Hydrocarbon Produced Patents (Class 205/462)
-
Patent number: 12116683Abstract: Provided herein are systems and methods for operating carbon oxide (COx) reduction reactors (CRRs) for producing methane (CH4). Embodiments of the systems and methods may also be used for producing other organic compounds including alcohols, carboxylic acids, and other hydrocarbons such as ethylene (CH2CH2). According to various embodiments, the systems and methods may be characterized by one or more of the following features. In some embodiments, a membrane electrode assembly (MEA) includes a cathode catalyst layer with a relatively low catalyst loading. In some embodiments, a bipolar MEA includes a thin cation-conducting layer and a thin anion-conducting layer, with the cation-conducting layer being thicker than the anion-conducting layer. In other embodiments a pure anion exchange polymer only membrane may be used to bridge the cathode catalyst and the anode catalyst. These and other features are described further below.Type: GrantFiled: January 7, 2020Date of Patent: October 15, 2024Assignee: Twelve Benefit CorporationInventors: Sara Hunegnaw, Ajay R. Kashi, Kendra P. Kuhl, Morgan George, Sichao Ma, Ziyang Huo, Etosha R. Cave, Kenneth X. Hua
-
Patent number: 11993856Abstract: The present disclosure relates generally to electrocatalytic process for conversion of a hydrocarbon reactant, comprising: introducing the hydrocarbon reactant into an acidic solution in a presence of a catalyst, wherein the catalyst includes a d° transition metal-oxo moiety; and applying an electrical input to the catalyst to convert the hydrocarbon reactant into a product. The present disclosure also relates to a catalyst for conversion of a hydrocarbon reactant, comprising a d° transition metal-oxo moiety and a sulfonic moiety bonded to the d° transition metal.Type: GrantFiled: August 21, 2020Date of Patent: May 28, 2024Assignee: The Regents of the University of CaliforniaInventors: Jiao Deng, Chong Liu, Jesus Iniguez
-
Patent number: 11959184Abstract: Disclosed herein is a method of electroreduction with a working electrode and counter electrode. The method includes a step of electrocatalyzing carbon monoxide and/or carbon dioxide in the presence of one or more nucleophilic co-reactants in contact with a catalytically active material present on the working electrode, thereby forming one or more carbon-containing products electrocatalytically.Type: GrantFiled: April 11, 2019Date of Patent: April 16, 2024Assignee: University of DelawareInventors: Feng Jiao, Matthew Jouny, Jing-Jing Lv
-
Patent number: 11846034Abstract: Methods and systems related to valorizing carbon dioxide are disclosed. A disclosed system includes a reverse water gas shift (RWGS) reactor, a carbon dioxide source connection fluidly connecting a carbon dioxide source to the RWGS reactor, an electrolyzer having an anode area and a cathode area, and a carbon monoxide source connection fluidly connecting the RWGS reactor to the cathode area. The RWGS reactor is configured to generate, using a volume of carbon dioxide from the carbon dioxide source connection, a volume of carbon monoxide in a RWGS reaction. The electrolyzer is configured to generate, using the electrolyzer and a reduction of the volume of carbon monoxide from the carbon monoxide source connection and an oxidation of an oxidation substrate, a volume of generated chemicals including hydrocarbons, organic acids, alcohol, olefins, or N-rich organic compounds.Type: GrantFiled: February 20, 2023Date of Patent: December 19, 2023Assignee: DioxycleInventors: Ruperto G Mariano, Jonathan Maistrello, Sarah Lamaison, David Wakerley
-
Patent number: 11840768Abstract: What is provided is a carbon dioxide treatment device having high energy efficiency for recovering and reducing carbon dioxide, and a method of producing a carbon compound using the carbon dioxide treatment device.Type: GrantFiled: February 25, 2022Date of Patent: December 12, 2023Assignee: HONDA MOTOR CO., LTD.Inventor: Hiroshi Oikawa
-
Patent number: 11814738Abstract: The invention concerns a process for the electrochemical production of formate. The process is performed in an electrochemical cell comprising a cathode compartment containing a cathode, an anode compartment containing a nickel-based anode and an ion exchange membrane separating the anode compartment from the cathode compartment. The process comprises the following steps: (a) feeding an anolyte comprising at least one polyol to the anode compartment; (b) feeding a catholyte comprising CO2 to the cathode compartment; (c) and applying a voltage difference between the cathode and the anode such that at the cathode CO2 is reduced to formate and at the anode the at least one polyol is oxidized to formate.Type: GrantFiled: January 28, 2021Date of Patent: November 14, 2023Assignee: Avantium Knowledge Centre B.V.Inventors: Bart Van Den Bosch, Marta Catarina Costa Figueiredo, Klaas Jan Pieter Schouten, Marie Brands, Brian James Rawls, Matthew Francis Philips
