With Mechanical Abrasion Or Grinding Patents (Class 205/662)
  • Publication number: 20090078583
    Abstract: A composite electrolytic processing method makes it possible to remove a conductive film without leaving it in an electrically-insulated state on an underlying barrier film, thereby exposing the barrier film. The electrochemical mechanical polishing method includes: applying a voltage between a first electrode connected to one pole of a power source and a second electrode, connected to the other pole of the power source, for feeding electricity to a conductive film of a polishing object; filling an electrolytic liquid into a space between the first electrode and the conductive film of the polishing object; and pressing and rubbing the conductive film against a polishing surface of a polishing pad to polish the conductive film in such a manner that a barrier film underlying the conductive film becomes gradually exposed from the center toward the periphery of the polishing object.
    Type: Application
    Filed: January 17, 2008
    Publication date: March 26, 2009
    Inventors: Itsuki Kobata, Akira Kodera, Yasushi Toma, Tsukuru Suzuki, Takayuki Saito, Yuji Makita, Hirokuni Hiyama
  • Patent number: 7425250
    Abstract: A system for electrochemical mechanical polishing of a conductive surface of a wafer is provided. The system includes a wafer holder to hold the wafer and a belt pad disposed proximate to the wafer to polish the conductive surface. Application of a potential difference between conductive surface and an electrode and establishing relative motion between the belt pad and the conductive surface result in material removal from the conductive surface. Electrical contact to the surface is provided through either contacts embedded in the belt pad or contacts placed adjacent the belt pad.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: September 16, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Homayoun Talieh
  • Patent number: 7422677
    Abstract: This invention provides a membrane-mediated electropolishing process for polishing and/or planarizing metal work pieces. The work piece is wetted with a low-conductivity fluid. The wetted work piece is contacted with a first side of a charge-selective ion-conducting membrane, wherein the second side contacts a conductive electrolyte solution in electrical contact with a cathode. Current flow between the cathode and the work piece electropolishes metal from the work piece. This process can be used for both pure metals and alloys, and provides several significant advantages over conventional electropolishing processes. This invention also provides an apparatus useful in the membrane-mediated electropolishing process.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: September 9, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Stephen Mazur, Charles E. Jackson, Jr.
  • Publication number: 20080156657
    Abstract: Embodiments of a ball assembly are provided. In one embodiment, a ball assembly includes a housing, a ball, a conductive adapter and a contact element. The housing has an annular seat extending into a first end of an interior passage. The conductive adapter is coupled to a second end of the housing. The contact element electrically couples the adapter and the ball with is retained in the housing between seat and the adapter.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 3, 2008
    Inventors: Paul D. Butterfield, Liang-Yuh Chen, Yongqi Hu, Antoine P. Manens, Rashid Mavliev, Stan D. Tsai, Feng Q. Liu, Ralph Wadensweiler
  • Publication number: 20080146121
    Abstract: A processing pad and platen assembly for processing a substrate is provided. The platen assembly includes a spacer having an upper surface adapted to contact a lower surface of a pad assembly, an upper plate having a recessed area coupled to and disposed below the spacer, and a lower plate coupled to and disposed below the upper plate. The pad assembly includes at least a processing layer having a working surface adapted to process a substrate and an electrode disposed below the working surface of the processing layer. The spacer and the pad assembly have apertures therethrough to provide an electrolyte pathway to the platen assembly for removal of residual materials and other byproducts.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 19, 2008
    Inventors: Omer Ozgun, Alpay Yilmaz, Antoine P. Manens, Lakshmanan Karuppiah
  • Publication number: 20080142375
    Abstract: Compositions and methods suitable for the electrochemical mechanical planarization of a conductive material layer on a semiconductor workpiece. Compositions contain a phosphonic acid based electrolyte, a corrosion inhibitor, a chelating agent, a pH adjusting agent, and a solvent as the remainder.
