Ketone Produced Patents (Class 205/446)
  • Patent number: 11008662
    Abstract: Electrochemical cells and photoelectrochemical cells for the reduction of furfurals are provided. Also provided are methods of using the cells to carry out the reduction reactions. Using the cells and methods, furfurals can be converted into furan alcohols or linear ketones.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 18, 2021
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Kyoung-Shin Choi, John James Roylance, Stephen Riley Kubota
  • Publication number: 20140291162
    Abstract: The present invention relates to a method for treating CO2 by electrochemical hydrogenation, said method comprising: a step of transferring heat from a heating means (160) towards a proton-conductive electrolyser (110) such that said electrolyser (110) reaches an operating temperature suitable for electrolysing steam; a step of feeding the CO2 produced by said heating means (160) at the cathode of the electrolyser; a step of feeding the steam at the anode; a step of oxidising the steam at the anode; a step of generating protonated species in the membrane with proton conduction; a step of migrating said protonated species into said proton-conductive membrane; a step of reducing said protonated species on the surface of the cathode into reactive hydrogen atoms; and a step of hydrogenating the CO2 on the surface of the cathode of the electrolyser (110) by means of said reactive hydrogen atoms, said hydrogenation step enabling the formation of CxHyOz compounds, where x?1; 0<y?(2x+2) and 0?z?2x.
    Type: Application
    Filed: October 11, 2012
    Publication date: October 2, 2014
    Inventors: Béatrice Sala, Frédéric Grasset, Olivier Lacroix, Abdelkader Sirat, Elodie Tetard, Kamal Rahmouni, Joel Mazoyer
  • Patent number: 8821710
    Abstract: Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 2, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, Mukund Karanjikar
  • Patent number: 8647493
    Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide. The method may include another step of contacting the second region with an anolyte comprising a recycled reactant. The method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region. The second product may be removed from the second region and introduced to a secondary reactor. The method may include forming the recycled reactant in the secondary reactor.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 11, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur
  • Patent number: 8641885
    Abstract: Disclosed is a system and method for reducing carbon dioxide into a carbon based product. The system includes an electrochemical cell having a cathode region which includes a cathode and a non-aqueous catholyte; an anode region having an anode and an aqueous or gaseous anolyte; and an ion permeable zone disposed between the anode region and the cathode region. The ion permeable zone is at least one of (i) the interface between the anolyte and the catholyte, (ii) an ion selective membrane; (iii) at least one liquid layer formed of an emulsion or (iv) a hydrophobic or glass fiber separator. The system and method includes a source of energy, whereby applying the source of energy across the anode and cathode reduces the carbon dioxide and produces an oxidation product.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 4, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Jerry J. Kaczur, Emily Barton Cole
  • Publication number: 20130140187
    Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 6, 2013
    Applicant: LIQUID LIGHT, INC.
    Inventor: LIQUID LIGHT, INC.
  • Publication number: 20130118910
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Applicant: LIQUID LIGHT, INC.
    Inventor: LIQUID LIGHT, INC.
  • Patent number: 8313634
    Abstract: The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: November 20, 2012
    Assignee: Princeton University
    Inventors: Andrew B. Bocarsly, Emily Barton Cole
  • Publication number: 20110226632
    Abstract: A method for heterocycle catalyzed electrochemical reduction of a carbonyl compound is disclosed. The method generally includes steps (A) to (C). Step (A) may introduce the carbonyl compound into a solution of an electrolyte and a heterocycle catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbonyl compound to at least one aldehyde compound. Step (B) may vary which of the aldehyde compounds is produced by adjusting one or more of (i) a cathode material, (ii) the electrolyte, (iii) the heterocycle catalyst, (iv) a pH level and (v) an electrical potential. Step (C) may separate the aldehyde compounds from the solution.
    Type: Application
    Filed: July 29, 2010
    Publication date: September 22, 2011
    Inventors: Emily Barton Cole, Andrew Bocarsly
  • Patent number: 7972492
    Abstract: Disclosed is a process for the electrochemical transformation of a compound to form a product, the process comprising (i) effecting the transformation in the presence of an electrolyte comprising at least one room temperature ionic liquid, wherein the ionic liquid is air-stable and moisture-stable, (ii) recovering the product, and optionally (iii) recovering the ionic liquid. The process can be used to effect the electrochemical transformation of a wide range of organic compounds.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: July 5, 2011
    Assignee: The Queen's University of Belfast
    Inventors: William R. Pitner, Kenneth R. Seddon, Kenneth M. Stack, Alan Curzons, Richard Freer
  • Publication number: 20110114502
    Abstract: A method for reducing carbon dioxide to one or more products is disclosed. The method may include steps (A) to (C). Step (A) may bubble the carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into the products. Step (B) may vary at least one of (i) which of the products is produced and (ii) a faradaic yield of the products by adjusting one or more of (a) a cathode material and (b) a surface morphology of the cathode. Step (C) may separate the products from the solution.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 19, 2011
    Inventors: Emily Barton Cole, Narayanappa Sivasankar, Andrew Bocarsly, Kyle Teamey, Nety Krishna
  • Publication number: 20110068290
    Abstract: Compounds, compositions, systems and methods for the chemical and electrochemical modification of the electronic structure of graphene and especially epitaxial graphene (EG) are presented. Beneficially, such systems and methods allow the large-scale fabrication of electronic EG devices. Vigorous oxidative conditions may allow substantially complete removal of the EG carbon atoms and the generation of insulating regions; such processing is equivalent to that which is currently used in the semiconductor industry to lithographically etch or oxidize silicon and thereby define the physical features and electronic structure of the devices. However graphene offers an excellent opportunity for controlled modification of the hybridization of the carbon atoms from sp2 to sp3 states by chemical addition of organic functional groups.
