Ammonia Patents (Class 205/552)
  • Patent number: 11885029
    Abstract: An exemplary embodiment of the present invention provides a system for forming ammonia, the system comprising: an anode; a cathode in electrical communication with the anode; and a catalyst material positioned in an electrical communication pathway between the cathode and the anode, the catalyst material comprising a plurality of nanoparticles comprising at least one of a conductor and a semiconductor, each of the nanoparticles comprising an interior cavity, wherein the system is configured to use nitrogen and water to generate ammonia.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: January 30, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Mohammadreza Nazemi, Mostafa A. El-Sayed
  • Patent number: 10487407
    Abstract: An electrochemical cell has four volumes. A porous anode is provided between a first volume and a second volume. A ground electrode is provided between the second volume and the third volume. A porous cathode is provided between the third volume and the fourth volume.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 26, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hughes Timothy, Wilkinson Ian
  • Patent number: 10479693
    Abstract: An electro-thermochemical cycling system for producing ammonia is provided that includes a reaction chamber having a metal compound input port, an anode suitable for oxidation in contact with the metal compound and configured for oxidation of hydroxide ions to water and oxygen, a cathode suitable for plating in contact with the metal compound and configured to electrolyze the metal compound to metal, a voltage source connecting the cathode and anode, a nitrogen port to the reaction chamber that combines nitrogen with the electrolyzed metal on the cathode to form a metal-nitrogen compound proximal to the nitrogen input, an atomic hydrogen port to the reaction chamber that combines with the metal-nitrogen compound to form ammonia, and an ammonia output port from the reaction chamber, where a metal compound input port inputs the metal compound to the reaction chamber according to a depletion rate of the metal compound in the reaction chamber.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: November 19, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Joshua M. McEnaney, John Schwalbe, Aayush Ranjan Singh, John Lin, Jakob Kibsgaard, Thomas F. Jaramillo, Matteo Cargnello, Jens K. Nørskov
  • Patent number: 10376837
    Abstract: Methods and systems to achieve clean fuel processing systems in which carbon dioxide emissions (1) from sources (2) may be processed in at least one processing reactor (4) containing a plurality of chemoautotrophic bacteria (5) which can convert the carbon dioxide emissions into biomass (6) which may then be used for various products (21) such as biofuels, fertilizer, feedstock, or the like. Bacteria that reduce oxidized nitrogenous species (13) may be used to supply reduced nitrogenous compounds to the chemoautotrophic bacteria (5).
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 13, 2019
    Assignee: The University of Wyoming Research Corporation
    Inventors: Karen E. Wawrousek, Patrick Richards, Tengyan Zhang, Alan E. Bland
  • Patent number: 10309020
    Abstract: The invention provides an electrolytic cell 10 for the production of ammonia (NH3), comprising an electrolytic cell unit 100 comprising a first electrode 110, a second electrode 120, and an electrolyte 133, further a voltage generator 210, a supply 220 of a dinitrogen comprising fluid 221, and a supply 230 of a water comprising fluid 231. The electrolyte is configured to allow transport of protons. The first electrode is permeable for protons, wherein the first electrode is at first side in contact with the electrolyte and at second side is in fluid contact with the supply of the dinitrogen comprising fluid. The second electrode is permeable for protons but impermeable to O2 and H2O. The second electrode is at first side also in contact with the electrolyte, and at second side in fluid contact with the supply of the water comprising fluid. The ammonia can be produced and stored in liquid form.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: June 4, 2019
    Assignee: TECHNISCHE UNIVERSITEIT DELFT
    Inventor: Fokko Marten Mulder
  • Patent number: 10188986
    Abstract: A diesel exhaust fluid (DEF) doser includes a DEF inlet configured to receive DEF, a DEF outlet configured to spray DEF out of the DEF doser, and an electrochemical cell. The electrochemical cell is located between the DEF inlet and the DEF outlet and couplable to a power source. The electrochemical cell is configured such that, when DEF is flowing from the DEF inlet to the DEF outlet and when the electrochemical cell is coupled to the power source, the electrochemical cell causes an electrolytic reaction in the DEF flowing from the DEF inlet to the DEF outlet to produce gaseous products in the DEF flowing from the DEF inlet to the DEF outlet, and wherein the gaseous products comprise one or more of H2 or NH3.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: January 29, 2019
    Assignee: PACCAR Inc
    Inventor: Randal A. Goffe
  • Publication number: 20150122666
    Abstract: The invention relates to a device and method which, with the use of dopamine in an alkaline aqueous medium, can be used to obtain nitrogen from moist air and to generate other gases, hydrogen in the free or combined state, such as ammonium. The reaction medium is ionic and reinforced by means of electrolysis, using electrodes of different metals and at a temperature and pressure close to ambient conditions.
