semiconductor wafer is performed by providing an anode having an anode area which is to face the wafer frontal side, and electrically connecting the wafer frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the wafer frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the wafer is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the wafer frontal side surface, in its entirety, is thus permitted.
    Type: Application
    Filed: December 14, 2000
    Publication date: November 1, 2001
    Applicant: Nu Tool Inc.
    Inventors: Jalal Ashjaee, Boguslaw A. Nagorski, Bulent M. Basol, Homayoun Talieh, Cyprian Uzoh
  • Patent number: 6258250
    Abstract: A method of reducing scale formation in an aqueous solution using an electrolysis apparatus which has, in an electrolysis chamber, at least two electrodes and a bipolar electrode between the two electrodes includes feeding an aqueous solution to the electrolysis chamber, applying either a DC potential to the two electrodes so that one electrode is an anode and the other electrode is a cathode and reversing the polarity of the electrodes at intervals so that the composition of the aqueous solution remains essentially unchanged, or applying an AC potential to the two electrodes, producing, after the aqueous solution has passed through the electrolysis chamber, a treated aqueous solution having a significantly reduced tendency to form scale.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: July 10, 2001
    Inventors: Andreas Weissenbacher, Jürgen Johann, Ernst Oberhauser, Helmut Irauschek
  • Patent number: 5972198
    Abstract: It is an object of the present invention to provide a corrosion resistance test process, wherein the estimation of the corrosion resistance of an article formed of a metal material and a coating can be carried out synthetically and in a short time. In carrying out a corrosion resistance test, the article is immersed into an electrolytic solution and then, a voltage is applied to the metal material to carry out a metal material corroding step and a coating peeling-off step alternatively and repeatedly. The voltage applied to the metal material is a superimposed voltage Vd+Va resulting from superimposition of a DC voltage Vd and an AC voltage Va. A voltage condition of Vd<0 and Vd+Va>0 is established at the metal material corroding step, while a voltage condition of Vd<0 and Vd+Va<0 is established at the coating peeling-off step.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: October 26, 1999
    Assignees: Mitsuba Corporation, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toshihiro Takeuchi, Tadashi Imanaka, Keiji Kiuchi, Hidemichi Ohta
  • Patent number: 5529683
    Abstract: Prevention of degradation of ion exchange membranes and/or system hardware in electrolytic systems, during system shutdown, is effected by applying a reverse potential to the electrolytic system during shutdown of operation.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: June 25, 1996
    Assignee: United Technologies Corp.
    Inventors: Kurt M. Critz, Trent M. Molter