Involving Fuel Cell Patents (Class 205/343)
  • Patent number: 6912450
    Abstract: A hydrogen fuel supply system includes a hydrogen generator for generating hydrogen from an energy source at an outlet pressure. An outlet conduit feeds the hydrogen to a user. A controller controls the hydrogen generator to produce hydrogen at the outlet pressure. An input interface receives user demand data and activates the controller in accordance with the user demand data.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: June 28, 2005
    Assignee: Stuart Energy Systems Corp.
    Inventors: Matthew J. Fairlie, William J. Stewart, Andrew T. B. Stuart, Steven J. Thorpe, Charlie Dong
  • Patent number: 6841292
    Abstract: A method and apparatus estimate hydrogen concentration in a reformate stream produced by a fuel processor of a fuel cell. A sensor measures carbon monoxide, carbon dioxide, and water in the reformate stream. A fuel meter controls fuel input to the fuel processor. An air meter controls air input to the fuel processor. A water meter controls water input to the fuel processor. A transport delay estimator recursively estimates transport delay of the fuel processor. A hydrogen estimator associated with the transport delay estimator, the air, water and fuel meters, and the sensor estimates hydrogen concentration in the reformate stream. The hydrogen estimator includes a fuel processor model that is adjusted using the estimated transport delay. The carbon monoxide, the carbon dioxide and the water are measured using a nondispersive infrared (NDIR) sensor.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: January 11, 2005
    Assignee: General Motors Corporation
    Inventors: Patricia J. Nelson, Manish Sinha
  • Patent number: 6822124
    Abstract: A method for producing alcoxylated carbonyl compounds of general formula (I) (compounds I): R1aR2C(OR3)b wherein R1, R2 represent hydrogen or C1-C6-alkyl, R3 independently means C1-C6-alkyl, a is 0 or 1, b 2 or 3 with the proviso that the sum of a and b is 3, by means of anodic oxidation of germinal dialcoxy compounds of general formula (II) (compounds II) wherein R4, R5, R6, R7 represent hydrogen or C1-C6-alkyl, R5, R6 represent C1-C6-alkyl or C1-C6-alcoxy, in the presence of a C1-C6-alkyl alcohol (compounds III). A usual compound (compound IV) is used as a cathodic depolarizer suitable for electrochemical oxidation. The anodic oxidation and cathodic reduction is carried out in an undivided electrolyte cell in the presence of C1-C6-alkyl alcohols.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: November 23, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hermann PĆ¼tter, Andreas Fischer
  • Publication number: 20040217011
    Abstract: The present invention relates to a bipolar plate for fuel cells, comprising at least a shaped, at least partially electrically conductive foil (1), the bipolar plate having a channel structure (5) formed by the shaping of the foil (1), to convey reactants to electrodes of adjacent fuel cells and to carry away reaction products, and a microstructure (4) is integrated into the foil (1) to increase the rigidity of the foil (1). The invention also relates to a method for manufacturing corresponding bipolar plates.
    Type: Application
    Filed: March 31, 2004
    Publication date: November 4, 2004
    Inventors: Raimund Strobel, Bernd Gaugler, Ludwig Jorissen, Kurt Hohe, Joachim Scherer, Dominique Tasch
  • Publication number: 20040209132
    Abstract: A method and apparatus estimate hydrogen concentration in a reformate stream produced by a fuel processor of a fuel cell. A sensor measures carbon monoxide, carbon dioxide, and water in the reformate stream. A fuel meter controls fuel input to the fuel processor. An air meter controls air input to the fuel processor. A water meter controls water input to the fuel processor. A transport delay estimator recursively estimates transport delay of the fuel processor. A hydrogen estimator associated with the transport delay estimator, the air, water and fuel meters, and the sensor estimates hydrogen concentration in the reformate stream. The hydrogen estimator includes a fuel processor model that is adjusted using the estimated transport delay. The carbon monoxide, the carbon dioxide and the water are measured using a nondispersive infrared (NDIR) sensor.
