Abstract: A method for preparing a graphene nanosheet, wherein the method includes preparing an electrode assembly comprising a negative electrode, wherein the negative electrode comprises artificial graphite, a lithium metal counter electrode opposing the negative electrode, and a separator interposed between the negative electrode and the lithium metal counter electrode, and immersing the electrode assembly in an electrolyte, electrochemically charging the immersed electrode assembly to form a charged electrode assembly, separating the artificial graphite from the charged electrode assembly to form separated artificial graphite, and de-laminating a graphene nanosheet from the separated artificial graphite, wherein the initial discharge capacity of the negative electrode is 350 mAh/g or greater, and the electrolyte comprises an organic solvent comprising a cyclic carbonate and a linear carbonate, and a lithium salt.
Type:
Grant
Filed:
October 23, 2020
Date of Patent:
January 21, 2025
Assignee:
LG ENERGY SOLUTION, LTD.
Inventors:
Suk In Noh, Sang Wook Woo, Chang Ju Lee
Abstract: A device and process for using the device are provided for the production of commodity chemicals by biological methods which require the addition of reducing equivalents. The device allows operating conditions to be conveniently altered to achieve maximal electrochemical efficiencies for a given biologically mediated redox reaction, series of reactions, or fermentation process.
Type:
Grant
Filed:
September 6, 2013
Date of Patent:
March 12, 2024
Assignee:
BioChemInsights, Inc.
Inventors:
Travis J. Armiger, William B. Armiger, David R. Dodds
Abstract: A flow cell for reducing carbon dioxide may include a first chamber having a gold coated gas diffusion layer working electrode, a reference electrode, and a water-in-salt electrolyte comprising a super concentrated aqueous solution of lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI). A second chamber adjacent the first chamber has a gold coated gas diffusion layer counter electrode and the water-in-salt electrolyte. The second chamber being separated from the first chamber by a proton exchange membrane. A reservoir coupled to each of the first and the second chambers with a pump contains a volume of the water-in-salt electrolyte and a head space.
Abstract: Various embodiments include an electrolysis cell with a housing with an anode and a gas diffusion electrode connected as cathode. The gas diffusion electrode has an electrolyte side and a gas side and separates the electrolyte space from a gas space for a reaction gas. There is a support body disposed in the gas space with a contact surface in contact with the gas diffusion electrode. The gas space comprises a first channel system and a second channel system. The first channel system and the second channel system run separately from one another and thus form two separate volumes of the gas space. The first channel system and the second channel system each have openings in the contact surface of the support body.
Type:
Grant
Filed:
November 20, 2017
Date of Patent:
September 28, 2021
Assignee:
SIEMENS ENERGY GLOBAL GMBH & CO. KG
Inventors:
Erhard Magori, Kerstin Wiesner-Fleischer, Philippe Jeanty, Oliver von Sicard, Angelika Tawil, Van An Du
Abstract: This invention describes a method for the purification of a hemicellulose extract produced for example through hot water extraction. Such extracts often contain large amounts of colloidal material which primarily consists of lignin and other phenolic compounds. These colloidal particles clog equipment such as ultrafiltration membranes, which deem the use of such equipment almost impossible. The unwanted material is very tacky at temperatures between 70 and 120° C. which makes it possible to adsorb it onto a variety of materials. Further, by using an adsorbing material that is wholly or partly contaminated with chemically alike material the purification process is greatly enhanced.
Type:
Grant
Filed:
March 29, 2017
Date of Patent:
June 29, 2021
Assignee:
CH-Bioforce Oy
Inventors:
Lari Vähäsalo, Nicholas Lax, Sebastian Von Schoultz
Abstract: The present invention provides an electrolytic device and includes an electrolytic tank and a plurality of electrodes. The electrolytic tank comprises a case for accommodating liquid water. The inner wall of the case has a plurality of engagement structures. The plurality of electrodes are set in the engagement structures respectively to be arranged at intervals in the case, wherein the case is connected to the plurality of electrodes by injection molding.
