Organic Material Containing Patents (Class 205/684)
  • Patent number: 6863797
    Abstract: Electrolyte compositions and methods for planarizing a surface of a substrate using the electrolyte compositions are provided. In one aspect, an electrolyte composition includes one or more chelating agents, one or more corrosion inhibitors, and one or more pH adjusting agents. In another aspect, an electrolyte composition includes one or more chelating agents, two or more corrosion inhibitors, and one or more pH adjusting agents. In another aspect, an electrolyte composition includes one or more chelating agents, one or more corrosion inhibitors, one or more pH adjusting agents, and one or more electrically resistive additives.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: March 8, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Feng Q. Liu, Siew Neo, Stan Tsai, Liang-Yuh Chen
  • Patent number: 6858124
    Abstract: The present invention provides methods of polishing and/or cleaning copper interconnects using sulfonic acid compositions.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: February 22, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Lawrence A. Zazzera, Michael J. Parent, William M. Lamanna, Susrut Kesari
  • Patent number: 6858126
    Abstract: A method of producing electrodes for electrolytic capacitors by etching metal foil in a low pH etching electrolyte is disclosed. The low pH electrolyte is an aqueous solution, which comprises hydrochloric acid, glycerol, sodium perchlorate or perchloric acid, sodium persulfate and titanium (111) chloride. Anode foils etched according to the method of the invention maintain high capacitance gains, electrical porosity and strength. The electrical porosity of the etched foils is sufficiently high such that the overall Equivalent Series Resistance (ESR) is not increased in multilayer anodes configurations. Also described is a low pH electrolyte bath composition. Anode foils etched according to the present invention and electrolytic capacitors incorporating the etched anode foils are also disclosed.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: February 22, 2005
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, Thomas Flavian Strange
  • Publication number: 20040159558
    Abstract: A polishing pad or other shaped article for the electrochemical mechanical polishing (ECMP) of a workpiece. The article includes an electrically-conductive compound which is formed into a layer. The compound is formulated as an admixture which includes a polymeric component forming a continuous phase in the layer, and an electrically-conductive filler component forming a discrete phase within the continuous phase. With the workpiece and the layer being electrically connected and with an electrical bias being applied between the workpiece and the layer, the bias being capable of activating an electrochemical reaction, the compound exhibits an overpotential for the activation of the reaction greater than the bias.
    Type: Application
    Filed: January 21, 2004
    Publication date: August 19, 2004
    Inventors: Michael H. Bunyan, Thomas A. Clement, John J. Hannafin, Marc E. LaRosee, Kent M. Young
  • Patent number: 6719892
    Abstract: A process for selective removal of a nickel alloy brazing composition from a nickel-base alloy component includes the steps of providing a brazed assembly including nickel-base alloy components joined by nickel alloy brazing composition; immersing the assembly in an electrolyte; and applying a potential across the electrolyte at a magnitude wherein the nickel-base alloy components are electrochemically passive and the nickel alloy brazing composition dissolves whereby the brazing composition is removed from the components.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: April 13, 2004
    Assignee: United Technologies Corporation
    Inventors: Mark Jaworowski, Michael A Kryzman
  • Patent number: 6627064
    Abstract: A hard material layer deposited on a hard metal work piece is removed by electrolytic passivation in which a maximum current density equal to at least 0.01 A/cm2 is generated on the work piece at the beginning of the layer removal process. The hard material layer rapidly flakes off without causing substantial damage to the hard metal material located underneath.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: September 30, 2003
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventor: Michael Hans
  • Publication number: 20030178320
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 3 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer.
    Type: Application
    Filed: February 26, 2003
    Publication date: September 25, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Feng Q. Liu, Stan D. Tsai, Yongqi Hu, Siew S. Neo, Yan Wang, Alain Duboust, Liang-Yuh Chen
  • Patent number: 6610194
    Abstract: A bath composition for the electropolishing of a metal surface made of nonalloyed titanium is disclosed. The bath composition may comprise sulfuric acid of 2 to 40% by volume, hydrofluoric acid of 10 to 18% by volume and acetic acid of 42 to 62% by volume.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: August 26, 2003
    Assignee: European Organization for Nuclear Research (CERN)
    Inventor: Jean Guerin
  • Patent number: 6592742
    Abstract: A method of chemically polishing a metal layer on a substrate is provided. The metal layer is chemically polished using an electrochemical polishing (ECP) process. In the ECP process, the substrate is immersed in a chemical polishing solution including a surfactant. The surfactant in the polishing solution covers the surface of the substrate such that only topographic portions of the substrate surface are exposed to the chemical polishing solution. Thereafter, an electrical potential applied to the substrate removes topographic portions of the substrate that are exposed to the polishing solution.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: July 15, 2003
    Assignee: Applied Materials Inc.