    Type: Application
    Filed: May 14, 2004
    Publication date: October 21, 2004
    Inventors: Patricia J. Nelson, Manish Sinha
  • Patent number: 6800386
    Abstract: A process for preparing hydrogen in a fuel processor assembly containing a device for supplying a high voltage electrical discharge within the fuel processor, a first catalytic body disposed within the fuel processor, and a second catalytic body disposed within the fuel processor. Each of the catalytic bodies have different shapes.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: October 5, 2004
    Assignee: Nanoset, LLC
    Inventors: Xingwu Wang, Huihui Duan, Bigang Min
  • Publication number: 20040188270
    Abstract: A mixed hydrogen-oxygen fuel generator system uses an electrolytic solution to generate gaseous hydrogen-oxygen fuel through the electrolysis of water. This generator system includes: at least one electrolytic cell with multiple metallic plates used as an internal isolation system in which two of the plates separately connect to both the positive and negative terminal of a DC circuit. These plates are used for the electrolysis of the electrolytic solution in the cell(s) to produce, under pressure, mixed hydrogen-oxygen fuel. The apparatus also includes a cooling system containing a water cooling tank in which there are two zones: one is the electrolytic solution circulation coil and the another is a water circulation zone.
    Type: Application
    Filed: April 5, 2004
    Publication date: September 30, 2004
    Inventors: Nai Sung Chou, Choi Shiu Sum, Chou Te-Hung, Hui Lin
  • Patent number: 6770186
    Abstract: A hydrogen-fueled motor vehicle including at least one hydrogen-fueled locomotion subsystem and at least one refuelable hydrogen generator operative to supply hydrogen fuel to the hydrogen-fueled locomotion subsystem on demand. The refuelable hydrogen generator includes at least one electrochemical reactor operative to generate the hydrogen fuel from water on demand and a refueling subsystem providing at least one of water, electrolyte, hydrogen, a metal containing material and electrical power to the electrochemical reactor. A refueling method is also provided.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: August 3, 2004
    Assignee: Eldat Communication Ltd.
    Inventors: Oren Rosenfeld, Jonathan Russell Goldstein, Nimrod Sandeerman
  • Patent number: 6764588
    Abstract: A method of and system for flushing one or more cells or components thereof in a particle-based electrochemical power source is provided. Reaction solution is delivered to and withdrawn from the one or more cells when the electrochemical power source is in a standby mode of operation.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 20, 2004
    Assignee: Metallic Power, Inc.
    Inventors: Stuart I. Smedley, Donald James Novkov, Kent I. Smedley, Raymond H. Alstadt, Frederick R. Grochulski
  • Patent number: 6756141
    Abstract: A fuel cell includes an anode electrode, a cathode electrode, and a third electrode interposed between the anode and the cathode electrodes. The third electrode preferably includes an electrically conductive component. The third electrode preferably includes a metallic and a polymer grid and/or a conducting polymer. The third electrode may be used to control processes of the anode and/or the cathode electrodes. The third electrode may also be used to monitor the health of any component of the fuel cell.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: June 29, 2004
    Assignee: Southwest Research Institute
    Inventors: Michael A. Miller, Craig M. Wall
  • Patent number: 6745105
    Abstract: An energy distribution network is provided including an energy source; a hydrogen production facility connected to the energy source; a recipient for hydrogen from the hydrogen production facility; and a controller. The controller controls the production of hydrogen by the hydrogen production facility based on inputs including energy resource availability.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: June 1, 2004
    Assignee: Stuart Energy Systems Corporation
    Inventors: Matthew J. Fairlie, William J. Stewart, Andrew T. B. Stuart, Steven J. Thorpe, Charlie Dong
  • Publication number: 20040068865
    Abstract: The present invention provides high-throughput systems and methods for the fabrication and evaluation of electrode and electrolyte materials for solid oxide fuel cells. The present invention includes systems and methods for synthesizing and optimizing the performance of electrodes and electrode-electrolyte combinations and utilizes small-scale techniques to perform such optimization based on chemical composition and variable processing. Advantageously, rapid device performance systems and methods coupled with structural and surface systems and methods allow for an increased discovery rate of new materials for solid oxide fuel cells.