    Type: Application
    Filed: April 5, 2012
    Publication date: May 7, 2015
    Inventor: Marcelo Acosta Estrada
  • Publication number: 20140158548
    Abstract: A method using an electrolytic cell to electrolyze urea to produce at least one of H2 and NH3 is described. An electrolytic cell having a cathode with a first conducting component, an anode with a second conducting component, urea and an alkaline electrolyte composition in electrical communication with the anode and the cathode is used to electrolyze urea. The alkaline electrolyte composition has a hydroxide concentration of at least 0.01 M.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Applicant: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8591721
    Abstract: The invention relates, in particular, to a process for treating a liquid medium loaded with nitrates via a chemical route that mainly comprises a step of electrolysis of the liquid medium in the presence of a metal salt, the electrolysis being carried out at a pH below 5. The invention also relates to a device for treating a liquid medium loaded with nitrates and also to the applications of this process and device, in particular for reducing the level of nitrates in drainage waters.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 26, 2013
    Assignee: Firmus S.A.M.
    Inventors: Michel Reynes, Dimiter Hadjiev
  • Patent number: 8562929
    Abstract: A method for producing ammonia suitable for use as a reductant in a combustion exhaust gas treatment system is provided that includes the electrolytic hydrolysis of urea under mild conditions. The ammonia generator, which includes an electrolysis apparatus including an electrolytic flow cell, an alkaline electrolyte composition, and a recirculation system, may be operatively coupled to an exhaust gas treatment system to provide an apparatus for reducing nitrogen oxides (NOx) and/or particulate in exhaust gases.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 22, 2013
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8470157
    Abstract: Various apparatuses and methods for producing ammonia are provided. One embodiment has uses in a plurality of environments and an electrode configured to be exposed to the plurality of environments. The electrode is configured to receive hydrogen while being exposed to one of the environments, reduce nitrogen while being exposed to another environment, and allow the hydrogen and nitrogen to react with each other to form ammonia. Other embodiments provide for simultaneous hydrogen oxidation and nitrogen reduction at the same electrode, which in turn react for formation of ammonia.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: June 25, 2013
    Assignee: Arizona Board or Regents for and on Behalf of Arizona State University
    Inventors: Cody A. Friesen, Joel R. Hayes, Robert August Zeller
  • Patent number: 8398842
    Abstract: The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: March 19, 2013
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Ted R. Aulich, Edwin S. Olson, Junhua Jiang
  • Patent number: 8388920
    Abstract: A method and apparatus for producing ammonia suitable for use as a reductant in a selective catalytic reduction (SCR), a selective non-catalytic reduction (SNCR), or a flue gas conditioning system is provided. A method for treating combustion exhaust gas with ammonia is provided that includes the electrolytic hydrolysis of urea under mild conditions. The electrolysis apparatus includes an electrolytic cell, which may be operatively coupled to an exhaust gas treatment system to provide an apparatus for reducing nitrogen oxides (NOx) and/or particulate in exhaust gases.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 5, 2013
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Publication number: 20130001098