-
Patent number: 11686004Abstract: A tandem electrode for electrochemically reducing carbon dioxide is described. The electrode includes a first distinct catalyst layer and a second distinct catalyst layer. The first distinct catalyst layer is made of a C1 hydrocarbon or C2+ product selective catalyst and the second distinct catalyst layer is comprised of a CO selective catalyst. In one embodiment, the second distinct catalyst layer is concentrated at one end of the tandem electrode. In another embodiment, the tandem electrode also includes a microporous layer and a substrate layer.Type: GrantFiled: October 22, 2020Date of Patent: June 27, 2023Assignee: University of CincinnatiInventors: Jingjie Wu, Xiaojie She, Tianyu Zhang
-
Patent number: 10760170Abstract: The present disclosure relates to electrolysis. For example, an electrolysis system for carbon dioxide utilization may include: an electrolysis cell having an anode and a cathode, where carbon dioxide reduces at the cathode to at least one hydrocarbon compound or to carbon monoxide; first and second electrolyte reservoirs; a first product gas line from the first electrolyte reservoir; a second product gas line from the second electrolyte reservoir; a first connecting line supplying electrolyte from the first electrolyte reservoir to the anode; a second connecting line taking electrolyte from the anode to the second electrolyte reservoir; a third connecting line supplying electrolyte from the second electrolyte reservoir to the cathode; a fourth connecting line taking electrolyte from the cathode off to the first electrolyte reservoir; and a pressure-equalizing connection directly connecting the first and second electrolyte reservoirs.Type: GrantFiled: May 31, 2016Date of Patent: September 1, 2020Assignee: SIEMENS AKTIENGESELLSCHAFTInventors: Maximilian Fleischer, Philippe Jeanty, Ralf Krause, Erhard Magori, Nayra Sofia Romero Cuéllar, Bernhard Schmid, Günter Schmid, Kerstin Wiesner-Fleischer
-
Patent number: 10458024Abstract: An electrochemical reaction device in an embodiment includes: a reaction vessel including a first accommodating part to accommodate a first electrolytic solution containing carbon dioxide, and a second accommodating part to accommodate a second electrolytic solution containing water; a reduction electrode disposed in the first accommodating part; an oxidation electrode disposed in the second accommodating part; a power supply electrode connected to the reduction electrode and the oxidation electrode; and a third accommodating part to mix a first gas component produced in the first accommodating part with the first electrolytic solution after the first gas component is produced.Type: GrantFiled: September 13, 2017Date of Patent: October 29, 2019Assignee: KABUSHIKI KAISHA TOSHIBAInventors: Ryoto Kitagawa, Satoshi Mikoshiba, Akihiko Ono, Yuki Kudo, Jun Tamura, Eishi Tsutsumi, Yoshitsune Sugano, Asahi Motoshige, Masakazu Yamagiwa, Arisa Yamada
-
Patent number: 9845539Abstract: A chemical process captures and convert hydrogen sulfide (H2S) gas into elemental sulfur, polysulfide, sulfur dioxide and/or sulfuric acid while regenerating sodium hydroxide capture agent for further use in an initial H2S capture step. Processing may include initial sodium hydroxide scrubbing of gas streams containing H2S, electrochemical regeneration of the sodium hydroxide from sodium hydrosulfide or sodium sulfide, recovery of sulfur and/or sulfur dioxide from the electrochemical processing, and production of sulfuric acid from such sulfur and/or sulfur dioxide.Type: GrantFiled: December 20, 2013Date of Patent: December 19, 2017Inventors: C. Deane Little, Joseph Victor Kosmoski, Yongan Yang, Ryan Patrick O'Hayre, Tim S. Olson
-
Patent number: 9315910Abstract: Devices and methods are described for converting a carbon source and a hydrogen source into hydrocarbons, such as alcohols, for alternative energy sources. The influents may comprise carbon dioxide gas and hydrogen gas or water, obtainable from the atmosphere for through methods described herein, such as plasma generation or electrolysis. One method to produce hydrocarbons comprises the use of an electrolytic device, comprising an anode, a cathode and an electrolyte. Another method comprises the use of ultrasonic energy to drive the reaction. The devices and methods and related devices and methods are useful, for example, to provide a fossil fuel alternative energy source, store renewable energy, sequester carbon dioxide from the atmosphere, counteract global warming, and store carbon dioxide in a liquid fuel.Type: GrantFiled: August 28, 2012Date of Patent: April 19, 2016Assignee: Principle Energy Solutions Inc.Inventors: Craig D. Eastman, Douglas R. Hole