    Type: Application
    Filed: October 10, 2002
    Publication date: April 15, 2004
    Inventors: John Lemmon, Chang Wei, Venkat Venkataramani, James Ruud, Wayne Hasz, Anthony Thompson, Curtis Johnson, Oltea Siclovan, Canan Hardwicke, Stephen Ruthowski, Melvin Jackson, Michael Pilliod
  • Patent number: 6695963
    Abstract: Disclosed is an organic electrolysis reactor for performing an electrolytic oxidation reaction of a system comprising a substrate and a reductant, comprising: a casing; an anode which comprises an anode active material and which is ion-conductive or active species-conductive; a cathode which comprises a cathode active material and which is ion-conductive or active species-conductive; and means for applying a voltage between the anode and the cathode, wherein the means for applying a voltage is disposed in the outside of the casing and connected to the anode and the cathode, wherein the anode and the cathode are disposed in spaced relationship in the casing to partition the inside of the casing into an intermediate compartment between the anode and the cathode, and an anode compartment on the outside of the anode.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: February 24, 2004
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Kiyoshi Otsuka, Ichiro Yamanaka, Ken Suzuki
  • Patent number: 6685818
    Abstract: A process for the electrochemical preparation of hydrogen peroxide, in particular an aqueous hydrogen peroxide solution, by the electrochemical reaction of oxygen and hydrogen in a fuel cell. By increasing the thickness of the membrane layer in a membrane electrode unit (MEU) in the fuel cell, it is possible to substantially increase the concentration of H2O2 in the aqueous hydrogen peroxide solution obtained at the cathode.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: February 3, 2004
    Assignee: Degussa AG
    Inventors: Thomas Lehmann, Patrik Stenner
  • Publication number: 20040016650
    Abstract: The invention relates to a method and devices for the chemical reaction of liquid, vapor or gaseous hydrocarbons with either water or water vapor and either air or oxygen, to produce a hydrogen-rich synthesized gas for use in fuel cells. In the process, the chemical reaction of the reactants takes place on the catalytically coated surface of a material that is electrically conductive, and as a consequence of the feeding an electrical voltage, directly heatable and consequently temperature-controllable.
    Type: Application
    Filed: July 29, 2002
    Publication date: January 29, 2004
    Inventor: Karl H. Klug
  • Publication number: 20040007476
    Abstract: A method and apparatus for the generation and collection of an aqueous peracid solution at the cathode of a PEM electrolyzer. The electrochemical process introduces carboxylic acid (such as distilled table vinegar, lactic acid, citric acid or combinations) to the anode and a source of oxygen to the cathode. The PEM electrolyzer has a gas diffusion cathode having a cathodic electrocatalyst that is capable of hydrogen peroxide generation. The peracid solution is generated at the gas diffusion cathode and the solution is very pure and may be used for disinfecting or sterilizing various items or solutions. In a second embodiment, the carboxylic acid may be provided directly to the cathode, such as in the form of an acid vapor.
    Type: Application
    Filed: July 9, 2002
    Publication date: January 15, 2004
    Inventors: Charles L. K. Tennakoon, K. Scott McKenzie, Michelle Will, Elizabeth I.H. McGrew
  • Patent number: 6620537
    Abstract: A hydrocarbon fueled hydrogen generator and hydrogen fueled electric power generating system and apparatus comprising hydrocarbon fuel and oxidizer delivery and mixing apparatus, ignition and combustion apparatus igniting the mixture of fuel and oxidizer, apparatus receiving and conducting the gases of combustion through a sulfur absorbing unit and removing sulfur from the gases, a steam reformer unit reforming carbon monoxide gas into hydrogen gas and carbon dioxide gas, a carbon monoxide scavenger unit reforming residual carbon monoxide gas to hydrogen gas and carbon dioxide gas; apparatus receiving the hydrogen gas and carbon dioxide gas and operating to liquefy and separate the carbon dioxide gas from the hydrogen gas; and, structure to hold and deliver the liquid carbon dioxide to useful end; and structure to hold and deliver hydrogen gas to the anode of a hydrogen fueled electric power generating fuel cell.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: September 16, 2003
    Inventors: Ralph C. Struthers, Georges A. Maxwell
  • Patent number: 6592741
    Abstract: A metal hydride is supplied into a reactor while being converted into fine particles. By injecting water from an injector, the metal hydride is hydrolyzed to generate hydrogen. The water supplied to the reactor is water generated by a fuel cell. This allows omission or a size reduction of a water tank for the hydrolysis, and therefore allows a size reduction of the system as a whole. It is possible to adopt a construction in which waste heat from the fuel cell is supplied to pyrolyze the metal hydride, a construction in which heat generated by the hydrolysis is used to pyrolyze another metal hydride, etc.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: July 15, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Haruyuki Nakanishi, Shinichi Matsumoto
  • Patent number: 6555055
    Abstract: A system having a fluid source and a pasteurizer coupled with a disinfectant unit in flow communication with the fluid source for use in disinfecting dental or other water lines. The combination of pasteurizer and disinfectant unit is adapted to receive water from the fluid source. A fluid delivery unit is provided in flow communication with the pasteurizer and disinfectant unit combination. The disinfectant unit has a means for supplying hydrogen and oxygen and a means for generating hydrogen peroxide in flow communication with the means for supplying hydrogen and oxygen.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: April 29, 2003
    Assignee: Lynntech, Inc.