    Type: Application
    Filed: September 28, 2007
    Publication date: June 19, 2008
    Inventors: Francois Doniat, Matthew L. Fisher, Alan D. Zdunek, Alexandro A. Barajas, Ian Suni, Xiangfeng Chu, Abhinav Tripathi, Yuzhuo Li
  • Patent number: 7377836
    Abstract: Methods of refining using a plurality of refining elements are discussed. A refining apparatus having refining elements that can be smaller than the workpiece being refined are disclosed. New refining methods, refining apparatus, and refining elements disclosed. Methods of refining using frictional refining, chemical refining, tribochemical refining, and electrochemical refining and combinations thereof are disclosed. A refining apparatus having magnetically responsive refining elements that can be smaller than the workpiece being refined are disclosed. The refining apparatus can supply a parallel refining motion to the refining element(s) for example through magnetic coupling forces. The refining apparatus can supply multiple different parallel refining motions to multiple different refining elements for example solely through magnetic coupling forces to improve refining quality and versatility. A refining chamber can be used. New methods of control are refining disclosed.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: May 27, 2008
    Assignee: Beaver Creek Concepts Inc
    Inventor: Charles J. Molnar
  • Patent number: 7378004
    Abstract: An apparatus capable of assisting in controlling an electrolyte flow and an electric field distribution used for processing a substrate is provided. It includes a rigid member having a top surface of a predetermined shape and a bottom surface. The rigid member contains a plurality of channels, each forming a passage from the top surface to the bottom surface, and each allowing the electrolyte and electric field flow therethrough. A pad is attached to the rigid member via a fastener. The pad also allows for electrolyte and electric field flow therethrough to the substrate.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 27, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Cyprian Uzoh, Bulent Basol, Homayoun Talieh
  • Patent number: 7329335
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: February 12, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7309413
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: December 18, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7303462
    Abstract: A method and apparatus for the removal of a deposited conductive layer along an edge of a substrate using an electrode configured to electro polish a substrate edge are disclosed. The electro polishing of the substrate edge may occur simultaneously during electrochemical mechanical processing (Ecmp) of a substrate face. In one embodiment, a power source applies a bias between the substrate and at least two electrodes. The electrodes form a first electrode zone proximate the substrate edge at a sufficient potential to electro polish the substrate edge, thereby removing the conductive layer from the substrate edge. A second electrode zone with a lower potential than the first electrode zone is aligned proximate the substrate face during processing to enable Ecmp of the substrate face.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: December 4, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Alain Duboust, Antoine P. Manens, Liang-Yuh Chen
  • Patent number: 7250103
    Abstract: A method of removing material from a conductive surface of a workpiece while the conductive surface and an electrode are wetted by a process solution. The method comprises the steps of applying power between the conductive surface and the electrode, rendering the conductive surface anodic. The method includes the step of allowing a passivation layer to build up on the conductive surface/The method includes the step of applying an external influence to the conductive surface to periodically reduce the passivation layer thickness. Advantages of the invention include an efficient technique for electropolishing a workpiece.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: July 31, 2007
    Assignee: Novellus Systems, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 7238092
    Abstract: The present invention relates to semiconductor integrated circuit technology and discloses an electrochemical mechanical processing system for uniformly distributing an applied force to a workpiece surface. The system includes a workpiece carrier for positioning or holding the workpiece surface and a workpiece-surface-influencing-device (WSID). The WSID is used to uniformly distribute the applied force to the workpiece surface and includes various layers that are used to process and apply a uniform and global force to the workpiece surface.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: July 3, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Cyprian E. Uzoh, Jeffrey A. Bogart
  • Patent number: 7229535
    Abstract: An apparatus and method for planarizing a surface of a substrate using a chamber separated into two parts by a membrane, and two separate electrolytes is provided. The embodiments of the present invention generally provide an electrochemical mechanical polishing system that reduces the number of defects found on the substrate surface after polishing. An exemplary electrochemical apparatus includes a physical barrier that prevents any trapped gas or gas generated during processing from residing in areas that can cause defects on the substrate. The process can be aided by the addition of various chemical components to the electrolyte that tend to reduce the gas generation at the cathode surface during the ECMP anodic dissolution process.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: June 12, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Yan Wang, Feng Q. Liu, Alain Duboust, Siew S. Neo, Liang-Yuh Chen, Yongqi Hu
  • Patent number: 7201829
    Abstract: The present invention includes a mask plate design that includes at least one or a plurality of channels portions on a surface of the mask plate, into which electrolyte solution will accumulate when the mask plate surface is disposed on a surface of wafer, and out of which the electrolyte solution will freely flow. There are also at least one or a plurality of polish portions on the mask plate surface that allow for polishing of the wafer when the mask plate surface is disposed on a surface of wafer.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: April 10, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Cyprian Uzoh, Jeff A. Bogart