    Inventors: Lizhong Sun, Shijian Li
  • Publication number: 20030116446
    Abstract: An electrolyte composition and method for planarizing a surface of a wafer using the electrolyte composition is provided. In one aspect, the electrolyte composition includes ammonium dihydrogen phosphate, diammonium hydrogen phosphate, or a mixture thereof. The composition has a pH between about 3 and about 10 which is environmentally friendly and does not present hazardous operation concerns. The composition may further comprise one or more additives selected from a group consisting of benzotriazole, ammonium citrate, ethlylenediamine, tetraethylenepentamine, triethylenetetramine, diethylenetriamine, amino acids, ammonium oxalate, ammonia, ammonium succinate, and citric acid.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Alain Duboust, Lizhong Sun, Feng Q. Liu, Yuchun Wang, Yan Wang, Siew Neo, Liang-Yuh Chen
  • Publication number: 20030116445
    Abstract: Electrolyte compositions and methods for planarizing a surface of a substrate using the electrolyte compositions are provided. In one aspect, an electrolyte composition includes one or more chelating agents, one or more corrosion inhibitors, and one or more pH adjusting agents. In another aspect, an electrolyte composition includes one or more chelating agents, two or more corrosion inhibitors, and one or more pH adjusting agents. In another aspect, an electrolyte composition includes one or more chelating agents, one or more corrosion inhibitors, one or more pH adjusting agents, and one or more electrically resistive additives.
    Type: Application
    Filed: May 7, 2002
    Publication date: June 26, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Lizhong Sun, Feng Q. Liu, Siew Neo, Stan Tsai, Liang-Yuh Chen
  • Patent number: 6579439
    Abstract: This invention, in one aspect, relates to processes for electropolishing aluminum, in particular, aluminum alloy metal surfaces, by immersing the metal surface in a polishing solution and making the aluminum alloy material anodic. The polishing solution can comprise a phosphoric acid solution and a hypophosphite-containing compound. The polishing solution can also comprise a polyol, a polyol ether and an organic acid.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: June 17, 2003
    Assignee: Southern Industrial Chemicals, Inc.
    Inventor: Wayne D. Chandler
  • Publication number: 20030030970
    Abstract: A process for edge forming a slit and cut-to-length foil having a dielectric oxide film on its face comprising anodizing the foil in an aqueous oxalic acid electrolyte, further forming the foil in an aqueous citrate electrolyte, preferably dibasic ammonium citrate electrolyte, depolarizing the foil, and then forming the foil in an aqueous phosphate electrolyte, preferably an ammonium dihydrogen phosphate.
    Type: Application
    Filed: June 6, 2001
    Publication date: February 13, 2003
    Inventors: Daniel Francis Persico, Philip Michael Lessner, Albert Kennedy Harrington, Lisa Ann Sayetta
  • Publication number: 20020191371
    Abstract: A process for edge forming a slit and cut-to-length foil having a dielectric oxide film on its face comprising forming the foil in an aqueous citrate electrolyte, preferably an aqueous ammonium citrate electrolyte, depolarizing the foil, and forming the foil in an aqueous phosphate electrolyte, preferably an ammonium dihydrogen phosphate electrolyte. Using this formation process, a foil with excellent hydration resistance and capacitance is produced.
    Type: Application
    Filed: June 6, 2001
    Publication date: December 19, 2002
    Inventors: Philip Michael Lessner, Albert Kennedy Harrington, Brian John Melody, John Tony Kinard
  • Patent number: 6485630
    Abstract: A method of reducing cutting tool wear in a lubricated metal cutting operation has been developed. An electrical cutting cell is provided having an anodic conductive cutting tool and a cathodic conductive work-piece connected to a DC current supply; the lubricant contains platable wear reducing agents. The lubricant is located to bathe the contacting interface between the cutting tool and work-piece to constitute an electrolyte. Next, the electrical current flow through the contacting interface is controlled to be in the range of 25-500 milli-amps. Lastly, the cutting tool is moved into and along cutting contact with the work-piece while current flows there-between to electro-chemically deposit the wear reducing agents on at least the contacting interface to reduce cutting tool wear and improve ease of mass removal.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: November 26, 2002
    Assignee: Ford Global Technologies, Inc.