    Inventors: Alan J. Cisar, Adrain Denvir, G. Duncan Hitchens, Thomas D. Rogers
  • Patent number: 6544400
    Abstract: A hydrogen source system delivers a controlled fuel stream to applications, using wicking to control the contact between a mixture of NaBH4, NaOH and H2O and a hydrolyzing catalyst to create a feedback mechanism to automatically maintain a constant pressure production supply of hydrogen. A small compact device packaged for storage, the system operates in any orientation and is mobile. The system is a small portable packaged hydrogen generator for small fuel cells to power applications that are currently powered by batteries. These packaged devices have higher energy per unit mass, higher energy per unit volume, are more convenient for energy users, environmentally less harmful, and less expensive than conventional power sources.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: April 8, 2003
    Assignee: Manhattan Scientifics, Inc.
    Inventors: Robert G. Hockaday, Patrick S. Turner, Marc D. DeJohn, Carlos J. Navas, Heathcliff L. Vaz, L. Luke Vazul
  • Patent number: 6516905
    Abstract: A vehicle comprising a combustion engine capable of delivering mechanical power for driving at least one wheel drive shaft with driving wheels, auxiliary vehicular electric loads, an alternator powered by the combustion engine for generating electricity, an electric storage device for storing alternator generated electricity, and at least one auxiliary electric power supply for supplying electrical energy to said electric loads. The auxiliary electric power supply includes a fuel cell system with an anode fuel input and a cathode fuel input, and an electrolyzer which is capable of generating hydrogen and oxygen. The hydrogen production side of said electrolyzer is in fluid connection with the at least one anode fuel supply.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: February 11, 2003
    Assignee: Ballard Power Systems AG
    Inventors: Rob Baumert, Craig Greenhill, Robert Hastings, Jim Smith
  • Patent number: 6503648
    Abstract: A fuel cell assembly comprised of an electrostrictive device for producing an electrical current, a device for producing a conditioned electrical current by conditioning the electrical current so that the amplitude of the electrical current does not vary by more than about 10 percent, an electrolytic device for converting water to hydrogen and oxygen with the conditioned electrical current, and a fuel cell device for converting the oxygen and hydrogen into a direct electrical current.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: January 7, 2003
    Assignee: Biomed Solutions, LLC
    Inventor: Xingwu Wang
  • Publication number: 20020195334
    Abstract: An autonomous pushed liquid recirculation system (APLRS) is installed in a vessel, such as an electroplating tank. It situates around the interior perimeter and adjusts to changes in the level of liquid, maintaining the same location and orientation respective to the liquid's surface. It establishes a current near the surface that pushes liquid across the narrow horizontal dimension of the tank from a front wall to a rear wall. The current serves to push any bubbles resultant from operations within the tank to the rear wall. Over the rear wall is mounted an abbreviated exhaust hood covering only a short width of the surface of the tank along the rear wall. Because the exhaust system has to scavenge only a portion of the surface since all bubbles now burst along the rear wall, a much smaller air handling apparatus may be specified with an attendant savings in energy costs.
    Type: Application
    Filed: August 20, 2002
    Publication date: December 26, 2002
    Inventors: Kent James Hay, Shaoying Qi
  • Publication number: 20020195349
    Abstract: A method of storage and redistribution of electrical energy comprising the steps of: producing hydrogen and oxygen through water electrolysis in an electrolyzer (1) operating under pressure; collecting the hydrogen and oxygen so obtained in respective pressurized tanks (3, 5); reconverting into water and electrical energy hydrogen and oxygen, through an electrochemical reaction of the latter in a fuel cell (9) fed from the tanks (3, 5), distinguishes itself by the fact that in the electrolyzer (1) and in the fuel cell (9) a same liquid phase is used and by the fact that the water produced in the fuel cell (9) by the hydrogen and oxygen reconversion step, is collected in the respective liquid phase and transferred together with the liquid phase to the electrolyzer (1) in order to undergo electrolysis.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 26, 2002
    Applicant: CASALE CHEMICALS SA
    Inventor: Sioli Giancarlo
  • Patent number: 6497973
    Abstract: A system for generating and consuming borohydride ions comprising two electrochemical cells. At least one of the cells is configured for installation on a vehicle that is propelled by electricity.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: December 24, 2002
    Assignee: Millennium Cell, Inc.