  • Patent number: 7186164
    Abstract: An electrochemical mechanical processing station having a zoned polishing pad assembly is provided. The zoned polishing pad assembly includes a conductive layer coupled to an upper layer having a non-conductive processing surface. At least two zones of different current permeability are defined across the processing surface of the upper layer. Each zone is defined by an attribute of the upper layer.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: March 6, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Antoine P. Manens
  • Patent number: 7160432
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a method is provided for processing a substrate to remove conductive material disposed over narrow feature definitions formed in a substrate at a higher removal rate than conductive material disposed over wide feature definitions formed in a substrate by an electrochemical mechanical polishing technique. The electrochemical mechanical polishing technique may include a polishing composition comprising an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, and a solvent.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: January 9, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Liang-Yuh Chen, Stan D. Tsai, Alain Duboust, Siew S. Neo, Yongqi Hu, Yan Wang, Paul D. Butterfield
  • Patent number: 7153777
    Abstract: Methods and apparatuses for removing material from a microfeature workpiece are disclosed. In one embodiment, the microfeature workpiece is contacted with a polishing surface of a polishing medium, and is placed in electrical communication with first and second electrodes, at least one of which is spaced apart from the workpiece. A polishing liquid is disposed between the polishing surface and the workpiece and at least one of the workpiece and the polishing surface is moved relative to the other. Material is removed from the microfeature workpiece and at least a portion of the polishing liquid is passed through at least one recess in the polishing surface so that a gap in the polishing liquid is located between the microfeature workpiece and the surface of the recess facing toward the microfeature workpiece.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: December 26, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Whonchee Lee
  • Patent number: 7141155
    Abstract: A polishing pad or other shaped article for the electrochemical mechanical polishing (ECMP) of a workpiece. The article includes an electrically-conductive compound which is formed into a layer. The compound is formulated as an admixture which includes a polymeric component forming a continuous phase in the layer, and an electrically-conductive filler component forming a discrete phase within the continuous phase. With the workpiece and the layer being electrically connected and with an electrical bias being applied between the workpiece and the layer, the bias being capable of activating an electrochemical reaction, the compound exhibits an overpotential for the activation of the reaction greater than the bias.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: November 28, 2006
    Assignee: Parker-Hannifin Corporation
    Inventors: Michael H. Bunyan, Thomas A. Clement, John J. Hannafin, Marc E. LaRosee, Kent M. Young
  • Patent number: 7138066
    Abstract: A method of surface treating heat treated members to remove oxide scale. The heat treated members are subjected to a staged series of discrete chemical and physical cleaning steps yielding a substantially scale-free surface readily adaptable for subsequent application of protective coatings.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: November 21, 2006
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Leonid C. Lev, Michael J. Lukitsch, Yang-Tse Cheng, Anita M. Weiner, Robert F. Paluch
  • Patent number: 7125477
    Abstract: Systems and methods for electrochemically processing. A contact element defines a substrate contact surface positionable in contact a substrate during processing. In one embodiment, the contact element comprises a wire element. In another embodiment the contact element is a rotating member. In one embodiment, the contact element comprises a noble metal.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: October 24, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Paul Butterfield, Liang-Yuh Chen, Yongqi Hu, Antoine Manens, Rashid Mavliev, Stan Tsai
  • Patent number: 7101471
    Abstract: An electroetching process of the present invention uses a multiphase environment for planarizing a wafer with conductive surface having a non-uniform topography. The multiphase environment includes a high resistance phase and an etching solution phase. The conductive surface to be planarized is placed in the high resistance phase and adjacent a phase interface between the high resistance phase and the etching solution phase. A wiper is used to mechanically move the thin high resistance phase covering the conductive surface so that the raised regions of the non-planar conductive surface is briefly exposed to etching solution phase. The mechanical action of the wiper does not disturb the high resistivity phase filling the rescessed regions of the surface. As the raised surface locations are exposed, the etching solution phase contacts and electroetch the exposed regions of the raised regions until the surface planarized.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: September 5, 2006
    Assignee: ASM Nutool, Inc.
    Inventor: Erol C. Basol
  • Patent number: 7097755
    Abstract: The present invention provides an apparatus for electrochemical mechanical processing of a surface of a workpiece by utilizing a process solution. The apparatus of the present invention includes an electrode touching the process solution, a belt workpiece surface influencing device extended between a supply spool and a receiving spool. During the process, the surface of the workpiece is placed in proximity of the workpiece surface influencing device and the process solution is flowed through the process section and onto the surface while a potential difference is applied between the electrode and the surface of the workpiece.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: August 29, 2006
    Assignee: ASM Nutool, Inc.
