Lead, Zinc, Or Cadmium Patents (Class 205/369)
  • Patent number: 10297888
    Abstract: A method for operating an electrochemical cell system for storing electrical energy in metallic material comprising a cell housing containing an electrolyte, a metallic material, a charging assembly for deposition of the metallic material, a discharging assembly for dissolution of the metallic material, and a space for storing the metallic material. The method comprises determining the metal concentration in the electrolyte and a software algorithm for determining the operation parameters such as the currents and voltages of the system as well as the schedules for electrolyte circulation and dislodging of deposited metallic materials.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: May 21, 2019
    Assignee: e-Zn Inc.
    Inventor: Xiaoge Gregory Zhang
  • Patent number: 10221493
    Abstract: The present invention provides a method of recovering copper and zinc from an aqueous sulfate and chloride containing solution. In the first process step zinc and copper are simultaneous extracting with an extraction solution comprising a liquid chelating cation exchanger and a liquid anion exchanger. The extraction is followed by consecutive stripping stages. First the anionic species are washed from the organic phase with one or more aqueous solutions and finally the copper is stripped with an aqueous acidic solution.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 5, 2019
    Assignee: OUTOTEC (FINLAND) OY
    Inventors: Erkki Paatero, Kari Hietala, Mika Haapalainen
  • Patent number: 9783898
    Abstract: Methods and systems for removing impurities from an electrolytic salt are disclosed. After removal of impurities from the salt, the salt can be subjected to electrorefining to produce high-purity materials, for example silicon. Impurities are removed from the salt using a system that includes a first working electrode, a counter electrode, and at least one reference electrode. A second working electrode can also be utilized. The salt may be utilized in an electrorefining system, for example a system operated in a single phase or multiple phase operation to produce high-purity materials, such as solar-grade silicon.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: October 10, 2017
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Meng Tao, Xiaofei Han
  • Publication number: 20140291161
    Abstract: Provided is a method for obtaining a particular metal at high purity, with safety, and at low cost, from a treatment object containing two or more metal elements. The present invention provides a method for producing a metal by molten salt electrolysis, the method including a step of dissolving, in a molten salt, a metal element contained in a treatment object containing two or more metal elements; and a step of depositing or alloying a particular metal present in the molten salt, on one of a pair of electrode members disposed in the molten salt containing the dissolved metal element, by controlling a potential of the electrode members to a predetermined value.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 2, 2014
    Inventors: Tomoyuki Awazu, Masatoshi Majima
  • Patent number: 8303793
    Abstract: The invention relates to a method of providing an electric current taker made from silver and having a highly electroconductive contact surface into an aluminium support bar to be used in electrolysis.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: November 6, 2012
    Assignee: Valvas Oy
    Inventor: Niko Hagner
  • Publication number: 20120261269
    Abstract: A process for production of polysilicon and silicon tetrachloride is provided in which a raw material that is supplied stably and is available at low cost can be used, chlorination reaction can be smoothly promoted, impurities generated after chlorination reaction can be controlled, and production efficiency is superior in a polysilicon producing step. The process includes a step of chlorination in which a granulated body consisting of silicon dioxide and carbon-containing material is chlorinated to generate silicon tetrachloride, a step of reduction in which silicon tetrachloride is reduced by a reducing metal to generate polysilicon, and a step of electrolysis in which chloride of the reducing metal by-produced in the reduction step is molten salt-electrolyzed to generate the reducing metal and chlorine gas.
    Type: Application
    Filed: December 22, 2010
    Publication date: October 18, 2012
    Inventors: Wataru Kagohashi, Matsuhide Horikawa, Kohsuke Kakiuchi
  • Patent number: 8221610
    Abstract: An electrochemical method for providing hydrogen using ammonia, ethanol, or combinations thereof, comprising: forming an anode comprising a layered electrocatalyst, the layered electrocatalyst comprising at least one active metal layer deposited on a carbon support; providing a cathode comprising a conductor; disposing a basic electrolyte between the anode and the cathode; disposing a fuel within the basic electrolyte; and applying a current to the anode causing the oxidation of the fuel, forming hydrogen at the cathode.