    Inventor: Steven Amendola
  • Patent number: 6495025
    Abstract: The method of producing O2 from water, that includes subjecting water to electrolysis, to produce H2 and O2, returning H2 to a water storage zone, drying the produced O2, using air as a drying agent, flowing a stream of that drying agent air to the cathode side of fuel cell, flowing a stream of produced hydrogen to the anode side of the fuel cell, for reaction with O2 in the agent air to produce water electrical energy and heat, and using electrical energy produced by fuel cell in the electrolysis.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: December 17, 2002
    Assignee: Aerovironment, Inc.
    Inventor: Omourtag Velev
  • Patent number: 6448621
    Abstract: A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: September 10, 2002
    Inventor: Mrinal Thakur
  • Patent number: 6423203
    Abstract: The invention describes a method for the direct connection of fuel cells to electrolyzers of electrochemical plants producing hydrogen as a by-product. The by-product hydrogen is fed to the fuel cells and the electric energy thereby produced is transferred to the electrolyzers, with the consequent saving of the overall energy consumption. The direct coupling avoids the need for DC/AC converters or voltage adjusters and may be effected either in series or in parallel. In the latter case the fuel cell are assembled in modules, the number and voltage of which is regulated by means of interrupters activated by a computerised control and supervision system. As an alternative, the voltage of the modules may be varied by varying the pressure of the air fed to the fuel cells.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: July 23, 2002
    Assignee: Nuvera Fuel Cells Europe S.r.l.
    Inventors: Giuseppe Faita, Angelo Ottaviani
  • Publication number: 20020051898
    Abstract: An exemplary embodiment of the regenerative electrochemical cell system comprises: a fuel cell module comprising a fuel cell oxygen inlet in fluid communication a water storage device, and a fuel cell hydrogen inlet in fluid communication with both an oxygen source and with a gaseous portion of an water phase separation device; an electrolysis module comprising an electrolysis water inlet in fluid communication with the water storage device via a fuel cell oxygen outlet, and an electrolysis water outlet in fluid communication with the fuel cell hydrogen.
    Type: Application
    Filed: September 28, 2001
    Publication date: May 2, 2002
    Inventors: Lawrence C. Moulthrop, Trent M. Molter, A. John Speranza, Mark A. Lillis, William Smith, Jason Shiepe, Thomas M. Skoczylas
  • Publication number: 20020036147
    Abstract: A process for the electrochemical preparation of hydrogen peroxide, in particular an aqueous hydrogen peroxide solution, by the electrochemical reaction of oxygen and hydrogen in a fuel cell. By increasing the thickness of the membrane layer in a membrane electrode unit (MEU) in the fuel cell, it is possible to substantially increase the concentration of H2O2 in the aqueous hydrogen peroxide solution obtained at the cathode.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 28, 2002
    Inventors: Thomas Lehmann, Patrik Stenner
  • Publication number: 20020025457
    Abstract: A system and method for the storage of electrical energy or of hydrogen, the method includes the steps of (a) electrolysis of water to yield hydrogen, (b) reaction of the hydrogen from step (a) with carbon dioxide to from at least one storage compound; (c) storage of the storage compound; and (d) subsequent conversion of the storage compound back to hydrogen or use of the storage compound to fuel an engine, such as an internal combustion engine, or to generate electricity directly or indirectly. One storage compound is methanol.
    Type: Application
    Filed: April 27, 2001
    Publication date: February 28, 2002
    Inventors: Peter Jeremy Dodd, Alan Stockwell, Ian Duckels
  • Publication number: 20020006535
    Abstract: An integrated power module for generating thermal and electrical power is provided within a housing which includes inlets for fuel and for air, a reformer chamber, a fuel cell stack, and a combustion chamber. Oxygen-containing gas, such as air, is introduced into the module along a path in one direction in heat exchange relationship with reaction products produced in the reaction chamber traveling in an adjacent path, preferably in an opposite direction, to preheat the incoming oxygen-containing gas. A nozzle having an injector for the fuel and for the oxygen-containing gas delivers these gases to the interior of the reformer chamber, where ignition is supplied by a suitable device. The reaction products from the reformer chamber are fed to a fuel cell which will consume certain of the reaction products, such as hydrogen gas, with oxygen provided from the reaction chamber acting as an oxidizing gas.