    Inventors: Bulent M. Basol, Halit N. Yakupoglu, Cyprian E. Uzoh, Homayoun Talieh
  • Patent number: 7025860
    Abstract: An apparatus for performing an electrochemical process on a metallic surface of a workpiece, comprised of a substantially incompressible workpiece support plate. A platen for supporting the workpiece support plate, has at least one opening coupled to a source of electrolyte for receiving an electrolyte solution therethrough and placing the electrolyte solution in contact with the support plate and workpiece. A first conductive element is coupled to, a first potential and positioned proximate the metallic surface, and the carrier is configured to position the workpiece proximate the support plate.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 11, 2006
    Assignee: Novellus Systems, Inc.
    Inventor: Saket Chadda
  • Patent number: 6979248
    Abstract: An article of manufacture, method, and apparatus are provided for planarizing a substrate surface. In one aspect, an article of manufacture is provided for polishing a substrate including a polishing article having a body comprising at least a portion of fibers coated with a conductive material, conductive fillers, or combinations thereof, and adapted to polish the substrate. In another aspect, a polishing article includes a body having a surface adapted to polish the substrate and at least one conductive element embedded in the polishing surface, the conductive element comprising dielectric or conductive fibers coated with a conductive material, conductive fillers, or combinations thereof. The conductive element may have a contact surface that extends beyond a plane defined by the polishing surface. A plurality of perforations and a plurality of grooves may be formed in the articles to facilitate flow of material through and around the polishing article.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: December 27, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Yongqi Hu, Yan Wang, Alain Duboust, Feng Q. Liu, Rashid Mavliev, Liang-Yuh Chen, Ratson Morad, Sasson Somekh
  • Patent number: 6969308
    Abstract: A polishing device is hermetically accommodated in a chamber containing an atmosphere having a composition different from the ambient air, so that the atmosphere around the polishing device is altered into the composition different from the ambient air, and voltage is applied between a wafer and a polishing pad to polish the wafer with an electrolytic effect. The polishing device has the atmosphere containing extremely less oxygen, preventing a surface of the wafer from oxidation and thereby providing a constant polishing rate.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: November 29, 2005
    Assignee: Tokyo Seimitsu Co., Ltd.
    Inventors: Toshiro Doi, Takashi Fujita
  • Patent number: 6932896
    Abstract: Systems and methods to remove or lessen the size of metal particles that have formed on, and to limit the rate at which metal particles form or grow on, workpiece surface influencing devices used during electrodeposition are presented. According to an exemplary method, the workpiece surface influencing device is occasionally placed in contact with a conditioning substrate coated with an inert material, and the bias applied to the electrodeposition system is reversed. According to another exemplary method, the workpiece surface influencing device is conditioned using mechanical contact members, such as brushes, and conditioning of the workpiece surface influencing device occurs, for example, through physical brushing of the workpiece surface influencing device with the brushes. According to a further exemplary method, the workpiece surface influencing device is rotated in different direction during electrodeposition.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: August 23, 2005
    Assignee: Nutool, Inc.
    Inventors: Bulent M. Basol, Cyprian Uzoh, Homayoun Talieh
  • Patent number: 6902659
    Abstract: The present invention deposits a conductive material from an electrolyte solution to a predetermined area of a wafer. The steps that are used when making this application include applying the conductive material to the predetermined area of the wafer using an electrolyte solution disposed on a surface of the wafer, when the wafer is disposed between a cathode and an anode, and preventing accumulation of the conductive material to areas other than the predetermine area by mechanically polishing the other areas while the conductive material is being applied.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 7, 2005
    Assignee: ASM Nutool, Inc.