    Abstract: Various apparatuses and methods for producing ammonia are provided. One embodiment has uses a plurality of environments and an electrode configured to be exposed to the plurality of environments. The electrode is configured to receive hydrogen while being exposed to one of the environments, reduce nitrogen while being exposed to another environment, and allow the hydrogen and nitrogen to react with each other to form ammonia. Other embodiments provide for simultaneous hydrogen oxidation and nitrogen reduction at the same electrode, which in turn react for formation of ammonia.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Cody A. Friesen, Joel R. Hayes, Robert August Zeller
  • Patent number: 8282809
    Abstract: Various apparatuses and methods for producing ammonia are provided. One embodiment uses a plurality of environments and an electrode configured to be exposed to the plurality of environments. The electrode is configured to receive hydrogen while being exposed to one of the environments, reduce nitrogen while being exposed to another environment, and allow the hydrogen and nitrogen to react with each other to form ammonia. Other embodiments provide for simultaneous hydrogen oxidation and nitrogen reduction at the same electrode, which in turn react for formation of ammonia.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 9, 2012
    Assignee: Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Cody A. Friesen, Joel R. Hayes, Robert A. Zeller
  • Publication number: 20120241328
    Abstract: Ammonia is synthesized using electrochemical and non-electrochemical reactions. The electrochemical reactions occur in an electrolytic cell having a lithium ion conductive membrane that divides the electrochemical cell into an anolyte compartment and a catholyte compartment. The catholyte compartment includes a porous cathode closely associated with the lithium ion conductive membrane. The overall electrochemical reaction is: 6LiOH+N2?Li3N (s)+3H2O+3/2O2. The nitrogen may be produced by a nitrogen generator. The non-electrochemical reaction involves reacting lithium nitride with water and/or steam as follows: Li3N (s)+3H2O?3LiOH+NH3 (g). The ammonia is vented and collected. The lithium hydroxide is preferably recycled and introduced into the anolyte compartment. The electrolytic cell is shut down prior to reacting the lithium nitride with water. The cathode is preferably dried prior to start up of the electrolytic cell and electrolyzing Li+ and N2 at the cathode.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 27, 2012
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Publication number: 20120234689
    Abstract: A method for producing fertilizers comprising feeding gaseous reactants comprising at least one nitrogen source and a source of hydrogen selected from the group consisting of a hydrogen-containing salt, a hydrogen-containing compound, and a hydrogen-containing gas to a reactor, the reactor including at least one reaction chamber, at least one anode, at least one cathode, and at least one electrolyte between each at least one anode and each at least one cathode, providing electricity to drive anodic and cathodic reactions, and producing a fertilizer having nitrogen by providing a nitrogen source of the at least one nitrogen source and at least one carbon source to the at least one cathode and a nitrogen source of the at least one nitrogen source to the at least one anode.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: ENERGY & ENVIRONMENTAL RESEARCH CENTER FOUNDATION
    Inventors: Ted R. AULICH, Edwin S. OLSON, Junhua JIANG
  • Patent number: 8152988
    Abstract: The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: April 10, 2012
    Assignee: Energy & Enviromental Research Center Foundation
    Inventors: Ted R. Aulich, Edwin S. Olson, Junhua Jiang
  • Publication number: 20120048742
    Abstract: Various apparatuses and methods for producing ammonia are provided. One embodiment has uses a plurality of environments and an electrode configured to be exposed to the plurality of environments. The electrode is configured to receive hydrogen while being exposed to one of the environments, reduce nitrogen while being exposed to another environment, and allow the hydrogen and nitrogen to react with each other to form ammonia. Other embodiments provide for simultaneous hydrogen oxidation and nitrogen reduction at the same electrode, which in turn react for formation of ammonia.