    Type: Application
    Filed: March 12, 2001
    Publication date: January 17, 2002
    Inventors: Richard Woods, Leonard Greiner, David Moard
  • Patent number: 6332968
    Abstract: Electrochemical processes using solid gas-impervious membranes are disclosed for gas cleanup by (A) providing an electrochemical cell comprising first and second zones separated by a solid gas-impervious membrane comprising a mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity, (B) passing a gas containing N2O, NO, NO2, SO2, SO3, or a mixture thereof, in contact with the membrane in the first zone, and (C) passing a gas capable of reacting with oxygen in contact with the membrane in the second zone. More particularly, the mixed metal oxide material of a perovskite structure comprises a combination of elements selected from the group consisting of lanthanides, alkaline earth metals, Y, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, and Nb, oxides thereof, and mixtures of these metals and metal oxides. Advantageously a catalyst is present in the first zone.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: December 25, 2001
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Publication number: 20010045364
    Abstract: A hydrogen source system delivers a controlled fuel stream to applications, using wicking to control the contact between a mixture of NaBH4, NaOH and H2O and a hydrolyzing catalyst to create a feedback mechanism to automatically maintain a constant pressure production supply of hydrogen. A small compact device packaged for storage, the system operates in any orientation and is mobile. The system is a small portable packaged hydrogen generator for small fuel cells to power applications that are currently powered by batteries. These packaged devices have higher energy per unit mass, higher energy per unit volume, are more convenient for energy users, environmentally less harmful, and less expensive than conventional power sources.
    Type: Application
    Filed: March 30, 2001
    Publication date: November 29, 2001
    Inventors: Robert G. Hockaday, Patrick S. Turner, Marc D. DeJohn, Carlos J. Navas, Heathcliff L. Vaz, L. Luke Vazul
  • Publication number: 20010037948
    Abstract: This invention discloses regeneration methods to remove carbon monoxide (CO) from reformate fuel using an adsorption and electro-catalytic oxidation (ECO) approach. One method of the invention comprises a first ECO cell and a second ECO cell, and the other method comprises a first ECO cell and a first charge storage device. Both methods eliminate the requirement of an external power supply that leads to higher cost, additional power consumption and more processor complexity for the CO removal processor.
    Type: Application
    Filed: May 3, 2001
    Publication date: November 8, 2001
    Applicant: Honeywell International, Inc.
    Inventors: Di-Jia Liu, James C. Williams, Mark Kaiser, Stanley F. Simpson
  • Patent number: 6156184
    Abstract: A proton exchange membrane comprising a perfluorosulfonic acid having silica particles embedded therein at a concentration of 0.01 to 5% by weight, said particles having a dimension of 0.001 to 10 micrometers, the membrane having a crystalline phase and an amorphous phase in a ratio adjusted by controlled thermal treatment at a temperature higher than the glass transition temperature, an electrochemical cell containing said membrane and a process for oxidizing a fuel in said electrochemical cell.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: December 5, 2000
    Assignee: De Nora S.p.A.
    Inventors: Vincenzo Antonucci, Antonino Arico'
  • Patent number: 6146518
    Abstract: An improved process for providing hydrogen from an electrolytic cell having an anolyte solution having an anolyte liquid level; a catholyte solution having a catholyte liquid level; generating oxygen at an oxygen pressure above the anolyte level; generating hydrogen at a hydrogen pressure above the catholyte level; the improvement comprising detecting at least one of the anolyte and the catholyte liquid levels as anolyte level and catholyte level data; feeding the level data to central processing means; determining the pressure differential between the levels from the level data, and pressure adjustment data by the central processing means; and providing the adjustment data to pressure control means to maintain the pressure differential within a selected range. The process offers a low cost method of controlling the pressure differential to within 2 cm WC of a set point.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: November 14, 2000
    Assignee: Stuart Energy Systems Inc.
