Abstract: The invention provides an in situ method for protecting material exposed to molten salt, the method having the steps of supplying metal in a first nonreactive state to the molten salt to create a mixture; measuring a redox state of the mixture; and transforming the metal to a second reactive state when the redox state indicates corrosion of the material is about to occur. Also provided is a system for preventing corrosion of structural alloys in molten salt environments, the system having a vessel defining a void containing the molten salt; a voltammetry sensor inserted into the molten salt; a first cathode inserted into the molten salt; and a first anode inserted into the molten salt, whereby the cathode and anode are in electrical communication with an electrical power source.
Type:
Grant
Filed:
April 1, 2020
Date of Patent:
July 23, 2024
Assignee:
UCHICAGO ARGONNE, LLC
Inventors:
Nathaniel C. Hoyt, Jicheng Guo, Mark A. Williamson
Abstract: The invention comprises methods and apparatuses for the electrorefining of Mg from Al or Mg alloy scrap. The invention utilizes the density and charge features of Mg present in a melted alloy to continuously extract Mg and Mg alloys from a melted Al alloy feed.
Type:
Grant
Filed:
February 13, 2015
Date of Patent:
July 10, 2018
Assignee:
PHINIX, LLC
Inventors:
Adam J. Gesing, Subodh Das, Mark Adam Gesing
Abstract: Electrodes are positioned substantially in contact with at least one surface of a solid to generate or absorb alkali metals when a voltage is applied between the electrodes.
Type:
Grant
Filed:
April 12, 2010
Date of Patent:
April 7, 2015
Assignee:
The Charles Stark Draper Laboratory, Inc.
Inventors:
Jonathan J. Bernstein, Mark J. Mescher, William L. Robbins
Abstract: An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.
Abstract: A dimensionally stable electrode is provided comprising a hollow substrate with an open upper end for confining a fluid containing a metal, a film covering portions of the external surface; and a mechanism for replenishing the film. Also provided is a method for maintaining the dimensions of an anode during electrolysis comprising adapting an interior surface of the anode to receive a fluid containing a metal, facilitating transport of the metal to an exterior surface of the anode, forming a protective film on the exterior surface, wherein the transported metal is a cation of the formed protective film, and maintaining the protective film on the exterior surface while the anode is in use.
Type:
Grant
Filed:
August 6, 1998
Date of Patent:
July 4, 2000
Assignee:
University of Chicago
Inventors:
John N. Hryn, Michael J. Pellin, Alan M. Wolsky, Wallis F. Calaway, Jr.
Abstract: A method is disclosed for the production of magnesium in which a magnesium chloride (which may be partially dehydrated) and/or magnesium oxide-containing feedstock is reacted with an electrolyte consisting essentially of magnesium cations, lithium and/or calcium cations, and fluoride and chloride anions, whereby the magnesium chloride and/or magnesium oxide react with and dissolve in the electrolyte, and lithium or calcium initially is produced electrochemically and transiently at the cathode and reacts chemically with magnesium cations in the electrolyte to produce magnesium metal. Thus, the method essentially involves a first electrochemical step to produce lithium or calcium metal and a subsequent second chemical step in which lithium or calcium reacts with magnesium fluoride in the electrolyte to produce magnesium metal.
Abstract: A process is disclosed for the electrolytic production of magnesium utilizing magnesium oxide and/or partially dehydrated magnesium chloride as a feedstock. An electrolyte containing magnesium chloride, potassium chloride and optionally sodium chloride is employed so that magnesium is produced. The magnesium is absorbed into a molten magnesium alloy cathode layer underlying the MgCl.sub.2 -KCl electrolyte. In a bipolar embodiment, pure magnesium is electrolytically transported from the magnesium alloy through a second molten salt electrolyte to an overlying electrode where the magnesium collects as a pool on the second electrolyte.