    Type: Application
    Filed: November 7, 2011
    Publication date: March 1, 2012
    Applicant: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Cody A. FRIESEN, Joel R. Hayes, Robert August Zeller
  • Publication number: 20110243823
    Abstract: A method and apparatus for producing ammonia suitable for use as a reductant in a selective catalytic reduction (SCR), a selective non-catalytic reduction (SNCR), or a flue gas conditioning system is provided. A method for treating combustion exhaust gas with ammonia is provided that includes the electrolytic hydrolysis of urea under mild conditions. The electrolysis apparatus includes an electrolytic cell, which may be operatively coupled to an exhaust gas treatment system to provide an apparatus for reducing nitrogen oxides (NOx) and/or particulate in exhaust gases.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 6, 2011
    Applicant: OHIO UNIVERSITY
    Inventor: Gerardine G. Botte
  • Publication number: 20110219773
    Abstract: Systems and methods for producing hydrogen from cellulosic and/or grain feedstocks for use as a vehicle fuel, use in the production of anhydrous ammonia, and to generate electricity. In at least one exemplary embodiment of a system for producing ammonia, the system comprises a fuel source containing fuel, a burn chamber coupled to the fuel source for burning the fuel to create energy, an electricity generator coupled to the burn chamber to generate electricity from the energy from the burn chamber, an electrolysis tank coupled to the electricity generator wherein electricity from the electricity generator facilitates the electrolysis of water present within the electrolysis tank to form hydrogen and oxygen, an ammonia reaction chamber coupled to the electrolysis tank, and a compressed air source coupled to the ammonia reaction chamber, wherein the hydrogen and nitrogen from the compressed air source react within the ammonia reaction chamber to generate ammonia.
    Type: Application
    Filed: November 16, 2009
    Publication date: September 15, 2011
    Inventor: Steven R. Gerrish
  • Publication number: 20110120880
    Abstract: Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent.
    Type: Application
    Filed: October 15, 2010
    Publication date: May 26, 2011
    Inventors: Junhua Jiang, Alexey Ignatchenko, Ted R. Aulich
  • Patent number: 7811442
    Abstract: A method and apparatus for synthesizing anhydrous ammonia utilizing proton conducting electrolyte having a water vapor dissociating electrocatalyst on one side and a nitrogen dissociating electrocatalyst on the other side. A voltage is provided across the proton conducting electrolyte, protons are separated from the water vapor and transferred through the middle of the proton conducting electrolyte to the second side of the proton conducting electrolyte. Nitride ions are formed from nitrogen and the electrons provided by the voltage on the second side of the proton conducting electrolyte. The protons are then reacted with the nitride ions on the second side of the proton conducting electrolyte to produce anhydrous ammonia. A preferred proton conducting electrolyte is barium cerium oxide doped with about 10% ytterbium with a water vapor dissociating electrocatalyst of Ni and Pd, and a nitrogen dissociating electrocatalyst of Co and Ru.
    Type: Grant
    Filed: February 10, 2007
    Date of Patent: October 12, 2010
    Assignee: N H Three LLC
    Inventors: John H. Holbrook, Jason C. Ganley
  • Publication number: 20090095636
    Abstract: A method using an electrolytic cell to electrolyze urea to produce at least one of H2 and NH3 is described. An electrolytic cell having a cathode with a first conducting component, an anode with a second conducting component, urea and an alkaline electrolyte composition in electrical communication with the anode and the cathode is used to electrolyze urea. The alkaline electrolyte composition has a hydroxide concentration of at least 0.01 M.