-
Patent number: 9109293Abstract: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.Type: GrantFiled: July 25, 2014Date of Patent: August 18, 2015Assignees: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGYInventors: Saleem Ur Rahman, Syed Mohammed Javaid Zaidi, Shakeel Ahmed, Sk Safdar Hossain
-
Publication number: 20150122666Abstract: The invention relates to a device and method which, with the use of dopamine in an alkaline aqueous medium, can be used to obtain nitrogen from moist air and to generate other gases, hydrogen in the free or combined state, such as ammonium. The reaction medium is ionic and reinforced by means of electrolysis, using electrodes of different metals and at a temperature and pressure close to ambient conditions.Type: ApplicationFiled: April 5, 2012Publication date: May 7, 2015Inventor: Marcelo Acosta Estrada
-
Publication number: 20150119542Abstract: An electrochemical conversion method for converting at least a portion of a first mixture comprising hydrocarbon to C2+ unsaturates by repeatedly applying an electric potential difference, V(?1), to a first electrode of an electrochemical cell during a first time interval ?1; and reducing the electric potential difference, V(?1), to a second electric potential difference, V(?2), for a second time interval ?2, wherein ?2??1. The method is beneficial, among other things, for reducing coke formation in the electrochemical production of C2+ unsaturates in an electrochemical cell. Accordingly, a method of reducing coke formation in the electrochemical conversion of such mixtures and a method for electrochemically converting carbon to C2+ unsaturates as well as an apparatus for such methods are also provided.Type: ApplicationFiled: October 17, 2014Publication date: April 30, 2015Inventors: Walter Weissman, Sumathy Raman, Mark A. Greaney
-
Publication number: 20150068916Abstract: The catalyst for electrochemical dechlorination of hydrocarbons, such as chlorobenzenes, is a d-block transition metal supported by rice husk ash (RHA), preferably rice husk ash-supported platinum or titanium. The catalysts are prepared from rice husk ash by the sol-gel method. In order to dechlorinate chlorinated organic compounds, such as 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,2,4-trichlorobenzene, a capillary microreactor is at least partially filled with the d-block transition metal supported by rice husk ash catalyst, a buffer solution having a pH preferably between 7 and 10, and the chlorinated organic compound. An electrical potential of approximately 3 kV is then applied across the capillary microreactor to initiate the dechlorination reaction.Type: ApplicationFiled: September 11, 2013Publication date: March 12, 2015Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: CHANBASHA BASHEER, ABDULELAH AHMED ALI THABET
-
Publication number: 20150060296Abstract: A method for upgrading bio-mass material is provided. The method involves electrolytic reduction of the material in an electrochemical cell having a ceramic, oxygen-ion conducting membrane, where the membrane includes an electrolyte. One or more oxygenated or partially-oxygenated compounds are reduced by applying an electrical potential to the electrochemical cell. A system for upgrading bio-mass material is also disclosed.Type: ApplicationFiled: September 2, 2014Publication date: March 5, 2015Inventors: Elangovan, Mukund Karanjikar
-
Patent number: 8961775Abstract: Oils from plants and animal fats are hydrolyzed to fatty acids for a Kolbe reaction. The invention relates to a high productivity Kolbe reaction process for electrochemically decarboxylating C4-C28 fatty acids using small amounts of acetic acid to lower anodic passivation voltage and synthesizing C6-C54 hydrocarbons. The C6-C54 undergo olefin metathesis and/or hydroisomerization reaction process to synthesize heavy fuel oil, diesel fuel, kerosene fuel, lubricant base oil, and linear alpha olefin products useful as precursors for polymers, detergents, and other fine chemicals.Type: GrantFiled: July 15, 2014Date of Patent: February 24, 2015Assignee: Altranex CorporationInventors: Chandrashekhar H. Joshi, Graham Thomas Thornton Gibson, Dzmitry Malevich, Michael Glenn Horner
