Copper, Silver, Gold, Zinc, Cadium, Or Mercury Containing (cu, Ag, Au, Zn, Cd, Or Hg) Patents (Class 205/545)
  • Publication number: 20140262811
    Abstract: The invention is directed to a method for producing metal-containing particles, the method comprising subjecting an aqueous solution comprising a metal salt, Eh, lowering reducing agent, pH adjusting agent, and water to conditions that maintain the Eh value of the solution within the bounds of an Eh-pH stability field corresponding to the composition of the metal-containing particles to be produced, and producing said metal-containing particles in said aqueous solution at a selected Eh value within the bounds of said Eh-pH stability field. The invention is also directed to the resulting metal-containing particles as well as devices in which they are incorporated.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Ji-Won Moon, Hyunsung Jung, Tommy Joe Phelps, JR., Chad E. Duty, Ilia N. Ivanov, Pooran Chandra Joshi, Gerald Earle Jellison, JR., Beth Louise Armstrong, Sean Campbell Smith, Adam Justin Rondinone, Lonnie J. Love
  • Publication number: 20140262810
    Abstract: The invention is directed to a method for producing metal-containing (e.g., non-oxide, oxide, or elemental) nano-objects, which may be nanoparticles or nanowires, the method comprising contacting an aqueous solution comprising a metal salt and water with an electrically powered electrode to form said metal-containing nano-objects dislodged from the electrode, wherein said electrode possesses a nanotextured surface that functions to confine the particle growth process to form said metal-containing nano-objects. The invention is also directed to the resulting metal-containing compositions as well as devices in which they are incorporated.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: UT-Battelle, LLC
    Inventors: Adam Justin Rondinone, Ilia N. Ivanov, Sean Campbell Smith, Chengdu Liang, Dale K. Hensley, Ji-Won Moon, Tommy Joe Phelps
  • Publication number: 20110052896
    Abstract: The disclosure relates to metal oxide materials with varied nanostructural morphologies. More specifically, the disclosure relates to zinc oxide and cobalt oxide nanostructures with varied morphologies. The disclosure further relates to methods of making such metal oxide nanostructures.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Inventor: Shrisudersan Jayaraman
  • Patent number: 6726828
    Abstract: Using a solution mining procedure, an ore (10) is treated with a solution of acetic acid and hydrogen peroxide so as to form a leachate containing lead ions. Lead ions (and other metal ions such as zinc and manganese) are stripped (22, 24, 26) by solvent extraction from the leachate to form separate aqueous solutions. The aqueous solution containing lead ions is treated electrochemically in the anodic compartment of a separated electrochemical cell (42) to form a precipitate of lead oxide. Manganese dioxide can be produced similarly (72). A precipitate of zinc hydroxide can be formed in the cathode compartment of a separated electrochemical cell (56). In the cells (42, 72) extracting lead ions and manganese ions, the cathode compartment is used to generate hydrogen peroxide (for use in making the leachant), either directly or indirectly.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: April 27, 2004
    Assignee: Accentus plc
    Inventors: Andrew Derek Turner, Christopher Peter Jones
  • Patent number: 6517701
    Abstract: Aqueous solutions containing lead, zinc and manganese are treated to recover these metals by sequential solvent extraction steps. Solvent extractants are selected to extract preferentially lead, then zinc and then manganese in that order. Any interfering metals are removed (as by ion exchange) before extraction. The loaded extractant phases are stripped with selected acids and lead, zinc and manganese each recovered from the strip solutions. Optionally calcium can be recovered when present. A preferred type of extractant (for lead especially) is substituted monothiophosphinic acids. A closed loop system is described which is advantageous with leachate from sulphide and carbonate ores.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: February 11, 2003
    Assignee: Centaur Mining Exploration Ltd.
    Inventor: Robert A. Geisler
  • Patent number: 6458600
    Abstract: The present invention relates generally to a structure, on the surface of the support material of which structure molecular layers are immobilized so as to be electrically addressable, a method for the electrically addressable immobilization of molecules, a device for carrying out this method, and the use of this structure as a chemo- and/or biosensor, in particular as a multisensor system for chemical, biological, and physical assays, and for applications in the combinatorial synthesis on the boundary surface.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: October 1, 2002
    Inventors: Vladimir M. Mirsky, Michael Riepl
  • Patent number: 6440279
    Abstract: A cermet inert anode having a reduced level of contaminating surface metal is disclosed. Methods for preparing cermet inert anodes and methods for treating cermet inert anodes are also disclosed. The methods generally use an oxidizing agent to convert metals on the surface of the anode to inert oxides and/or to otherwise remove the metal contaminants. The inert anodes of the present invention may be used in electrolytic reduction cells for the production of commercial purity aluminum, as well as other metals.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: August 27, 2002
    Assignee: Alcoa Inc.
    Inventors: Dennis R. De Capite, Gary P. Tarcy, Susanne M. Opalka, Don R. Careatti
  • Publication number: 20020079234
    Abstract: Using a solution mining procedure, an ore (10) is treated with a solution of acetic acid and hydrogen peroxide so as to form a leachate containing lead ions. Lead ions (and other metal ions such as zinc and manganese) are stripped (22, 24, 26) by solvent extraction from the leachate to form separate aqueous solutions. The aqueous solution containing lead ions is treated electrochemically in the anodic compartment of a separated electrochemical cell (42) to form a precipitate of lead oxide. Manganese dioxide can be produced similarly (72). A precipitate of zinc hydroxide can be formed in the cathode compartment of a separated electrochemical cell (56). In the cells (42, 72) extracting lead ions and manganese ions, the cathode compartment is used to generate hydrogen peroxide (for use in making the leachant), either directly or indirectly.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 27, 2002
    Inventors: Andrew Derek Turner, Christopher Peter Jones
  • Patent number: 6332969
    Abstract: A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: December 25, 2001
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Robert W. Woods, Robert K. Dawless, Robert B. Hosler
  • Patent number: 5785837
    Abstract: A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: July 28, 1998
    Assignee: Midwest Research Institute
    Inventors: Raghu Nath Bhattacharya, David S. Ginley