Iron, Cobalt, Nickel, Or Manganese Patents (Class 205/370)
  • Patent number: 9447480
    Abstract: A method of selectively leaching a metal such as nickel from an ore or ore processing intermediate comprising the metal and cobalt. The ore or ore processing intermediate is contacted with an acidic leach solution comprising an amount of an oxidising agent sufficient to oxidise a major portion of the cobalt to thereby cause it to be stabilised in the solid phase while a major portion of the metal is dissolved for subsequent recovery.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: September 20, 2016
    Assignee: The University of Queensland
    Inventors: James Vaughan, William Hawker
  • Patent number: 8801916
    Abstract: A recovery method of nickel according to the present invention comprises pretreatment step to prepare a solution for electrolysis by adding hexanesulfonate salt to a treatment solution including nickel, and nickel recovery step to recover nickel in a metal form by electrolysis of the above solution for electrolysis. The present invention can produce nickel in high purity with simple process with low cost, and can recover and reproduce nickel in a metal form with at least 99.5% of high purity and at least 90% of recovery rate.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: August 12, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Hwa Young Lee, Byung Won Cho, Joong Kee Lee
  • Publication number: 20130228469
    Abstract: Provided is a method for producing fine metal particles, wherein metal oxide powders can be used as a source of fine metal particles, and a method for producing fine metal particles can be provided avoiding the contamination of the molten salt electrolyte bath and the produced fine metal particles. A method for producing fine metal particles (112) is provided which comprises generating cathodic discharge outside and over the surface of an electrolyte bath (100) comprising metal oxide powders (110) suspended therein, whereby the metal oxide powders (110) are electrochemically reduced into the fine metal particles (112).
    Type: Application
    Filed: October 18, 2011
    Publication date: September 5, 2013
    Applicant: I'MSEP CO., LTD.
    Inventors: Yasuhiko Ito, Manabu Tokushige, Tokujiro Nishikiori, Hiroyuki Tsujimura
  • Patent number: 8430946
    Abstract: The process, according to the invention, comprises the following stages: (a) processing (1) of the laterite ore (O) by crushing, scrubbing, attrition, separation, and high-intensity magnetic separation; (b) Leaching (2) of the non-magnetic fraction (CN) obtained form the previous stage (a); (c) optionally, neutralization (3) of the effluent from the leaching and/or solid-liquid separation stages (4); (d) treatment of the effluents from stages (b) or (c) using an ion-exchange hybrid system (5) comprising at least one circuit for removal of impurities and at least one circuit for recovery of nickel and cobalt; (e) elution (6) of the ion-exchange resin used; (f) separation, purification, and recovery (7) of the nickel and cobalt.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: April 30, 2013
    Inventor: Flavia Dutra Mendes
  • Patent number: 8221609
    Abstract: According to one embodiment, a process for producing rare metals includes the steps of: electrolyzing an electrolytic solution to extract a Re oxide at a cathode; recovering the Re oxide, and electrolyzing the Re oxide in a molten salt electrolyte to extract metallic Re; recovering a Nd containing residue solution; treating the Nd containing residue solution to produce Nd oxide; electrolyzing the Nd oxide in a molten salt electrolyte to extract metallic Nd; recovering a Dy containing residue solution; treating the Dy containing residue solution to produce Dy oxide; and electrolyzing the Dy oxide in a molten salt electrolyte to extract metallic Dy.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: July 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Reiko Fujita, Hitoshi Nakamura, Koji Mizuguchi, Shohei Kanamura, Takashi Omori, Kazuhiro Utsunomiya, Shunji Nomura
  • Patent number: 8066861
    Abstract: A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 29, 2011
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Jong-Hee Park
  • Patent number: 7470351
    Abstract: A system for producing metal particles using a discrete particle electrolyzer cathode, a discrete particle electrolyzer cathode, and methods for manufacturing the cathode. The cathode has a plurality of active zones on a surface thereof at least partially immersed in a reaction solution. The active zones are spaced from one another by between about 0.1 mm and about 10 mm, and each has a surface area no less than about 0.02 square mm. The cathode is spaced from an anode also at least partially immersed in the reaction solution. A voltage potential is applied between the anode and cathode. Metal particles form on the active zones of the cathode. The particles may be dislodged from the cathode after they have achieved a desired size. The geometry and composition of the active zones are specified to promote the growth of high quality particles suitable for use in metal/air fuel cells. Cathodes may be formed from bundled wire, machined metal, chemical etching, or chemical vapor deposition techniques.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: December 30, 2008
    Assignee: Teck Cominco Metals Ltd.