    Type: Application
    Filed: October 14, 2008
    Publication date: April 16, 2009
    Applicant: Ohio University
    Inventor: Gerardine G. Botte
  • Publication number: 20090057161
    Abstract: The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 5, 2009
    Applicant: ENERGY & ENVIRONMENTAL RESEARCH CENTER FOUNDATION
    Inventors: Ted R. Aulich, Edwin S. Olson, Junhua Jiang
  • Publication number: 20080149493
    Abstract: Various apparatuses and methods for producing ammonia are provided. One embodiment has uses a plurality of environments and an electrode configured to be exposed to the plurality of environments. The electrode is configured to receive hydrogen while being exposed to one of the environments, reduce nitrogen while being exposed to another environment, and allow the hydrogen and nitrogen to react with each other to form ammonia. Other embodiments provide for simultaneous hydrogen oxidation and nitrogen reduction at the same electrode, which in turn react for formation of ammonia.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 26, 2008
    Applicant: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Cody A. FRIESEN, Joel R. Hayes
  • Patent number: 7371313
    Abstract: A system and method for generating, purifying, and using ultra-pure ammonia on-site, such as at a semiconductor manufacturing facility. The system includes an ammonia generation system configured to generate ammonia including carbon dioxide, water, and other impurities. A purification system is provided with the generation system in the manufacturing facility and is linked to the output of the generation system. The purification system processes the effluent from the ammonia generation system to remove substantially all of the carbon dioxide, water, and other impurities to produce an outlet stream of ultra-pure ammonia. The system further includes a point of use system provided at the same manufacturing facility to utilize the outlet stream of ultra-pure ammonia.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: May 13, 2008
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Thomas A. Del Prato, Harold G. Spicer
  • Patent number: 7314544
    Abstract: A method for the anodic electrochemical synthesis of ammonia gas. The method comprises providing an electrolyte between an anode and a cathode, providing nitrogen and hydrogen gases to the cathode, oxidizing negatively charged nitrogen-containing species and negatively charged hydrogen-containing species present in the electrolyte at the anode to form adsorbed nitrogen species and adsorbed hydrogen species, respectively, and reacting the adsorbed nitrogen species with the adsorbed hydrogen species to form ammonia. Nitrogen and hydrogen gases may be provided through a porous cathode substrate. The negatively charged nitrogen-containing species in the electrolyte may be produced by reducing nitrogen gas at the cathode and/or by supplying a nitrogen-containing salt, such as lithium nitride, into the molten salt electrolyte.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: January 1, 2008
    Assignee: Lynntech, Inc.
    Inventors: Oliver J. Murphy, Adrian J. Denvir, Sorin G. Teodorescu, Kyle B. Uselton
  • Patent number: 6712950
    Abstract: A method for electrochemical synthesis of ammonia gas comprising providing an electrolyte between an anode and a cathode, providing hydrogen gas to the anode, oxidizing negatively charged nitrogen-containing species present in the electrolyte at the anode to form an adsorbed nitrogen species, and reacting the hydrogen with the adsorbed nitrogen species to form ammonia. Preferably, the hydrogen gas is provided to the anode by passing the hydrogen gas through a porous anode substrate. It is also preferred to produce the negatively charged nitrogen-containing species in the electrolyte by reducing nitrogen gas at the cathode. However, the negatively charged nitrogen-containing species may also be provided by supplying a nitrogen-containing salt, such as lithium nitride, into the molten salt electrolyte mixture in a sufficient amount to provide some or all of the nitrogen consumed in the production of ammonia.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: March 30, 2004
    Assignee: Lynntech, Inc.
    Inventors: Adrian Denvir, Oliver J. Murphy, Alan Cisar, Priscilla Robertson, Kyle Uselton
  • Publication number: 20030164305
    Abstract: A method for electrochemical synthesis of ammonia gas comprising providing an electrolyte between an anode and a cathode, providing hydrogen gas to the anode, oxidizing negatively charged nitrogen-containing species present in the electrolyte at the anode to form an adsorbed nitrogen species, and reacting the hydrogen with the adsorbed nitrogen species to form ammonia. Preferably, the hydrogen gas is provided to the anode by passing the hydrogen gas through a porous anode substrate. It is also preferred to produce the negatively charged nitrogen-containing species in the electrolyte by reducing nitrogen gas at the cathode. However, the negatively charged nitrogen-containing species may also be provided by supplying a nitrogen-containing salt, such as lithium nitride, into the molten salt electrolyte mixture in a sufficient amount to provide some or all of the nitrogen consumed in the production of ammonia.
    Type: Application
    Filed: March 4, 2002
    Publication date: September 4, 2003
    Inventors: Adrian Denvir, Oliver J. Murphy, Alan Cisar, Priscilla Robertson, Kyle Uselton
  • Patent number: 5906722
    Abstract: Describes a method of electrochemically converting amine hydrohalide, e.g., ethyleneamine hydrochloride, into free amine, e.g., free ethyleneamine. A three compartment electrolytic cell is provided having (1) a catholyte compartment containing a cathode assembly comprising a cathode and an anion exchange membrane, (2) an anode compartment containing an anode assembly comprising either (a) a hydrogen consuming gas diffusion anode and a current collecting electrode or (b) a hydrogen consuming gas diffusion anode which is fixedly held between a hydraulic barrier and a current collecting electrode, and (3) an intermediate compartment separated from the catholyte and anode compartments by the anion exchange membrane and either (i) the hydrogen consuming gas diffusion anode or (ii) the hydraulic barrier respectively.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: May 25, 1999
    Assignee: PPG Industries, Inc.