    Type: Application
    Filed: May 29, 2009
    Publication date: March 24, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Robert C. Haddon, Mikhail E. Itkis, Palanisamy Ramesh, Elena Bekyarova, Sakhrat Khizroev, Jeongmin Hong
  • Patent number: 7182850
    Abstract: A method to electrolytically polymerize aromatic hydrocarbons and oxidize cyclopentane structures within the hydrocarbons into cyclopentanone structures is disclosed including a method to electrolyze fluorene in the presence of an ester to produce poly(9-fluorenone). A method to electrolytically oxidize polymers having cyclopentane structures to polymers having cyclopentanone structures is also disclosed including a method to electrolyze poly(fluorene) to produce poly(9-fluorenone). In addition, a method to chemically oxidize polymers containing cyclopentane structures into polymers containing cyclopentanone structures is disclosed, including a method to oxidize poly(fluorene), with a chemically prepared oxidizing agent, to produce poly(9-fluroenone).
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: February 27, 2007
    Assignee: IM&T Research, Inc.
    Inventor: Teruo Umemoto
  • Patent number: 6767446
    Abstract: A method to electrolytically polymerize aromatic hydrocarbons and oxidize cyclopentane structures within the hydrocarbons into cyclopentanone structures is disclosed including a method to electrolyse fluorene in the presence of an ester to produce poly(9-fluorenone). A method to electrolytically oxidize polymers having cyclopentane structures to polymers having cycloppentanone structures is also disclosed including a method to electrolyze poly(fluorene) to produce poly(9-fluorenone). In addition, a method to chemically oxidize polymers containing cyclopentane structures into polymers containing cyclopentanone structures is disclosed, including a method to oxidize poly(fluorene), with a chemically prepared oxidizing agent, to produce poly(9-fluorenone).
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: July 27, 2004
    Assignee: IM&T Research, Inc.
    Inventor: Teruo Umemoto
  • Patent number: 6143161
    Abstract: The present invention refers to a process for the preparation of 4-(des-dimethylamino)-tetracyclines, which compounds have a therapeutical application. The starting tetracyclines are treated with a methylating agent and the resulting trimethylammonium salts are reduced by electrolysis in an aqueous solution at acidic pH, in the presence of an adequate electrolyte. A direct electrical current with a potential of 0.5-1.5 volts is applied between two convenient electrodes until the reaction is complete. The 4-(des-dimethylamino)-tetracyclines are isolated by extraction with an organic solvent.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: November 7, 2000
    Assignee: Hovione Inter Ltd.
    Inventors: William Heggie, Jose Galindro, Pedro Santos, Luis Carvalho
  • Patent number: 5705049
    Abstract: An integrated process for oxidizing aromatic and alkyl aromatic compounds to form carbonyl containing reaction products comprising the reaction of quadravalent cerium with a reactant stream containing an aromatic or alkyl aromatic compound and using a high degree of mixing, followed by the electrolytic regeneration of the reduced cerium ion in a cell under near turbulent or turbulent flow conditions at high solution velocities relative to the anode. The preferred cell structure for accomplishing the electrolysis utilizes an turbulence promoting anode arrangement which allows for the anolyte to flow past the anode under the conditions mentioned, and a reduced area cathode whereby the anode and cathode compartments need not be separated by an ion exchange membrane.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: January 6, 1998
    Assignee: Hydro-Quebec
    Inventor: Stephen Harrison
  • Patent number: 5679235
    Abstract: An electrolyte contains a tetravalent salt of titanium and a trivalent salt of cerium in a methanesulfonic acid solution. A reducing agent consisting of trivalent titanium and an oxidizing agent consisting of tetravalent cerium are provided in the same solution. An electrochemical cell is disclosed wherein the catholyte and anolyte utilize this electrolyte. The reduction of tetravalent titanium into trivalent titanium is accomplished by electrolysis in the presence of extraneous trivalent cerium ions. The oxidation of trivalent cerium into tetravalent cerium is accomplished by electrolysis in the presence of extraneous tetravalent titanium ions. Simultaneous reduction of tetravalent titanium into trivalent titanium and oxidation of trivalent cerium to tetravalent cerium by electrolysis is also disclosed. Reduction of organic compounds using trivalent titanium in the presence of trivalent cerium in methanesulfonic acid is disclosed.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: October 21, 1997
    Assignee: Hydro-Quebec
    Inventor: Stephen Harrison
  • Patent number: 5516407
    Abstract: An integrated process for oxidizing aromatic and alkyl aromatic compounds to form carbonyl containing reaction products comprising the reaction of quadravalent cerium with a reactant stream containing an aromatic or alkyl aromatic compound and using a high degree of mixing, followed by the electrolytic regeneration of the reduced cerium ion in a cell under near turbulent or turbulent flow conditions at high solution velocities relative to the anode. The preferred cell structure for accomplishing the electrolysis utilizes an turbulence promoting anode arrangement which allows for the anolyte to flow past the anode under the conditions mentioned, and a reduced area cathode whereby the anode and cathode compartments need not be separated by an ion exchange membrane.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: May 14, 1996
    Inventor: Stephen Harrison