    Inventor: Homayoun Talieh
  • Patent number: 6884338
    Abstract: The present invention provides methods of polishing and/or cleaning copper interconnects using bis(perfluoroalkanesulfonyl) imide acids or copper tris(perfluoroalkanesulfonyl) methide acids compositions.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 26, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Susrut Kesari, William M. Lamanna, Michael J. Parent, Lawrence A. Zazzera
  • Patent number: 6858124
    Abstract: The present invention provides methods of polishing and/or cleaning copper interconnects using sulfonic acid compositions.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: February 22, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Lawrence A. Zazzera, Michael J. Parent, William M. Lamanna, Susrut Kesari
  • Patent number: 6852208
    Abstract: Deposition of conductive material on or removal of conductive material from a workpiece frontal side of a semiconductor workpiece is performed by providing an anode having an anode area which is to face the workpiece frontal side, and electrically connecting the workpiece frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the workpiece frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the workpiece is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the workpiece frontal side surface, in its entirety, is thus permitted.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: February 8, 2005
    Assignee: NuTool, Inc.
    Inventors: Jalal Ashjaee, Boguslaw Nagorski, Bulent M. Basol, Homayoun Talieh, Cyprian Uzoh
  • Patent number: 6821409
    Abstract: The present invention applies an electrochemical etching solution to a material layer, preferably a metal layer, disposed on a workpiece, in the presence of a current. This electrochemical etching solution supplies to the material on the substrate surface the species to form an intermediate compound on the surface that can be more easily mechanically removed as intermediate compound fragments than the material. By removing the intermediate compound fragments, the process allows more efficient use of the supplied current to form another layer of intermediate compound that can also be mechanically removed, rather than using the current to result in another compound on the surface of the material that eventually dissolves into the solution. In another aspect of the invention, such intermediate compound particulates are externally generated and used to mechanically remove the surface layer of the material.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: November 23, 2004
    Assignee: ASM-Nutool, Inc.
    Inventors: Bulent M. Basol, Cyprian E. Uzoh, Paul Lindquist, Homayoun Talieh
  • Patent number: 6811680
    Abstract: A method and apparatus are provided for planarizing a material layer on a substrate. In one aspect, a method is provided for processing a substrate including forming a passivation layer on a substrate surface, polishing the substrate in an electrolyte solution, applying an anodic bias to the substrate surface, and removing material from at least a portion of the substrate surface. In another aspect, an apparatus is provided which includes a partial enclosure, polishing article, a cathode, a power source, a substrate carrier movably disposed above the polishing article, and a computer based controller to position a substrate in an electrolyte solution to form a passivation layer on a substrate surface, to polish the substrate in the electrolyte solution with the polishing article, and to apply an anodic bias to the substrate surface or polishing article to remove material from at least a portion of the substrate surface.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: November 2, 2004
    Assignee: Applied Materials Inc.
    Inventors: Liang-Yuh Chen, Wei-Yung Hsu, Alain Duboust, Ratson Morad, Daniel A. Carl
  • Publication number: 20040200732
    Abstract: A method of removing material from a conductive surface of a workpiece while the conductive surface and an electrode are wetted by a process solution. The method comprises the steps of applying power between the conductive surface and the electrode, rendering the conductive surface anodic. The method includes the step of allowing a passivation layer to build up on the conductive surface/The method includes the step of applying an external influence to the conductive surface to periodically reduce the passivation layer thickness. Advantages of the invention include an efficient technique for electropolishing a workpiece.
    Type: Application
    Filed: August 11, 2003
    Publication date: October 14, 2004
    Inventor: Bulent M. Basol
  • Patent number: 6802955
    Abstract: An electrochemical apparatus is provided which deposits material onto or removes material from the surface of a workpiece. The apparatus comprises a polishing pad and a platen which is in turn comprised of a first conductive layer in contact with the polishing pad and coupled to a first potential, a second conductive layer coupled to a second potential, and a first insulating layer disposed between the first and second conductive layers. At least one electrical contact is positioned within the polishing pad and is electrically coupled to the second conductive layer. A reservoir is provided which places an electrolyte solution in contact with the polishing pad and the workpiece. A carrier positions and/or presses the workpiece against the polishing pad.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: October 12, 2004
    Assignee: Speedfam-Ipec Corporation
    Inventors: Ismail Emesh, Periya Gopalan, Phillip M. Rayer, II, Bentley J. Palmer
  • Patent number: 6776693
    Abstract: A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a basin and a polishing head. A carrier is disposed in the basin and has a substrate supporting surface. A retaining ring is disposed on the carrier and at least partially circumscribes the substrate supporting surface. The polishing head is supported above the basin and includes a conductive polishing pad. Embodiments may further include a vent to allow gas to escape through the polishing head. Embodiments may further include an electrolyte supply that flows electrolyte into the polishing head and out through a permeable electrode and the conductive pad to the substrate. Embodiments may also be configured with a polishing head diameter smaller than the substrate supported by the carrier.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: August 17, 2004
    Assignee: Applied Materials Inc.