Abstract: An electrolytic assembly and a method for the bacterial disinfection of water or wastewater is disclosed. Water circulating in cooling towers such as those that discharge heat from air conditioning; ships' ballast water; or wastewater with a dryness varying from 0.01 to 3%; can be treated. The assembly comprises one or more electrolytic units comprising at least one Dimensionnally Stable Anode commonly known as DSA, or a Boron Doped Diamond anode, also named BDD anode. The electrolytic treatment at least partially kill the bacteria present in the water. It has been shown that the electrolytic treatment breaks the cell membrane of bacteria present in the water. The treatment is particularly adapted for eliminating Legionella and others microorganisms, such as E. coli.
Abstract: The present disclosure provides systems and methods for producing carbon products via electrochemical reduction from fluid streams containing a carbon-containing material, such as, for example, carbon dioxide. Electrochemical reduction systems and methods of the present disclosure may comprise micro- or nanostructured membranes for separation and catalytic processes. The electrochemical reduction systems and methods may utilize renewable energy sources to generate a carbon product comprising one or more carbon atoms (C1+ product), such as, for example, fuel. This may be performed at substantially low (or nearly zero) net or negative carbon emissions.
Abstract: The present disclosure is a method and system for the reduction of carbon dioxide. The method may include receiving hydrogen gas at an anolyte region of an electrochemical cell including an anode, the anode including a gas diffusion electrode, receiving an anolyte feed at an anolyte region of the electrochemical cell, and receiving a catholyte feed including carbon dioxide and an alkali metal bicarbonate at a catholyte region of the electrochemical cell including a cathode. The method may include applying an electrical potential between the anode and cathode sufficient to reduce the carbon dioxide to at least one reduction product.
Type:
Grant
Filed:
May 29, 2015
Date of Patent:
June 25, 2019
Assignee:
Avantium Knowledge Centre B.V.
Inventors:
Jerry J. Kaczur, Prasad Lakkaraju, Kyle Teamey
Abstract: Apparatus and related methods for reacting a natural oil with a short chain alcohol in the presence of an alkaline catalyst and mesh to produce biodiesel, significantly decreasing the amount of time for the glycerol byproduct to settle out of the reaction mixture. The process for the production of biodiesel includes providing animal or vegetable oil to create a first component, combining a short chain alcohol with a strong base to create a second component, and combining the first and second components together in the presence of a mesh, such that the mesh is in contact with the combined components. The combined compositions represent a reaction mixture that undergo a transesterification reaction and produce fatty acid methyl ester biodiesel and also a glycerol byproduct. The mesh material that is present during the transesterification reaction decreases the amount of time required for the glycerol byproduct to settle out of the reaction mixture.
Type:
Grant
Filed:
April 11, 2014
Date of Patent:
January 16, 2018
Inventors:
Jeffery Thompson, John K. Cooper, Mario A. Oyanader
Abstract: A process and system for the electrochemical production of graphene, graphene oxide, graphene quantum dots, graphene/graphene oxide metal composites, graphene/graphene oxide coated substrates and graphene/graphene oxide metal composite coated substrates in a single step process involving no secondary purifications utilizes an electrochemical cell containing electrodes with variable gaps including a zero gap, containing an anode electrode including graphite, a cathode electrode including electrically conductive material with an electrolyte-free electrochemical bath including water and an organic liquid that produces joule heating along with oxygen embrittlement.
Type:
Grant
Filed:
July 15, 2015
Date of Patent:
December 12, 2017
Assignee:
ROCHESTER INSTITUTE OF TECHNOLOGY
Inventors:
Kalathur S. V. Santhanam, Satish G. Kandlikar, Valentina Mejia, Yang Yue
Abstract: Devices and methods are employed to detect substances in a medium. The device comprises an electrogenic bacterium that selectively interacts with a substance to produce electrons. A portion of the electrons provides power to the device and a portion of the electrons generates a signal as an indication of the presence of a substance in the medium. The method comprises contacting the electrogenic bacterium of the device with a medium suspected of containing the substance and measuring the signal generated by the electrons.