-
Publication number: 20150014183Abstract: A support device for carrying a selectively permeable membrane is disclosed along with apparatuses and methods of removing long chain hydrocarbons from a stream of gas. The gas cleaning apparatus uses, individually or in combination, plasma, catalyst and electrodes containing catalysts to perform the cleaning of the gas.Type: ApplicationFiled: January 21, 2013Publication date: January 15, 2015Inventors: Galip Akay, Wail S. S. Al-Harrasi, Ahmed M. A. El-Naggar, Abdulaziz H. Mohamed, Kui Zhang
-
Publication number: 20150008138Abstract: An electrochemical reduction device is provided with an electrode unit, a power control unit, an organic material storage tank, a water storage tank, a gas-liquid separator, and a control unit. The electrode unit has an electrolyte membrane, a reduction electrode, and an oxygen evolving electrode. The electrolyte membrane is formed of an ionomer. A reduction catalyst used for the reduction electrode contains at least one of Pt and Pd. The oxygen evolving electrode contains catalysts of noble metal oxides such as RuO2, IrO2, and the like. The control unit controls the power control unit such that a relationship, VHER?20 mV?VCA?VTRR, can be satisfied when the potential at a reversible hydrogen electrode, the standard redox potential of an aromatic hydrocarbon compound or an N-containing heterocyclic aromatic compound, and the potential of the reduction electrode are expressed as VHER, VTRR, and VCA, respectively.Type: ApplicationFiled: September 23, 2014Publication date: January 8, 2015Applicant: JX Nippon Oil & Energy CorporationInventors: Yasushi SATO, Kota MIYOSHI, Kojiro NAKAGAWA, Yoshihiro KOBORI
-
Publication number: 20150008139Abstract: A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic compounds in bio-oil. The catalyst is a metal supported on a monolithic high surface area material such as activated carbon cloth. Electrocatalytic hydrogenation and/or hydrodeoxygenation stabilizes the bio-oil under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.Type: ApplicationFiled: March 5, 2013Publication date: January 8, 2015Inventors: Christopher M. Saffron, Zhenglong Li, Dennis J. Miller, James E. Jackson
-
Publication number: 20140367274Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.Type: ApplicationFiled: August 27, 2014Publication date: December 18, 2014Inventors: Kyle Teamey, Jerry Kaczur, Emily Barton Cole, Paul Majsztrik, Narayanappa Sivasankar, Andrew B. Bocarsly
-
Publication number: 20140353163Abstract: Hydrocarbon and hydrogen fuels and other products may be produced by a process employing a combination of fermentation and electrochemical stages. In the process, a biomass contained within a fermentation medium is fermented with an inoculum comprising a mixed culture of microorganisms derived the rumen contents of a rumen-containing animal. This inoculated medium is incubated under anaerobic conditions and for a sufficient time to produce volatile fatty acids. The resultant volatile fatty acids are then subjected to electrolysis under conditions effective to convert said volatile fatty acids to hydrocarbons and hydrogen simultaneously. The process can convert a wide range of biomass materials to a wide range of volatile fatty acid chain lengths and can convert these into a wide range of biobased fuels and biobased products.Type: ApplicationFiled: August 20, 2014Publication date: December 4, 2014Inventors: Anthony B. Kuhry, Paul J. Weimer
-
Publication number: 20140336418Abstract: Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.Type: ApplicationFiled: July 2, 2014Publication date: November 13, 2014Inventors: Sai Bhavaraju, Mukund Karanjikar
-
Publication number: 20140326610Abstract: An electrolysis cell has an electrolyte membrane, a reduction electrode, and an oxygen evolving electrode. The electrolyte membrane is formed of a material having protonic conductivity (ionomer). A reduction catalyst used for the reduction electrode is composed of a composition containing a first catalyst metal (noble metal) that contains at least one of Pt and Pd and containing one or more kinds of second catalyst metals selected from among Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Sn, W, Re, Pb, and Bi. The oxygen evolving electrode contains catalysts of noble metal oxides such as RuO2, IrO2, and the like.Type: ApplicationFiled: July 17, 2014Publication date: November 6, 2014Applicant: JX NIPPON OIL & ENGERGY CORPORATIONInventors: Yasushi SATO, Kota MIYOSHI, Kojiro NAKAGAWA, Yoshihiro KOBORI
-
