Using Surface Tension Or Capillary Action To Hold Electrolyte In Contact With Workpiece Patents (Class 205/669)
  • Publication number: 20100072059
    Abstract: The present electrolytic system for decontaminating a contaminant disposed on a substrate includes means for providing a brine solution; means for providing a pair of electrodes interposed by a permeable membrane to create a first channel and a second channel; means for flowing the brine solution through the first and second channel; means for applying a potential to the pair of electrodes to produce a first ionized decontamination solution in the first channel and a second ionized decontamination solution in the second channel; means for applying one of the first ionized decontamination solution and the second decontamination solution to the contaminant; and means for recovering the at least one of the first ionized decontamination solution and the second ionized decontamination solution and the contaminant from the substrate.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 25, 2010
    Inventors: Michael J. Peters, David D. Faulder, John D. Breedlove
  • Patent number: 7575667
    Abstract: An electrode (10) is provided for electrochemical reduction of a workpiece (20) that is to be treated. The electrode (10) has a predefined contour and contains an electrically conductive material. The electrically conductive material of the predefined contour forms an electrode core (12). The outside of the electrode core (12) is covered with an insulation layer (13). The insulation layer (13) is porous and is made of an electrically non-conductive material.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: August 18, 2009
    Assignee: MTU Aero Engines GmbH
    Inventors: Erwin Bayer, Martin Bussmann, Thomas Kraenzler, Albin Platz, Juergen Steinwandel
  • Patent number: 7501051
    Abstract: The present electropolishing electrolyte comprises an acid solution and an alcohol additive having at least one hydroxy group, wherein the contact angle of the alcohol additive is smaller than the contact angle of the acid solution on a metal layer under electropolishing. The alcohol additive is selected methanol, ethanol and glycerol, and the acid solution comprises phosphoric acid. The volumetric ratio of glycerol to phosphoric acid is between 1:50 and 1:200, and is preferably 1:100. The volumetric ratio is between 1:100 and 1:150 for methanol to phosphoric acid, and between 1:100 and 1:150 for ethanol to phosphoric acid. In addition, the acid solution further comprises an organic acid selected from the group consisting of acetic acid and citric acid. The concentration is between 10000 and 12000 ppm for the acetic acid, and between 500 and 1000 ppm for citric acid.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: March 10, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Jia Min Shieh, Sue Hong Liu, Bau Tong Dai
  • Publication number: 20030178321
    Abstract: An electrochemical cell for electrolytically contacting and electrochemically inspecting surfaces which makes electrolytic contact with the surface through a body utilizing capillary action. The capillary force between surface and body utilizing capillary action prevents the electrolyte from escaping from the cell without the use of a sealing ring. The body utilizing capillary action allows the electrolyte to flow from an open porous container and wet the surface when the electrochemical cell contacts the surface. Escape of material from the open cell is prevented by the capillary action of the container and of the tip when the electrochemical cell is lifted from the surface. The electrochemical cell is independent of the force of gravity and enables measurements to be made on surfaces of any orientation. The electrochemical cell may be used to perform a multiplicity of electrochemical investigations and processes.
    Type: Application
    Filed: March 6, 2003
    Publication date: September 25, 2003
    Inventor: Markus Buchler
  • Patent number: 6582578
    Abstract: An electro-chemical plating system is described. A method is performed by the electro-chemical plating system in which a seed layer formed on a substrate is immersed into an electrolyte solution. In one aspect, a substrate is immersed in the electrochemical plating system by tilting the substrate as it enters the electrolyte solution to limit the trapping or formation of air bubbles in the electrolyte solution between the substrate and the substrate holder. In another aspect, an apparatus is provided for electroplating that comprises a cell, a substrate holder, and an actuator. The actuator can displace the substrate holder assembly in the x and z directions and also tilt the substrate. In another aspect, a method is provided of driving a meniscus formed by electrolyte solution across a surface of a substrate. The method comprises enhancing the interaction between the electrolyte solution meniscus and the surface as the substrate is immersed into the electrolyte solution.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: June 24, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi N. Dordi, Joseph J. Stevens, Michael N. Sugarman
  • Publication number: 20020153246
    Abstract: An apparatus for electropolishing a wafer includes a wafer chuck and a stationary jet. The wafer chuck is configured to rotate and translate the wafer. The stationary jet is configured to apply an electrolyte to the wafer when the wafer is translated and rotated by the wafer chuck.
    Type: Application
    Filed: April 10, 2002
    Publication date: October 24, 2002
    Inventor: Hui Wang
  • Patent number: 6180526
    Abstract: A method for improving the conformity of the conductive layer in a contact hole, thus allowing for the formation of a plug in the resulting contact hole. The aforementioned method includes the following steps. First, immerse the conductive layer of the semiconductor wafer into an electrolyte. The first portion of the conductive layer at the opening of the contact hole contact with the electrolyte, the conductive layer in the contact hole is not in contact with the electrolyte due to the surface tension of the electrolyte. Second, electrically couple the electrolyte to the anode of the source power. Finally, electrically couple the conductive layer to the cathode of the power source until the first portion of the conductive layer at the opening of the contact hole is removed.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: January 30, 2001
    Assignee: Industrial Technology Research Institute
    Inventor: Chung-Liang Chang
  • Patent number: 6106690
    Abstract: An electroplaning technique achieves superior flatness of the face of a wafer. A chuck holds the wafer so the face of the wafer is oriented downwards and lowers it to an electroplaner stage. The electroplaner includes an elongated, horizontally extending cup, an elongated horizontally extending nozzle within it. Electrolyte flows non-turbulently from an upper side of the nozzle to create a meniscus of electrolyte that contacts the wafer. The electroplaner moves transversely while the chuck is held steady so that said meniscus sweeps across the face of said wafer. A rinser of similar construction likewise has a meniscus or rinse that sweeps across the wafer. The nozzle can have a row of openings along its upper side, or may be formed at least in part of a microporous material. The wafer is electrically configured as cathode.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: August 22, 2000
    Assignee: Reynolds Tech Fabricators, Inc.
    Inventor: H. Vincent Reynolds