Type:
Grant
Filed:
September 17, 2010
Date of Patent:
April 18, 2017
Assignee:
HRL Laboratories, LLC
Inventors:
Jocelyn Hicks-Garner, Adam F. Gross, Tina T. Salguero
Abstract: Electrochemical and photoelectrochemical cells for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran are provided. Also provided are methods of using the cells to carry out the electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran.
Abstract: A reactor comprising a first zone comprising a dehydrogenation catalyst and a second zone separated from said first zone by a proton conducting membrane comprising a mixed metal oxide of formula (I) LnaWbO12?y wherein Ln is Y or an element numbered 57 to 71; the molar ratio of a:b is 4.8 to 6, preferably 5.3 to 6; and y is a number such that formula (I) is uncharged, e.g. y is 0?y?1.8.
Type:
Grant
Filed:
February 10, 2011
Date of Patent:
May 17, 2016
Assignee:
Protia AS
Inventors:
Christian Kjølseth, Per Christian Vestre
Abstract: A method of using clathrate hydrates (including ammonia clathrates), in electrochemical transformations. Noted are converting clathrate guest molecules such as CO2, CH4, alkanes, and alkenes; and, optionally, the use of clathrates-promoting molecules such as tetra hydro furan, to produce higher value carbon molecules including propane and formic acid.
Type:
Grant
Filed:
January 13, 2015
Date of Patent:
January 12, 2016
Assignee:
Brown University
Inventors:
Christoph Rose-Petruck, G. Tayhas R. Palmore, Daniel DeCiccio, Steven Ahn
Abstract: The invention concerns the use as a redox a catalyst and/or mediator in a fuel cell catholyte solution of the compound of Formula (I) wherein: X is selected from hydrogen and from various functional groups; R1-8 are independently selected from hydrogen and various functional groups; wherein R1 and X and/or R5 and X may together form an optionally substituted ring structure; wherein R1 and R2 and/or R2 and R3 and/or R3 and R4 and/or R4 and R8 and/or R8 and R7 and/or R7 and R6 and/or R6 and R5 may together form an optionally substituted ring structure; wherein (L) indicates the optional presence of a linking bond or group between the two neighboring aromatic rings of the structure, and when present may form an optionally substituted ring structure with one or both of R4 and R8; and wherein at least one substituent group of the structure is a charge-modifying substituent.
Type:
Grant
Filed:
August 5, 2010
Date of Patent:
December 8, 2015
Assignee:
ACAL ENERGY LIMITED
Inventors:
Kathryn Knuckey, David Rochester, Andrew Martin Creeth
Abstract: The invention relates to an electrochemical cell, particularly useful in electrochemical processes carried out with periodic reversal of polarity. The cell is equipped with concentric pairs of electrodes arranged in such a way that, in each stage of the process, the cathodic area is equal to the anodic area.
Abstract: Oils from plants and animal fats are hydrolyzed to fatty acids for a Kolbe reaction. The invention relates to a high productivity Kolbe reaction process for electrochemically decarboxylating C4-C28 fatty acids using small amounts of acetic acid to lower anodic passivation voltage and synthesizing C6-C54 hydrocarbons. The C6-C54 undergo olefin metathesis and/or hydroisomerization reaction process to synthesize heavy fuel oil, diesel fuel, kerosene fuel, lubricant base oil, and linear alpha olefin products useful as precursors for polymers, detergents, and other fine chemicals.