Publication number: 20140323784Abstract: Oils from plants and animal fats are hydrolyzed to fatty acids for a Kolbe reaction. The invention relates to a high productivity Kolbe reaction process for electrochemically decarboxylating C4-C28 fatty acids using small amounts of acetic acid to lower anodic passivation voltage and synthesizing C6-C54 hydrocarbons. The C6-C54 undergo olefin metathesis and/or hydroisomerization reaction process to synthesize heavy fuel oil, diesel fuel, kerosene fuel, lubricant base oil, and linear alpha olefin products useful as precursors for polymers, detergents, and other fine chemicals.Type: ApplicationFiled: July 15, 2014Publication date: October 30, 2014Inventors: Chandrashekhar H. Joshi, Graham Thomas Thornton Gibson, Dzmitry Malevich, Michael Glenn Horner
-
Publication number: 20140305805Abstract: The invention provides a catalytic electrode for converting molecules, the electrode comprising a predetermined number of single catalytic sites supported on a substrate. Also provided is a method for oxidizing water comprising contacting the water with size selected catalyst clusters. The invention also provides a method for reducing an oxidized moiety, the method comprising contacting the moiety with size selected catalyst clusters at a predetermined voltage potential.Type: ApplicationFiled: April 12, 2013Publication date: October 16, 2014Applicant: UChicago Argonne, LLCInventors: Stefan Vajda, Larry A. Curtiss, Michael J. Pellin
-
Patent number: 8853463Abstract: Ketones, specifically Methyl ethyl ketone (“MEK”) and octanedione, may be formed from six carbon sugars. This process involves obtaining a quantity of a six carbon sugar and then reacting the sugar to form levulinic acid and formic acid. The levulinic acid and formic acid are then converted to an alkali metal levulinate and an alkali metal formate (such as, for example, sodium levulinate and sodium formate.) The alkali metal levulinate is placed in an anolyte along with hydrogen gas that is used in an electrolytic cell. The alkali metal levulinate within the anolyte is decarboxylated to form MEK radicals, wherein the MEK radicals react with hydrogen gas to form MEK, or MEK radicals react with each other to form octanedione. The alkali metal formate may also be decarboxylated in the cell, thereby forming hydrogen radicals that react with the MEK radicals to form MEK.Type: GrantFiled: December 17, 2012Date of Patent: October 7, 2014Assignee: Ceramatec, Inc.Inventors: Mukund Karanjikar, Sai Bhavaraju
-
Publication number: 20140257002Abstract: Provided are processes for producing a lube basestock or wax from a feedstock of biological origin, the method including: providing a fatty acid originated from the feedstock of biological origin and an aromatic acid in a solvent comprising a base; and electrically coupling the fatty acid and the aromatic acid to produce a hydrocarbon, wherein the molar concentration of the fatty acid is greater than the molar concentration of the aromatic acid.Type: ApplicationFiled: March 7, 2013Publication date: September 11, 2014Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Kun Wang, Liena Tan
-
Publication number: 20140251821Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.Type: ApplicationFiled: March 12, 2014Publication date: September 11, 2014Applicant: Ceramatec, Inc.Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
-
Publication number: 20140251822Abstract: A NaSICON cell is used to convert carbon dioxide into a usable, valuable product. In general, this reaction occurs at the cathode where electrons are used to reduce the carbon dioxide, in the presence of water and/or hydrogen gas, to form formate, methane, ethylene, other hydrocarbons and/or other chemicals. The particular chemical that is formed depends upon the reaction conditions, the voltage applied, etc.Type: ApplicationFiled: March 5, 2014Publication date: September 11, 2014Applicant: Ceramatec, Inc.Inventors: Sai Bhavaraju, James Mosby
-
Patent number: 8828216Abstract: Liquid phase processes for producing fuel in a reactor comprising the step of combining at least one oxidizable reactant with liquid water and at least one electrolyte to form a mixture and conducting a fuel-producing reaction in the presence of an electron transfer material, wherein the mixture permits the movement or transport of ions and electrons to facilitate the efficient production of the fuel. An alternative embodiment produces fuel in an electrochemical cell, the reaction characterized by an overall thermodynamic energy balance according to the half-cell reactions occurring at the anode and cathode. Energy generated and/or required by the system components is directed according to the thermodynamic requirements of the half-cell reactions, thereby realizing improved fuel production efficiency.Type: GrantFiled: June 23, 2006Date of Patent: September 9, 2014Assignee: GRDC, LLCInventor: Maureen A. Grimes