    Inventors: Matthew J. Fairlie, William J. Stewart, Charlie Dong
  • Patent number: 6117302
    Abstract: A process and apparatus are disclosed for electrolytically smelting alumina to produce aluminum metal, including providing a combination solid oxide fuel cell and electrolytic smelting cell for the production of aluminum from refined alumina positioned near tile solid oxide fuel cell. In one aspect, an alumina ore refinery for producing the refined alumina is positioned near the solid oxide fuel cell, and refined alumina is passed at a temperature of at least 900.degree. C. directly from the alumina ore refinery to the electrolytic smelting cell. In one aspect, the solid oxide fuel cell incorporates a planar construction having a solid state cathode material of lanthanum strontium manganate, a solid electrolyte of yttria stabilized zirconia, and a nickel/yttria stabilized zirconia cermet anode.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: September 12, 2000
    Assignee: Aluminum Company of America
    Inventor: David J. Roha
  • Patent number: 6033793
    Abstract: An integrated power module for generating thermal and electrical power is provided within a housing which includes inlets for fuel and for air, a reformer chamber, a fuel cell stack, and a combustion chamber. Oxygen-containing gas, such as air, is introduced into the module along a path in one direction in heat exchange relationship with reaction products produced in the reaction chamber traveling in an adjacent path, preferably in an opposite direction, to preheat the incoming oxygen-containing gas. A nozzle having an injector for the fuel and for the oxygen-containing gas delivers these gases to the interior of the reformer chamber, where ignition is supplied by a suitable device. The reaction products from the reformer chamber are fed to a fuel cell which will consume certain of the reaction products, such as hydrogen gas, with oxygen provided from the reaction chamber acting as an oxidizing gas.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: March 7, 2000
    Assignee: Hydrogen Burner Technology, Inc.
    Inventors: Richard R. Woods, Leonard Greiner, David Moard
  • Patent number: 6024859
    Abstract: An electrochemical converter is disposed within a pressure vessel that collects hot exhaust gases generated by the converter for delivery to a cogeneration bottoming device, such as a gas turbine. The bottoming device extracts energy from the waste heat generated by the converter, such as a fuel cell for the generation of electricity, yielding an improved efficiency energy system. Bottoming devices can include, for example, a gas turbine system or an heating, ventilation or cooling (HVAC) system. The pressure vessel can include a heat exchanger, such as a cooling jacket, for cooling the pressure vessel and/or preheating an input reactant to the electrochemical converter prior to introduction of the reactant to the converter. In one embodiment, a compressor of a gas turbine system assembly draws an input reactant through the pressure vessel heat exchanger and delivers the reactant under pressure to a fuel cell enclosed therein.
    Type: Grant
    Filed: September 17, 1998
    Date of Patent: February 15, 2000
    Assignee: Ztek Corporation
    Inventor: Michael S. Hsu
  • Patent number: 5983488
    Abstract: A process for manufacture of molten carbonate fuel cell matrices in which an aluminate precursor material and a lithium salt are mixed in an aqueous or organic solvent, resulting in formation of a suspension, the suspension is heated to a temperature less than a boiling of the solvent, resulting in formation of a slurry comprising a lithium aluminate precursor material, at least one casting additive is added to the slurry, the slurry is formed into a desired shape, the desired shape is dried or cured to yield a green molten carbonate fuel cell structure, and the green molten carbonate fuel cell structure is heated after assembly into a molten carbonate fuel cell to the molten carbonate fuel cell operating temperature, resulting in transformation of the lithium aluminate precursor material to lithium aluminate.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: November 16, 1999
    Assignee: M-C Power Corporation
    Inventors: Diane S. Erickson, Charles R. Bernat
  • Patent number: 5980726
    Abstract: The present invention relates to a unique, compact hydrogen electrochemical system which eliminates the need for explosion-proof equipment. This system merely separates the electrical equipment from the hydrogen source with a wall, but employs a positive pressure, of about 0.1 inches water column, air purge throughout the system to prevent the introduction of hydrogen gas to the electrical equipment and to recover and use waste heat.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: November 9, 1999
    Assignee: Proton Energy Systems
    Inventors: Lawrence C. Moulthrop, Jr., A. John Speranza, Robert H. Byron, Jr.