Type:
Grant
Filed:
July 15, 2014
Date of Patent:
February 24, 2015
Assignee:
Altranex Corporation
Inventors:
Chandrashekhar H. Joshi, Graham Thomas Thornton Gibson, Dzmitry Malevich, Michael Glenn Horner
Abstract: Methods and systems for electrochemical conversion of carbon dioxide to organic products including formate and formic acid are provided. A method may include, but is not limited to, steps (A) to (C). Step (A) may introduce an acidic anolyte to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce a bicarbonate-based catholyte saturated with carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a high surface area cathode including indium and having a void volume of between about 30% to 98%. At least a portion of the bicarbonate-based catholyte is recycled. Step (C) may apply an electrical potential between the anode and the cathode sufficient to reduce the carbon dioxide to at least one of a single-carbon based product or a multi-carbon based product.
Type:
Grant
Filed:
December 21, 2012
Date of Patent:
October 14, 2014
Assignee:
Liquid Light, Inc.
Inventors:
Jerry J. Kaczur, Theodore J. Kramer, Kunttal Keyshar, Paul Majsztrik, Zbigniew Twardowski
Abstract: Methods for generating aldehyde-containing compounds in organic seed oils utilizing ozone and direct current without the use of added electrolytes and reducing compounds are disclosed, as are compositions generated by such methods. The reactions can be performed efficiently at ambient temperatures and pressures. These compositions have particular utility as additives to fuels and lubricating oils derived from petrochemical sources.
Type:
Application
Filed:
April 3, 2014
Publication date:
October 9, 2014
Applicant:
Colorado Energy Research Technologies, LLC
Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
Type:
Grant
Filed:
December 21, 2012
Date of Patent:
September 30, 2014
Assignee:
Liquid Light, Inc.
Inventors:
Kyle Teamey, Jerry J. Kaczur, Emily Barton Cole, Paul Majsztrik, Narayanappa Sivasankar, Andrew B. Bocarsly
Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide. The method may include another step of contacting the second region with an anolyte comprising a recycled reactant and at least one of an alkane, haloalkane, alkene, haloalkene, aromatic compound, haloaromatic compound, heteroaromatic compound or halo-heteroaromatic compound. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
Type:
Application
Filed:
March 12, 2014
Publication date:
September 11, 2014
Applicant:
Ceramatec, Inc.
Inventors:
Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
Type:
Grant
Filed:
December 21, 2012
Date of Patent:
September 2, 2014
Assignee:
Liquid Light, Inc.
Inventors:
Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
Abstract: In one embodiment of the present invention, a system for providing a renewable source of material resources is provided comprising: a first source of renewable energy; first stream of materials from a first materials source; an electrolyzer coupled to the first source of renewable energy and the first stream of materials, wherein the electrolyzer is configured to produce a first material resource by electrolysis; a processor for further processing or use or the material resource to produce a second material resource, wherein the processor comprises a solar collector and where the solar collector is configured to provide heat to the first materials resource for disassociation; and a material resource storage coupled to the electrolyzer for receiving the material resource from the electrolyzer or providing the material resource to the processor for further processing or use.
Abstract: A method for producing organic liquid fuels and other valuable products in which an organic compound is provided to an anode electrode having a metal oxide catalyst disposed on an anode side of an electrolyte membrane, thereby producing an organic liquid fuel and/or other valuable organic product and electrons on the anode side. The electrons are conducted to a cathode electrode disposed on a cathode side of the electrolyte membrane, thereby transforming water provided to the cathode side to H2 gas and hydroxide ions. The method is carried out at a temperature less than or equal to about 160° C., preferably at room temperature.
Abstract: The present invention relates to a method for manufacturing a micro wire, a sensor including the micro wire, and a method for manufacturing the sensor, having improved production efficiency. According to an embodiment of the present invention, a method for manufacturing a micro wire includes applying a three-dimensional electric field to a solution for forming a micro wire. The method for manufacturing the micro wire may further include providing an electrode assembly comprising a substrate, a first electrode and a second electrode formed on the substrate, and providing the solution to a space. The first electrode and the second electrode may form the space therebetween, and the space may have a first width and a second width that is smaller than the first width. The three-dimensional electric field is applied to the solution by applying a voltage to the first electrode and the second electrode.