-
Patent number: 8821710Abstract: Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.Type: GrantFiled: January 24, 2012Date of Patent: September 2, 2014Assignee: Ceramatec, Inc.Inventors: Sai Bhavaraju, Mukund Karanjikar
-
Patent number: 8815074Abstract: A method for reducing carbon dioxide with use of a device for reducing carbon dioxide includes steps of (a) preparing the device. The device includes a vessel, a cathode electrode and an anode electrode. An electrolytic solution is stored in the vessel, the cathode electrode contains a copper rubeanate metal organic framework, the copper rubeanate metal organic framework is in contact with the electrolytic solution, the anode electrode is in contact with the electrolytic solution, and the electrolytic solution contains carbon dioxide. The method further includes step of (b) applying a voltage difference between the cathode electrode and the anode electrode so as to reduce the carbon dioxide.Type: GrantFiled: April 29, 2013Date of Patent: August 26, 2014Assignee: Panasonic CorporationInventors: Reiko Taniguchi, Satoshi Yotsuhashi
-
Patent number: 8808529Abstract: In one embodiment of the present invention, a system for providing a renewable source of material resources is provided comprising: a first source of renewable energy; first stream of materials from a first materials source; an electrolyzer coupled to the first source of renewable energy and the first stream of materials, wherein the electrolyzer is configured to produce a first material resource by electrolysis; a processor for further processing or use or the material resource to produce a second material resource, wherein the processor comprises a solar collector and where the solar collector is configured to provide heat to the first materials resource for disassociation; and a material resource storage coupled to the electrolyzer for receiving the material resource from the electrolyzer or providing the material resource to the processor for further processing or use.Type: GrantFiled: August 16, 2010Date of Patent: August 19, 2014Assignee: McAlister Technologies, LLCInventor: Roy E. McAlister
-
Publication number: 20140183053Abstract: A method that produces coupled radical products. The method involves obtaining a sodium salt of a sulfonic acid (R—SO3—Na). The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the sulfonic acid desulfoxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.Type: ApplicationFiled: March 5, 2014Publication date: July 3, 2014Applicant: CERAMATEC, INC.Inventors: Sai Bhavaraju, Justin Pendleton
-
Publication number: 20140151240Abstract: Disclosed herein is a system comprising an absorber; the absorber being operative to extract carbon dioxide from a flue gas stream to form a carbon capture solution that is rich in carbon dioxide; and an electrolytic cell disposed downstream of the absorber; where the electrolytic cell is operative to reduce carbon dioxide present in the carbon capture solution. Disclosed herein too is a method comprising discharging a flue gas stream from a flue gas generator to an absorber; contacting the flue gas stream with a carbon capture solution; extracting carbon dioxide from the flue gas stream to form a carbon dioxide rich carbon capture solution; discharging the carbon dioxide rich carbon capture solution to an electrolytic cell; and reducing the carbon dioxide to a hydrocarbon in the electrolytic cell.Type: ApplicationFiled: November 30, 2012Publication date: June 5, 2014Applicant: ALSTOM TECHNOLOGY LTDInventors: Stephen Allan Bedell, Michal Bialkowski, Turgay Pekdemir
-
Publication number: 20140154766Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.Type: ApplicationFiled: December 5, 2013Publication date: June 5, 2014Applicant: Ceramatec, Inc.Inventors: Mukund Karanjikar, Sai Bhavaraju, Ashok V. Joshi, Pallavi Chitta, David Joel Hunt
-
Publication number: 20140144787Abstract: The invention relates to nanotechnology and to producing graphane and graphane-like materials and associated structures, which can be used to create hydrogen fuel cell energy, particularly for transportation systems as well as for creating nanoelectronic systems, based on the use of graphene with controllable electronic properties. The method includes grapheme, or several layers of graphene, placed in water or electrolytic solution, an anode, a cathode, and an adjustable voltage source, where the graphene's potential is lower than the anode's potential. The technical result is an increase in the rate of hydrogenation reactions, which simplifies and lowers the cost of technologies necessary for producing graphane fuel cells and creating conditions to enable their mass production.Type: ApplicationFiled: November 24, 2012Publication date: May 29, 2014Inventors: Arkadiy Ilin, Nazim Guseinov, Renata Nemkaeva, Ivan Tsyganov, Boris Borissov