    Inventors: Stuart I. Smedley, Martin De Tezanos Pinto, Stephen R. Des Jardins, Donald James Novkov, Ronald Gulino
  • Patent number: 6428604
    Abstract: A hydrometallurgical process for the recovery of nickel and cobalt values from a sulfidic flotation concentrate. The process involves forming a slurry of the sulfidic flotation concentrate in an acid solution, and subjecting the slurried flotation concentrate to a chlorine leach at atmospheric pressure followed by an oxidative pressure leach. After liquid-solids separation and purification of the concentrate resulting in the removal of copper and cobalt, the nickel-containing solution is directly treated by electrowinning to recover nickel cathode therefrom.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: August 6, 2002
    Assignee: Inco Limited
    Inventors: Derek George Eagland Kerfoot, Eberhard Krause, Bruce John Love, Avinash Singhal
  • Patent number: 6299742
    Abstract: An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10−5 cm2/sec; a cathode and an anode, the cathode in electrical contact with the molten metal electrolyte, the cathode and molten electrolyte separated from the anode by an ionic membrane capable of transporting the anionic species of the electrolyte into the membrane; and a power source for generating a potential between the cathode and the anode.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: October 9, 2001
    Assignee: Trustees of Boston University
    Inventors: Uday Pal, Stephen C. Britten
  • Patent number: 6235183
    Abstract: A process for preparing sodium and aluminum chloride electrochemically is described in which, in an electrolytic cell containing aluminum as an anode and sodium as a cathode which are separated from one another by a sodium ion-conducting solid electrolyte, a fused electrolyte essentially containing sodium tetrachloroaluminate is electrolyzed in the anode compartment, aluminum chloride formed in this process is evaporated from the electrolytic cell and sodium is removed from the cathode compartment.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: May 22, 2001
    Assignee: Basf Aktiengesellschaft
    Inventors: Hermann Pütter, Günther Huber, Luise Spiske, Hans Stark, Dieter Schläfer, Gerhard Pforr
  • Patent number: 6074545
    Abstract: A Process for the electrolytic production of metals particularly titanium and alloys starting from the corresponding compounds is disclosed, by means of an apparatus for the electrochemical extraction including: (1) a cathode-crucible containing a mass of solidified metal, a liquid electrolyte with a density which is lower than that of the metal and a pool of liquid metal produced; (2) one or more non-consumable anodes particularly immersed in the electrolyte with means for regulating their distance from the cathodic surface; (3) a feeding system to the electrolyte of the compounds of the metals, of the electrolyte constituents and of alloying materials; (4) a power supply which feeds direct current to the liquid metal, and through the electrolyte, to the anodes, and causes the cathodic reduction of the metal in liquid form and the evolution of anodic gas, with the heat generation which maintains the electrolyte in the molten state; and (5) an air-tight containment structure in which the anodic gases generate
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: June 13, 2000
    Assignee: Cathingots limited
    Inventor: Marco Vincenzo Ginatta
  • Patent number: 5976345
    Abstract: An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A potentiometric measurement (type I) provides information on the thermodynamic properties of the slag; an amperometric measurement (type II) yields information concerning the type and transport properties of dissociable oxides; an electrolysis measurement (type III) determines the concentration of dissociable oxides. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10.sup.-5 cm.sup.
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: November 2, 1999
    Assignee: Boston University
    Inventors: Uday Pal, Stephen C. Britten