Type:
Grant
Filed:
October 15, 2008
Date of Patent:
February 11, 2014
Assignee:
Postech Academy-Industry Foundation
Inventors:
WooSeok Choi, Guenbae Lim, Tae-Chang An
Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
Type:
Application
Filed:
September 25, 2013
Publication date:
February 6, 2014
Applicant:
Liquid Light, Inc.
Inventors:
Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
Abstract: Disclosed is a system and method for reducing carbon dioxide into a carbon based product. The system includes an electrochemical cell having a cathode region which includes a cathode and a non-aqueous catholyte; an anode region having an anode and an aqueous or gaseous anolyte; and an ion permeable zone disposed between the anode region and the cathode region. The ion permeable zone is at least one of (i) the interface between the anolyte and the catholyte, (ii) an ion selective membrane; (iii) at least one liquid layer formed of an emulsion or (iv) a hydrophobic or glass fiber separator. The system and method includes a source of energy, whereby applying the source of energy across the anode and cathode reduces the carbon dioxide and produces an oxidation product.
Type:
Grant
Filed:
December 21, 2012
Date of Patent:
February 4, 2014
Assignee:
Liquid Light, Inc.
Inventors:
Narayanappa Sivasankar, Jerry J. Kaczur, Emily Barton Cole
Abstract: The method for reducing carbon dioxide of the present invention includes a step (a) and a step (b) as follows. A step (a) of preparing an electrochemical cell. The electrochemical cell comprises a working electrode (21), a counter electrode (23) and a vessel (28). The vessel (28) stores an electrolytic solution (27). The working electrode (21) contains boron carbide. The electrolytic solution (27) contains carbon dioxide. The working electrode (21) and the counter electrode (23) are in contact with the electrolytic solution (27). A step (b) of applying a negative voltage and a positive voltage to the working electrode and the counter electrode, respectively, to reduce the carbon dioxide.
Abstract: An apparatus for removing sulfur from a hydrocarbon feed includes a cell having two compartments and a membrane separating the compartments, wherein one compartment is communicated with a hydrogen source and the other compartment is communicated with the hydrocarbon feed to be treated, wherein the membrane comprises a palladium membrane which is modified to have an additional amount of a mix of palladium and other metals (Ni, Ag, Co and Au) between about 4.62*10?3 and 1.62*10?2 g/cm2; and a power source connected across the hydrogen source compartment to generate a current across same, whereby atomic hydrogen is formed from the hydrogen source at a surface of the membrane and diffuses across the membrane to react with the hydrocarbon feed. A process using this apparatus is also provided.
Type:
Grant
Filed:
July 24, 2008
Date of Patent:
December 31, 2013
Assignee:
Intevap, S.A.
Inventors:
Victor Báez, Luiz Felipe D'Elia, Gaudy Rodriguez, Yolimar Gandica
Abstract: A method and apparatus for a photocatalytic and electrolytic catalyst includes in various aspects one or more catalysts, a method for forming a catalyst, an electrolytic cell, and a reaction method.
Abstract: Methods and systems for heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a heterocyclic catalyst, and a cathode. Step (C) may introduce a second reactant to the second compartment of the electrochemical cell. Step (D) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to induce liquid phase carbonylation or hydroformylation to form a product mixture.
Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
Type:
Grant
Filed:
July 21, 2010
Date of Patent:
August 13, 2013
Assignee:
Ceramatec, Inc.
Inventors:
Sai Bhavaraju, Mukund Karanjikar, Ashok V. Joshi, David Joel Hunt, Pallavi Chitta
Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
Abstract: CO2-sequestering formed building materials are provided. The building materials of the invention include a composition comprising a carbonate/bicarbonate component. Additional aspects of the invention include methods of making and using the CO2-sequestering formed building material.