-
Publication number: 20140090986Abstract: Features for an aqueous reactor include a field generator. The field generator includes a series of parallel conductive plates including a series of intermediate neutral plates. The intermediate neutral plates are arranged in interleaved sets between an anode and a cathode. Other features of the aqueous reactor may include a sealed reaction vessel, fluid circulation manifold, electrical power modulator, vacuum port, and barrier membrane. Methods of using the field generator include immersion in an electrolyte solution and application of an external voltage and vacuum to generate hydrogen and oxygen gases. The reactor and related components can be arranged to produce gaseous fuel or liquid fuel. In one use, a mixture of a carbon based material and a liquid hydrocarbon is added. The preferred carbon based material is powdered coal.Type: ApplicationFiled: May 23, 2012Publication date: April 3, 2014Inventor: Gary J. Bethurem
-
Publication number: 20140090985Abstract: A process and system for reducing the sulfur content from a mixture of hydrocarbons and oxidized sulfur-containing hydrocarbons is provided by electrochemical decomposition. The electrochemical reactions occur under electrical potential and in the presence of an electrolyte solution that is effective promote decomposition of a portion of the oxidized sulfur compounds, to recover a hydrocarbon product having a reduced sulfur content while minimizing loss of hydrocarbon.Type: ApplicationFiled: September 30, 2013Publication date: April 3, 2014Applicant: Saudi Arabian Oil CompanyInventors: Omer Refa Koseoglu, Abdennour Bourane, Adnan Al-Hajji
-
Patent number: 8658016Abstract: Methods and systems for capture of carbon dioxide and electrochemical conversion of the captured carbon dioxide to organic products are disclosed. A method may include, but is not limited to, steps (A) to (C). Step (A) may introduce a solvent to a first compartment of an electrochemical cell. Step (B) may capture carbon dioxide with at least one of guanidine, a guanidine derivative, pyrimidine, or a pyrimidine derivative to form a carbamic zwitterion. Step (C) may apply an electrical potential between an anode and a cathode sufficient for the cathode to reduce the carbamic zwitterion to a product mixture.Type: GrantFiled: July 5, 2012Date of Patent: February 25, 2014Assignee: Liquid Light, Inc.Inventors: Prasad Lakkaraju, Kyle Teamey
-
Patent number: 8647492Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.Type: GrantFiled: July 21, 2010Date of Patent: February 11, 2014Assignee: Ceramatec, Inc.Inventors: Mukund Karanjikar, Sai Bhavaraju, Ashok V. Joshi, Pallavi Chitta, David Joel Hunt
-
Patent number: 8647493Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide. The method may include another step of contacting the second region with an anolyte comprising a recycled reactant. The method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region. The second product may be removed from the second region and introduced to a secondary reactor. The method may include forming the recycled reactant in the secondary reactor.Type: GrantFiled: December 21, 2012Date of Patent: February 11, 2014Assignee: Liquid Light, Inc.Inventors: Kyle Teamey, Jerry J. Kaczur
-
Publication number: 20140034506Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.Type: ApplicationFiled: September 25, 2013Publication date: February 6, 2014Applicant: Liquid Light, Inc.Inventors: Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
-
Patent number: 8617375Abstract: The method for reducing carbon dioxide of the present invention includes a step (a) and a step (b) as follows. A step (a) of preparing an electrochemical cell. The electrochemical cell comprises a working electrode (21), a counter electrode (23) and a vessel (28). The vessel (28) stores an electrolytic solution (27). The working electrode (21) contains boron carbide. The electrolytic solution (27) contains carbon dioxide. The working electrode (21) and the counter electrode (23) are in contact with the electrolytic solution (27). A step (b) of applying a negative voltage and a positive voltage to the working electrode and the counter electrode, respectively, to reduce the carbon dioxide.Type: GrantFiled: October 19, 2011Date of Patent: December 31, 2013Assignee: Panasonic CorporationInventors: Yuji Zenitani, Masahiro Deguchi, Satoshi Yotsuhashi, Reiko Taniguchi