    Type: Grant
    Filed: May 4, 2008
    Date of Patent: July 17, 2012
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8043584
    Abstract: Cd-112 isotope is recycled from a Cd-112 chemical separated solution or a remainder of an electroplating solution having a Cd-112 target. The present invention recycles Cd-112 isotope with a low cost, a high purity and a high recycle rate. The recycled Cd-112 isotope can be easily stored. And, the Cd-112 isotope can be used as an imaging agent in nuclear medicine.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: October 25, 2011
    Assignee: Atomic Energy Council - Institute of Nuclear Energy Research
    Inventors: Wuu-Jyh Lin, Song-Un Tang
  • Publication number: 20090321273
    Abstract: The present method relates to a method and a cell for electrolytic production of zinc from a salt melt comprising zinc chloride. The cell has at least one electrolysis chamber (2) containing an electrolyte and at least one adjacent chamber (1) separated from said electrolysis chamber by means of at least one partition wall (7, 8). The atmosphere(s) in the electrolysis chamber(s) is separated from the atmosphere(s) in the adjacent chamber(s) by the at least one partition wall. The electrolyte is directed to flow between the electrolysis chamber(s) and the adjacent chamber(s) through at least one opening in or at the partition wall(s) below the level of the electrolyte level. The Zinc metal produced is collected in the bottom of the cell. The electrolyte flow can be controlled in a substantial laminar manner.
    Type: Application
    Filed: September 17, 2007
    Publication date: December 31, 2009
    Inventor: Christian Rosenkilde
  • Patent number: 7517383
    Abstract: The invention relates to method for leaching zinc-containing materials in connection with the electrolytic recovery of zinc. According to this method, the feed materials i.e. zinc calcine and zinc sulphide, are leached in three stages, in which he sulphuric acid content of the stages rises in accordance with the direction in which the solids are moving. The solids and solution formed in the leaching stages are routed throughout the process countercurrently in relation to each other.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: April 14, 2009
    Assignee: Outotec Oyj
    Inventors: Aimo Järvinen, Marko Lahtinen, Heikki Takala
  • Patent number: 7504009
    Abstract: The invention relates to a method for achieving a good contact surface on an aluminium electrode support bar used in electrolysis. In the method the support bar is fabricated as a continuous bar and a highly electroconductive layer is formed on its end. The highly electroconductive layer forms a metallic bond with the support bar and can be achieved for example with thermal spray coating. The invention also relates to an electrode support bar, the end of which is coated with a highly electroconductive material.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: March 17, 2009
    Assignee: Outotec Oyj
    Inventors: Karri Osara, Veikko Polvi
  • Patent number: 7470351
    Abstract: A system for producing metal particles using a discrete particle electrolyzer cathode, a discrete particle electrolyzer cathode, and methods for manufacturing the cathode. The cathode has a plurality of active zones on a surface thereof at least partially immersed in a reaction solution. The active zones are spaced from one another by between about 0.1 mm and about 10 mm, and each has a surface area no less than about 0.02 square mm. The cathode is spaced from an anode also at least partially immersed in the reaction solution. A voltage potential is applied between the anode and cathode. Metal particles form on the active zones of the cathode. The particles may be dislodged from the cathode after they have achieved a desired size. The geometry and composition of the active zones are specified to promote the growth of high quality particles suitable for use in metal/air fuel cells. Cathodes may be formed from bundled wire, machined metal, chemical etching, or chemical vapor deposition techniques.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: December 30, 2008
    Assignee: Teck Cominco Metals Ltd.