    Inventors: Peter C. Foller, David G. Roberts, Robert H. Tang
  • Patent number: 5904829
    Abstract: Describes a method of electreochemically converting amine hydrohalide, e.g., amine hydrochloride, into free amine, e.g., free ethyleneamine. An electrolytic cell is provided having (1) a catholyte compartment containing a cathode assembly comprising a cathode and a bipolar ion exchange membrane, (2) an anode compartment containing an anode assembly comprising either (a) a hydrogen consuming gas diffusion anode and a current collecting electrode or (b) a hydrogen consuming gas diffusion anode which is fixedly held between a hydraulic barrier and a current collecting electrode, and (3) at least one pair of intermediate compartments separating the catholyte and anode compartments and separated from each other by an anion exchange membrane.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: May 18, 1999
    Assignee: PPG Industries, Inc.
    Inventors: Peter C. Foller, David G. Roberts, Robert H. Tang
  • Patent number: 5900133
    Abstract: Describes a method of electrochemically converting amine hydrohalide, e.g., ethyleneamine hydrochloride, into free amine, e.g., free ethyleneamine. A three compartment electrolytic cell is provided having (1) a catholyte compartment containing a cathode assembly comprising a cathode and anion exchange membrane, (2) an anolyte compartment containing an anode assembly comprising an anode and a cation exchange membrane, and (3) an intermediate compartment separated from the catholyte and anolyte compartments by the anion and cation exchange membranes respectively. An aqueous solution of amine hydrohalide is charged to the catholyte compartment, while hydrogen halide solutions are charged to the intermediate and anolyte compartments. Direct current is passed through the electrolytic cell and an aqueous solution comprising free amine is removed from the catholyte compartment.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: May 4, 1999
    Assignee: PPG Industries, Inc.
    Inventors: Peter C. Foller, David G. Roberts, Robert H. Tang, James R. Franks
  • Patent number: 5643437
    Abstract: An electrolytic cell and process for the cogeneration of a peroxy acid and salts thereof in an anolyte compartment of the cell and hydrogen peroxide at a desired ratio of an alkali metal hydroxide to hydrogen peroxide in the catholyte compartment of the cell. An ammonium compound is present as a reactant in the catholyte compartment. Ammonia is recycled from the catholyte compartment of the cell to the anolyte compartment of the cell or removed as a product.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: July 1, 1997
    Assignee: Huron Tech Canada, Inc.
    Inventors: Dennis F. Dong, Timothy Alan Mumby, John R. Jackson, Derek John Rogers
  • Patent number: 5575901
    Abstract: A process is described for preparing organic and inorganic hydroxides or alkoxides, or ammonia or organic amines from the corresponding salts in an electrolysis cell which comprises an anolyte compartment containing an anode and an electrolyte solution, a catholyte compartment containing a cathode, and an intermediate compartment containing a liquid wherein said intermediate compartment is separated from the catholyte compartment by an anion selective membrane and from the anolyte compartment by a cation selective membrane, said process comprising the steps of:(A) charging to the catholyte compartment, a mixture comprising an organic or inorganic salt or an amine salt, and a liquid selected from water or organic liquids provided that sufficient water is present in the catholyte mixture to form the desired hydroxide or amine, or sufficient alcohol is present in the catholyte mixture to form the desired alkoxide;(B) passing a current through the electrolysis cell to produce the desired hydroxide, alkoxide or am
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: November 19, 1996
    Assignee: Sachem, Inc.
    Inventors: David R. Hulme, Hossein Sharifian