Abstract: Methods and systems for capture of carbon dioxide and electrochemical conversion of the captured carbon dioxide to organic products are disclosed. A method may include, but is not limited to, steps (A) to (C). Step (A) may introduce a solvent to a first compartment of an electrochemical cell. Step (B) may capture carbon dioxide with at least one of guanidine, a guanidine derivative, pyrimidine, or a pyrimidine derivative to form a carbamic zwitterion. Step (C) may apply an electrical potential between an anode and a cathode sufficient for the cathode to reduce the carbamic zwitterion to a product mixture.
Abstract: The invention relates to the deposition or attachment of materials to surfaces. It relates to a process for coating a surface with a first material and a second material, comprising the following steps: placing the first material on the said surface, inserting into the first material placed on the said surface precursor molecules of the second material, converting the said precursor molecules of the second material inserted into the first material into the said second material such that this second material becomes formed on the said surface to be coated and within the said first material placed on the said surface. The object of the process of the invention is to allow the deposition of materials of any type onto surfaces of any type.
Type:
Grant
Filed:
February 13, 2004
Date of Patent:
September 11, 2012
Assignee:
Commissariat a l'Energie Atomique
Inventors:
Pascal Viel, Sami Ameur, Christophe Bureau
Abstract: A bioelectrochemical system includes a housing defining an internal chamber. A barrier is disposed within the housing and at least partially separates the internal chamber into first and second compartments. The first compartment including at least one of autotrophic or heterotrophic microorganisms disposed therein. A cathode is disposed within the first compartment and is coupled to a power supply, and an anode is disposed within the second compartment and is coupled to the power supply. The carbon dioxide received within the first chamber is transformed into an organic compound.
Type:
Application
Filed:
February 7, 2012
Publication date:
August 9, 2012
Applicant:
NEXT FUEL, INC.
Inventors:
Song Jin, Paul Harold Fallgren, Zhiyong (Jason) Ren, Robert H. Craig
Abstract: A method for producing biofuels from biomass in which a refined biomass material is introduced into a non-Faradaic electrochemical device, preferably at a temperature greater than or equal to about 150° C., and deoxygenated and/or decarboxylated in said device to produce an increased carbon chain fuel.
Abstract: An electrochemical device having a proton exchange membrane disposed between an anode electrode and a cathode electrode, an anode plate adjacent the anode electrode and forming at least one anode flow channel, and a cathode plate adjacent the cathode electrode and forming at least one cathode flow channel, in which a bio-oil is introduced into the at least one anode flow channel, and a carbohydrate is introduced into the at least one cathode flow channel. The bio-oil is oxidized at the anode, producing the biofuel, and protons from the anode electrode migrate to the cathode electrode and are reduced to hydrogen and/or reacted with the carbohydrate at the cathode, producing hydrogen and carbon-hydrogen biofuel.
Abstract: An electrolytic method of a fuel capable of suppressing reverse reaction of an enzyme and improving electrolytic rate is provided. In electrolyzing a fuel such as glucose by using an enzyme/electron mediator obtained by immobilizing an enzyme such as gluconate-5-dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase and an electron mediator onto a porous electrode made of a carbon material, electrode reaction is generated only in the enzyme/electron mediator electrode.
Abstract: A process for producing one or more chemical compounds comprising the steps of providing a bioelectrochemical system having an anode and a cathode separated by a membrane, the anode and the cathode being electrically connected to each other, causing oxidation to occur at the anode and causing reduction to occur at the cathode to thereby produce reducing equivalents at the cathode, providing the reducing equivalents to a culture of microorganisms, and providing carbon dioxide to the culture of microorganisms, whereby the microorganisms produce the one or more chemical compounds, and recovering the one or chemical compounds.