    Inventors: Stuart I. Smedley, Martin De Tezanos Pinto, Stephen R. Des Jardins, Donald James Novkov, Ronald Gulino
  • Patent number: 7425257
    Abstract: The disclosure relates to a method of obtaining a good current contact on the support bar of a cathode used in electrolysis. In this method a highly electroconductive layer is formed on the contact piece on the end of the support bar of the cathode, especially at the point that comes into contact with the electrolysis cell busbar. The electroconductive layer forms a metallic bond with the contact piece of the support bar. The disclosure also relates to the cathode support bar, wherein a highly electroconductive layer is formed to the contact piece on the end of said bar, in particular the area that touches the electrolysis cell busbar.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: September 16, 2008
    Assignee: Outotec Oyj
    Inventors: Karri Osara, Veikko Polvi
  • Patent number: 7264704
    Abstract: It is described an electrolysis cell wherein the anodic dissolution of metals is carried out, in particular of metals characterised by a relatively high oxidation potential, such as copper, or metals with high hydrogen overpotential, for example tin, aimed at restoring both the concentration of said metals, and the pH in galvanic baths used in electroplating processes with insoluble anodes. The cell of the invention comprises an anodic compartment, wherein the metal to be dissolved acts as a consumable anode, and a cathodic compartment, containing a cathode for hydrogen evolution, separated by a cation-exchange membrane. The coupling of the cell of the invention with the electroplating cell allows a strong simplification of the overall process and a sensible reduction in the relevant costs.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: September 4, 2007
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Ulderico Nevosi, Paolo Rossi
  • Publication number: 20020125126
    Abstract: A cermet inert anode having a reduced level of contaminating surface metal is disclosed. Methods for preparing cermet inert anodes and methods for treating cermet inert anodes are also disclosed. The methods generally use an oxidizing agent to convert metals on the surface of the anode to inert oxides and/or to otherwise remove the metal contaminants. The inert anodes of the present invention may be used in electrolytic reduction cells for the production of commercial purity aluminum, as well as other metals.
    Type: Application
    Filed: December 28, 2000
    Publication date: September 12, 2002
    Inventors: Dennis R. De Capite, Gary P. Tarcy
  • Publication number: 20020092774
    Abstract: A cermet anode of an electrolytic cell is protected from thermal shock during cell start-up by coating an outer surface portion of the anode with a coating composition comprising carbon or aluminum or a mixture thereof. A particularly preferred coating composition includes an aluminum underlayer adjacent the outer surface portion of the anode, and a carbon overlayer overlying the underlayer. A support structure assembly supporting the cermet anode includes a high alumina ceramic material. In a preferred embodiment, the high alumina ceramic material is protected from thermal shock and corrosion by the coating composition of the invention.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventors: Calvin Bates, Patricia A. Stewart, Larry F. Wieserman
  • Patent number: 6299742
    Abstract: An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10−5 cm2/sec; a cathode and an anode, the cathode in electrical contact with the molten metal electrolyte, the cathode and molten electrolyte separated from the anode by an ionic membrane capable of transporting the anionic species of the electrolyte into the membrane; and a power source for generating a potential between the cathode and the anode.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: October 9, 2001
    Assignee: Trustees of Boston University
    Inventors: Uday Pal, Stephen C. Britten
  • Patent number: 6146513
    Abstract: The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: November 14, 2000
    Assignee: The Ohio State University
    Inventors: Kenneth H. Sandhage, Robert L. Snyder
  • Patent number: 5976345
    Abstract: An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A potentiometric measurement (type I) provides information on the thermodynamic properties of the slag; an amperometric measurement (type II) yields information concerning the type and transport properties of dissociable oxides; an electrolysis measurement (type III) determines the concentration of dissociable oxides. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10.sup.-5 cm.sup.
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: November 2, 1999
    Assignee: Boston University
    Inventors: Uday Pal, Stephen C. Britten
  • Patent number: 5827347
    Abstract: A process for the recovery of lead from spent battery paste and lead containing materials. The process includes the steps of calcination of a spent paste treated with an alkali carbonate or hydroxide or any mixture thereof, and elemental sulphur at a temperature of up to 600.degree. C., followed by washing with water. The calcined and washed paste is dissolved in an alkali molten electrolyte, and lead is electrowinned from the alkali molten electrolyte. The spent electrolyte is reused in the process.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: October 27, 1998
    Assignee: Margulead Ltd.
    Inventor: Efim Margulis