  • Patent number: 5925322
    Abstract: The present invention relates to a combined cycle system of enhanced efficiency. The system comprises a top stage, such as a fuel cell, a partial oxidation reactor or a heat engine, and an oxygen-enriching device, such as a temperature swing adsorption device or a chemical reactor bed device, as its bottom stage. The bottom stage uses waste heat produced by the top stage to enrich the oxygen content of air that is inputted to the bottom stage, thereby producing an oxygen-enriched gas mixture as the bottom stage output. This output mixture constitutes a superior oxidant which is fed back as an input for the top stage, thus enhancing the energy conversion efficiency, cheapness, and compactness of the combined cycle system as compared to that of ordinary fuel cells, partial oxidation reactors and heat engines that use unenriched air as their oxidant input.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: July 20, 1999
    Assignee: H Power Corporation
    Inventor: John Werth
  • Patent number: 5876583
    Abstract: The invention concerns membrane electrolyzers suitable for processes such as water or hydrogen halides electrolysis, as well as electrochemical generators fed with gases containing hydrogen and oxygen for direct conversion into electric energy. These apparatuses generally consist of a filter-press assembly of conductive bipolar plates (2), electrodes (4), sealing gaskets (5) membranes (6) and internal longitudinal ducts for feeding the reactants and withdrawing the products and residual reactants. The invention is directed to the method for repairing said electrolyzers or generators when an elementary cell is malfunctioning. This method comprises making at least two perforations in the peripheral area of the bipolar plates (2) and/or gaskets (5) of the malfunctioning cell to reach distribution channels (9, 11) which connect the compartments containing the electrodes (4) with said longitudinal ducts.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: March 2, 1999
    Assignee: De Nora S.p.A.
    Inventors: Massimo Brambilla, Claudio Mantegazza
  • Patent number: 5766443
    Abstract: The process for preparing an aqueous alkaline solution containing a peroxide and/or percarbonate includes providing an electrochemical cell comprising a porous oxygen diffusion cathode including a carbon woven or nonwoven fabric, a gas diffusion anode containing a carbon woven or nonwoven fabric and fed gaseous hydrogen or an anode including a metal grid coated with a noble metal catalyst and coated on a side facing the cathode with a proton-permeable membrane acting as a solid polymer electrolyte, an electrolyte-containing chamber between the cathode and the anode containing an electrolyte and a direct current source connected across the anode and cathode; feeding an aqueous feed solution containing at least one alkali hydroxide and/or alkali carbonate in a concentration of from 30 to 180 g/l into the electrolyte-containing chamber to provide the electrolyte; supplying an oxygen-containing gas containing molecular oxygen to the carbon woven or nonwoven fabric of the cathode; operating the direct current sour
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: June 16, 1998
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Eilhard Hillrichs, Ulrich Sander
  • Patent number: 5736026
    Abstract: Integrated ethanol manufacturing by fermentation of biomass, with an electrical fuel cell generator of electrical and heat energy, the cogeneration including use by the fuel cell of the alcohol, and of the carbon dioxide from the fermentation, which increases the generation of energy, and use by the alcohol manufacturing of the heat and electrical energy from the fuel cell, which increases the fuel manufacture.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: April 7, 1998
    Assignee: Energy Research Corporation
    Inventors: Pinakin S. Patel, Jen Jung Fan
  • Patent number: 5733430
    Abstract: A gas diffusion electrode is constituted by forming a porous layer comprising a super-fine particle catalyst of silver or gold and a fluorine-containing material on a substrate and connecting a gas-liquid permeable collector to the substrate.The gas diffusion electrode can be used stably as an oxygen cathode for a sodium chloride electrolysis, etc., for a long period of time without causing decreased water repellency of the fluorine-containing material in the gas diffusion electrode and without lowering the activity of the electrode substance.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: March 31, 1998
    Assignee: Permelec Electrode Ltd.
    Inventors: Takahiro Ashida, Takayuki Shimamune, Yoshinori Nishiki
  • Patent number: 5512145
    Abstract: This invention relates to a method and apparatus for converting energy to hydrogen gas using an electrolyzer and a metal alloy hydride tank for hydrogen storage, wherein a passive load matching device between the energy source and the electrolyzer maximizes hydrogen output, and the electrolyzer and the metal alloy hydride tank operate at mutually low pressure, near ambient, such that pressurization of the system is not required.
    Type: Grant
    Filed: October 7, 1994
    Date of Patent: April 30, 1996
    Assignee: The Cooper Union for the Advancement of Science and Art
    Inventor: Joel W. Hollenberg