    Inventors: Alain Duboust, Shou-Sung Chang, Liang-Yuh Chen, Yan Wang, Siew Neo, Lizhong Sun, Feng Q. Liu
  • Publication number: 20040060814
    Abstract: The present invention discloses an apparatus having a platen; a polishing pad disposed over the platen; a slurry dispenser disposed over the polishing pad; a cathode connected electrically to the polishing pad; a wafer carrier disposed over the polishing pad;
    Type: Application
    Filed: September 19, 2003
    Publication date: April 1, 2004
    Inventor: Sujit Sharan
  • Patent number: 6709565
    Abstract: The present invention pertains to apparatus and methods for planarization of metal surfaces having both recessed and raised features, over a large range of feature sizes. The invention accomplishes this by increasing the fluid agitation in raised regions with respect to recessed regions. That is, the agitation of the electropolishing bath fluid is agitated or exchanged as a function of elevation on the metal film profile. The higher the elevation, the greater the movement or exchange rate of bath fluid. In preferred methods of the invention, this agitation is achieved through the use of a microporous electropolishing pad that moves over (either near or in contact with) the surface of the wafer during the electropolishing process. Thus, methods of the invention are electropolishing methods, which in some cases include mechanical polishing elements.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: March 23, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Robert J. Contolini, Eliot K. Broadbent, John S. Drewery
  • Patent number: 6709566
    Abstract: The invention relates to a method for shaping small three-dimensional articles such as nanotube exhibiting a layered structure through material removal such that the article is controllably shaped to exhibit a desired contour. Typically, material removal does not require use of a chemical etchant and is carried out while the article and a shaping electrode are positioned in contact material removal relationship with under a potential difference. The invention also relates to nanotubes and small three-dimensional articles exhibiting a layered structure having a controllably shaped contour.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: March 23, 2004
    Assignee: The Regents of the University of California
    Inventors: John P. Cumings, Alex K. Zettl
  • Publication number: 20040040864
    Abstract: A contact-discharge truing/dressing method and a device therefor, capable of very simply conducting truing/dressing of a superabrasive grindstone, especially a superabrasive grindstone having a metal binder. The contact-discharge truing/dressing method comprises the steps of bringing a rotated conductive grindstone (101) into contact with a pair of electrodes to which a DC voltage or pulse voltage is applied, and subjecting the conductive grindstone (101) to an intermittent truing/dressing by contact discharge produced when opening/closing a circuit consisting of a positive electrode, electrode chips, a grindstone binder, electrode chips, a negative electrode, parts of the side surfaces of dual-ring rotary electrodes insulated by an insulation layer (203) being used as a pair of electrodes.
    Type: Application
    Filed: January 13, 2003
    Publication date: March 4, 2004
    Inventor: Masahiro Mizuno
  • Publication number: 20040023610
    Abstract: Embodiments of a polishing article for processing a substrate are provided. In one embodiment, a polishing article for processing a substrate comprises a fabric layer having a conductive layer disposed thereover. The conductive layer has an exposed surface adapted to polish a substrate. The fabric layer may be woven or non-woven. The conductive layer may be comprised of a soft metal and, in one embodiment, the exposed surface may be planar.
    Type: Application
    Filed: June 6, 2003
    Publication date: February 5, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Yongqi Hu, Yan Wang, Alain Duboust, Feng Q. Liu, Antoine P. Manens, Siew S. Neo, Stan D. Tsai, Liang-Yuh Chen, Paul D. Butterfield, Yuan A. Tian, Sen-Hou Ko
  • Publication number: 20040016651
    Abstract: A method is provided for the manufacture of an implant, in particular of a metallic implant, comprising the steps of roughening the surface of the implant by blasting with blasting particles and of treating the surface with a solvent which selectively dissolves the blasting particles.