Type:
Application
Filed:
December 17, 2009
Publication date:
December 29, 2011
Applicant:
THE UNIVERSITY OF QUEENSLAND
Inventors:
Korneel P.H.L.A. Rabaey, Rene A. Rozendal
Abstract: A method for upgrading a petroleum oil by a hydroprocessing reaction in which the oil is hydrogenated, includes the steps of: a. forming a liquid reaction mixture of the oil with water and an amphiphilic liquid in predetermined proportions to thereby render the oil and water miscible; b. introducing the liquid reaction mixture into an electrolytic reactor having one or more cathodic elements formed from a porous high surface area, conductive material; c. operating the reactor to form reactive hydrogen atoms whereby the oil is hydrogenated by the hydrogen atoms; d. removing the liquid mixture from the reactor; and e. separating the hydrogenated upgraded oil from the amphiphilic liquid and any remaining water, e.g., by distillation, recovering and recycling the amphiphilic liquid for use.
Abstract: Disclosed is a process for the electrochemical transformation of a compound to form a product, the process comprising (i) effecting the transformation in the presence of an electrolyte comprising at least one room temperature ionic liquid, wherein the ionic liquid is air-stable and moisture-stable, (ii) recovering the product, and optionally (iii) recovering the ionic liquid. The process can be used to effect the electrochemical transformation of a wide range of organic compounds.
Type:
Grant
Filed:
July 8, 2002
Date of Patent:
July 5, 2011
Assignee:
The Queen's University of Belfast
Inventors:
William R. Pitner, Kenneth R. Seddon, Kenneth M. Stack, Alan Curzons, Richard Freer
Abstract: The present invention relates to methods and apparatus for activation of a low reactivity, non-polar chemical compound. In one example embodiment, the method comprises introducing the low reactivity chemical compound to a catalyst. At least one of (a) an oxidizing agent or a reducing agent and (b) a polar compound is provided to the catalyst and the chemical compound. An alternating current is applied to the catalyst to produce an activation reaction in the chemical compound. This activation reaction produces a useful product.
Type:
Grant
Filed:
September 18, 2008
Date of Patent:
June 21, 2011
Assignees:
Catelectric Corp., The University of Connecticut
Inventors:
Victor Stancovski, Steven Lawrence Suib, Boxun Hu
Abstract: The present invention provides methods and apparatus for controlling catalytic processes, including catalyst regeneration and soot elimination. An alternating current is applied to a catalyst layer and a polarization impedance of the catalyst layer is monitored. The polarization impedance may be controlled by varying the asymmetrical alternating current. At least one of water, oxygen, steam and heat may be provided to the catalyst layer to enhance an oxidation reaction for soot elimination and/or to regenerate the catalyst.
Abstract: In one embodiment of the present invention, a system for providing a renewable source of material resources is provided comprising: a first source of renewable energy; first stream of materials from a first materials source; an electrolyzer coupled to the first source of renewable energy and the first stream of materials, wherein the electrolyzer is configured to produce a first material resource by electrolysis; a processor for further processing or use or the material resource to produce a second material resource, wherein the processor comprises a solar collector and where the solar collector is configured to provide heat to the first materials resource for disassociation; and a material resource storage coupled to the electrolyzer for receiving the material resource from the electrolyzer or providing the material resource to the processor for further processing or use.
Abstract: An electrochemical device having a proton exchange membrane disposed between an anode electrode and a cathode electrode, an anode plate adjacent the anode electrode and forming at least one anode flow channel, and a cathode plate adjacent the cathode electrode and forming at least one cathode flow channel, in which a bio-oil is introduced into the at least one anode flow channel, and a carbohydrate is introduced into the at least one cathode flow channel.
Abstract: A method for producing biofuels from biomass in which a refined biomass material is introduced into a non-Faradaic electrochemical device, preferably at a temperature greater than or equal to about 150° C., and deoxygenated and/or decarboxylated in said device to produce an increased carbon chain fuel.