-
Patent number: 8617477Abstract: An apparatus for removing sulfur from a hydrocarbon feed includes a cell having two compartments and a membrane separating the compartments, wherein one compartment is communicated with a hydrogen source and the other compartment is communicated with the hydrocarbon feed to be treated, wherein the membrane comprises a palladium membrane which is modified to have an additional amount of a mix of palladium and other metals (Ni, Ag, Co and Au) between about 4.62*10?3 and 1.62*10?2 g/cm2; and a power source connected across the hydrogen source compartment to generate a current across same, whereby atomic hydrogen is formed from the hydrogen source at a surface of the membrane and diffuses across the membrane to react with the hydrocarbon feed. A process using this apparatus is also provided.Type: GrantFiled: July 24, 2008Date of Patent: December 31, 2013Assignee: Intevap, S.A.Inventors: Victor Báez, Luiz Felipe D'Elia, Gaudy Rodriguez, Yolimar Gandica
-
Publication number: 20130327654Abstract: A method and apparatus for a photocatalytic and electrolytic catalyst includes in various aspects one or more catalysts, a method for forming a catalyst, an electrolytic cell, and a reaction method.Type: ApplicationFiled: March 15, 2013Publication date: December 12, 2013Inventors: Tara Cronin, Ed Ite Chen
-
Patent number: 8596047Abstract: The vehicle electrocatalyzer for recycling carbon dioxide to fuel hydrocarbons includes a main tubular member having a plurality of tubular catalytic cells, electrically connected in series disposed inside and separated from one another by semipermeable membranes allowing the passage of fluids, but not solids. The electrocatalyzer can be attached in the exhaust system where hydrogen could be generated by the electrolysis of water. Metallic copper, iron, carbonaceous materials (such as activated carbon, carbon nanomaterials, or graphite), metal oxides, or metal-supported catalysts may be used in each catalytic cell. A DC current connected across the cells is used to initiate reaction of the carbon dioxide with hydrogen gas. The resulting hydrocarbons are recycled back to the vehicle engine and used as a makeup fuel.Type: GrantFiled: July 25, 2011Date of Patent: December 3, 2013Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and TechnologyInventors: Reyad Awwad Khalaf Shawabkeh, Abdalla Mahmoud Abulkibash, Muhammad A. Al-Saleh
-
Patent number: 8597488Abstract: The method for reducing carbon dioxide of the present disclosure includes a step (a) and a step (b) as follows. A step (a) of preparing an electrochemical cell. The electrochemical cell comprises a working electrode, a counter electrode and a vessel. The vessel stores an electrolytic solution. The working electrode contains at least one nitride selected from the group consisting of titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, molybdenum nitride and iron nitride. The electrolytic solution contains carbon dioxide. The working electrode and the counter electrode are in contact with the electrolytic solution. A step (b) of applying a negative voltage and a positive voltage to the working electrode and the counter electrode, respectively, to reduce the carbon dioxide.Type: GrantFiled: May 31, 2012Date of Patent: December 3, 2013Assignee: Panasonic CorporationInventors: Masahiro Deguchi, Yuji Zenitani, Reiko Taniguchi, Satoshi Yotsuhashi
-
Publication number: 20130313127Abstract: The invention provides an organic compound(s) hydrogenation device that allows hydrogen derived from water to be stored essentially without generating hydrogen gas. The organic compound hydrogenation device of the invention comprises an oxidation chamber that holds a water-containing electrolyte, a reduction chamber that holds an organic compound(s) with an unsaturated bond, an electrolyte membrane with ion permeability that separates the electrolyte held in the oxidation chamber from the organic compound(s) held in the reduction chamber, an oxidizing electrode that generates protons from the water held in the oxidation chamber, and a reducing electrode that hydrogenates the organic compound(s) held in the reduction chamber.Type: ApplicationFiled: December 28, 2011Publication date: November 28, 2013Applicants: THE UNIVERSITY OF TOKYO, JX NIPPON OIL & ENERGY CORPORATIONInventors: Yasushi Sato, Yoshihiro Kobori, Shunsuke Maekawa, Kazunari Domen, Jun Kubota, Masakazu Higuchi, Kazuhiro Takanabe