    Type: Application
    Filed: March 20, 2003
    Publication date: January 29, 2004
    Inventor: Markus Windler
  • Publication number: 20030217932
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Application
    Filed: June 10, 2003
    Publication date: November 27, 2003
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Publication number: 20030217927
    Abstract: A top layer comprises a flexible support and a plurality of hard elements anchored in a binder over the flexible support, and a method of forming the same is provided. In one embodiment, certain ones of the hard elements have a contact surface adapted to contact the conductive surface, with the binder being disposed below the contact surface of each of the certain ones of the hard elements. In another embodiment, the top layer comprises a flexible support, a plurality of hard elements are anchored in a binder over the flexible support such that certain ones of the hard elements have a top surface and the binder is disposed below the top surface of each of the certain ones of the hard elements, and a hard material coating is disposed over the plurality of hard elements and the binder, thereby creating a contact surface of the hard material coating at locations corresponding to the top surface of the certain ones of the hard elements.
    Type: Application
    Filed: February 14, 2003
    Publication date: November 27, 2003
    Inventors: Bulent M. Basol, George Xinsheng Guo
  • Publication number: 20030213703
    Abstract: A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a pad assembly having a conductive pad, a backing and a conductive layer adapted to be biased by a power source. In another embodiment, an apparatus for polishing a substrate includes a pad assembly disposed in a basin. The basin has two electrodes coupled to opposite poles of a power source. Each electrode extends partially through a respective aperture formed in the pad assembly. The apparatus may be part of an electro-chemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 20, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Yan Wang, Feng Q. Liu, Yongqi Hu, Alain Duboust, Liang-Yuh Chen, Paul D. Butterfield, Ralph M. Wadensweiler
  • Patent number: 6627064
    Abstract: A hard material layer deposited on a hard metal work piece is removed by electrolytic passivation in which a maximum current density equal to at least 0.01 A/cm2 is generated on the work piece at the beginning of the layer removal process. The hard material layer rapidly flakes off without causing substantial damage to the hard metal material located underneath.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: September 30, 2003
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventor: Michael Hans
  • Publication number: 20030178319
    Abstract: The present invention applies an electrochemical etching solution to a material layer, preferably a metal layer, disposed on a workpiece, in the presence of a current. This electrochemical etching solution supplies to the material on the substrate surface the species to form an intermediate compound on the surface that can be more easily mechanically removed as intermediate compound fragments than the material. By removing the intermediate compound fragments, the process allows more efficient use of the supplied current to form another layer of intermediate compound that can also be mechanically removed, rather than using the current to result in another compound on the surface of the material that eventually dissolves into the solution. In another aspect of the invention, such intermediate compound particulates are externally generated and used to mechanically remove the surface layer of the material.
    Type: Application
    Filed: April 5, 2002
    Publication date: September 25, 2003
    Inventors: Bulent M. Basol, Cyprian E. Uzoh, Paul Lindquist, Homayoun Talieh
  • Patent number: 6482307
    Abstract: Deposition of conductive material on or removal of conductive material from a wafer frontal side of a semiconductor wafer is performed by providing an anode having an anode area which is to face the wafer frontal side, and electrically connecting the wafer frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the wafer frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the wafer is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the wafer frontal side surface, in its entirety, is thus permitted.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: November 19, 2002
    Assignee: NuTool, Inc.
    Inventors: Jalal Ashjaee, Boguslaw A. Nagorski, Bulent M. Basol, Homayoun Talieh, Cyprian Uzoh
  • Patent number: 6464855
    Abstract: An electrochemical planarization apparatus for planarizing a metallized surface on a workpiece includes a platen, a conductive element disposed adjacent the platen and a polishing surface disposed adjacent the conductive element. A workpiece carrier is configured to carry a workpiece and press the workpiece against the polishing surface while causing relative motion between the workpiece and the polishing surface. A voltage source is configured to effect an electric potential difference between the metallized surface on the workpiece and the conductive element so that an electric field is produced between the metallized surface and the conductive element. The apparatus further includes a solution application mechanism configured to supply an electrolytic solution to the polishing surface.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: October 15, 2002
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Saket Chadda, Chris Barns
  • Publication number: 20020104764
    Abstract: Removing metal from a semiconductor substrate by dissolving ions of the metal into an electrolyte, comprising the steps of: applying a voltage across a polishing pad and the substrate, while an electropolishing electrolyte is dispensed at an interface of the substrate and the polishing pad, and while pooling the electrolyte about the substrate by the polishing pad.
    Type: Application
    Filed: November 20, 2001
    Publication date: August 8, 2002
    Inventors: Gautam Banerjee, Lee Melbourne Cook