Carbon Triple Bonded To Nitrogen Patents (Class 205/433)
  • Patent number: 9206515
    Abstract: A method that produces coupled radical products. The method involves obtaining a sodium salt of a sulfonic acid (R—SO3—Na). The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the sulfonic acid desulfoxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: December 8, 2015
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, Justin Pendleton
  • Patent number: 9193659
    Abstract: The present invention relates to a process for the preparation of iodinated phenols, —in particular, it relates to a process including the electrochemical iodination of 3,5-disubstituted phenols of formula (1) to the corresponding 3,5-disubstituted-2, 4,6-triiodophenols of formula (2), which are useful intermediates for the synthesis of x-ray contrast media, and to the preparation of the contrast media themselves. Furthermore, the present invention includes the electrochemical iodination of 3, 5- disubstituted anilines of formula (6) to the corresponding 3,5-disubstituted-2,4,6-triiodoanilins of formula (7).
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: November 24, 2015
    Assignee: BRACCO IMAGING S.P.A.
    Inventors: Giovanni Battista Giovenzana, Camilla Cavallotti, Luciano Lattuada, Fulvio Uggeri
  • Publication number: 20030094381
    Abstract: The application of an electric current to catalysts useful for the vapor phase oxidation of hydrocarbons allows for processes for obtaining enhanced catalytic processing of a given feed material with a given catalyst, processes allowing the ready change-over from one product of a given feed stream to another product of that feed stream without the need to change catalyst, and processes allowing the ready change over from one feed stream to another feed stream with the concomitant change over from one product to another product without the need to change catalyst.
    Type: Application
    Filed: November 14, 2002
    Publication date: May 22, 2003
    Inventors: Daniel Arthur Bors, Anne Mae Gaffney, Stephen Gerard Maroldo
  • Patent number: 6306284
    Abstract: An apparatus and a method for determining concentration of fluorine ions in aqueous solutions are provided. In the apparatus, a pH sensor is provided for sensing a pH value of an aqueous solution to be determined. A pH controller is then used to compare the pH value determined with stored pH data to determine whether the aqueous solution is acidic or alkalinic. An acid dispenser or a base dispenser is then used to dispense either an acid or a base into the pH adjustment tank for adjusting the pH value of the aqueous solution to within a desirable range. For instance, for the detection of fluorine ions, a suitable pH range is between about 4 and about 10. After the pH value is stabilized in the aqueous solution, a fluorine ion sensor may be used to sense the fluorine ion concentration in the aqueous solution. A common acid and base which may be used to bring the pH value within the desirable range may be H2SO4 and NaOH.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: October 23, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Yi Yang, Wei-tien Huang
  • Patent number: 6168694
    Abstract: Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m2/g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725° C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: January 2, 2001
    Assignee: Chemat Technology, Inc.
    Inventors: Yuhong Huang, Oiang Wei, Chung-tse Chu, Haixing Zheng
  • Patent number: 6165341
    Abstract: In one embodiment, the present invention relates to a method of making a catalytic film comprising: applying an electric current to an electrochemical cell comprising an anode, a cathode and a solution comprising a film forming compound and a nitrate ion source thereby forming the catalytic film.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: December 26, 2000
    Assignee: Sachem, Inc.
    Inventors: Hossein Sharifian, Allen J. Bard