    Inventors: Arup Kumar Gangopadhyay, Gary C. Barber, Han Zhao
  • Patent number: 6468413
    Abstract: An aqueous electrochemical etchant for etching metals in the presence of one or more metals not to be etched, the etchant including glycerol in the concentration range of 1.30 to 1.70 M, a sulfate compound having a sulfate ion concentration in the range of 0 to 0.5 M, and a phosphate compound having a phosphate ion concentration in the range of 0.1 to 0.5 M.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: October 22, 2002
    Assignee: International Business Machines Corporation
    Inventors: Lisa A. Fanti, John Michael Cotte, David Ely Eichstadt
  • Publication number: 20020144912
    Abstract: Methods for producing by electrochemical reduction a carbon-containing material with its surface modified by organic groups, in particular functionalized organic groups. Certain embodiments of the methods include contacting the carbon-containing material with an organic diazonium salt in solvent, optionally in the presence of an electrolyte and negatively polarizing the carbon-containing material relative to an anode also in contact with an electrolytic solution separate from said diazonium salt solution, wherein the electrochemical reduction is carried out on an organic diazonium salt in protic solvent in an acid medium. Carbon-containing materials with a surface modified by organic groups and the use of these modified materials, for example for producing composite materials or for fixing molecules of biological interest, are taught.
    Type: Application
    Filed: February 15, 2002
    Publication date: October 10, 2002
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Olivier Fagebaume, Jean Pinson, Jean-Michel Saveant
  • Publication number: 20020088709
    Abstract: There are provided a method and apparatus for forming interconnects by embedding a metal such as copper (Cu) into recesses for interconnects formed on the surface of a substrate such as a semiconductor substrate. The method of the present invention includes the steps of: providing a substrate having fine recesses formed in the surface; subjecting the surface of the substrate to plating in a plating liquid; and subjecting the plated film formed on the surface of the substrate to electrolytic etching in an etching liquid.
    Type: Application
    Filed: June 27, 2001
    Publication date: July 11, 2002
    Inventors: Akihisa Hongo, Naoki Matsuda, Kanji Ohno, Ryoichi Kimizuka
  • Publication number: 20020074238
    Abstract: The present invention pertains to apparatus and methods for planarization of metal surfaces having both recessed and raised features, over a large range of feature sizes. The invention accomplishes this by increasing the fluid agitation in raised regions with respect to recessed regions. That is, the agitation of the electropolishing bath fluid is agitated or exchanged as a function of elevation on the metal film profile. The higher the elevation, the greater the movement or exchange rate of bath fluid. In preferred methods of the invention, this agitation is achieved through the use of a microporous electropolishing pad that moves over (either near or in contact with) the surface of the wafer during the electropolishing process. Thus, methods of the invention are electropolishing methods, which in some cases include mechanical polishing elements.
    Type: Application
    Filed: September 28, 2001
    Publication date: June 20, 2002
    Inventors: Steven T. Mayer, Robert J. Contolini, Eliot K. Broadbent, John S. Drewery
  • Patent number: 6375826
    Abstract: An electro-polishing fixture for polishing stents which incorporates multiple anodes in contact with the stent and a center cathode disposed coaxially within the interior of the stent and a curved exterior cathode disposed about the perimeter of the stent. The invention further includes an electrolyte solution adapted for polishing stents composed of nickel-titanium alloy and a method of using the electrolyte in combination with the electro-polishing fixture.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: April 23, 2002
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Jingli Wang, Christopher J. Tarapata, Matthew J. Fitz
  • Publication number: 20020023846
    Abstract: The method according to the invention comprises a macrographic etching step followed by a “bleaching” step by electrolytic etching by means of a bath containing at least phosphoric acid and a weak acid. This method allows components made of superalloys to be easily and effectively inspected, including when they contain elements such as rhenium or ruthenium.
    Type: Application
    Filed: August 27, 2001
    Publication date: February 28, 2002
    Applicant: SNECMA MOTEURS
    Inventors: Michel Ruimi, Sylvie Poutonnet, Philippe Poubanne
  • Patent number: 6238810
    Abstract: A surface active, viscosity modifying agent is used to promote additional tunnel initiation during the etching of high purity cubicity anode foil, preferably aluminum anode foil, to render it suitable for use in electrolytic capacitors. The anode foil is etched in the electrolyte bath composition by passing a charge rough the bath, resulting in an anode foil having a higher capacitance than foils etched using known methods or etching compositions. The etched anode foil is suitable for use in an electrolytic capacitor.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: May 29, 2001
    Assignee: Pacesetter, Inc.
    Inventors: Thomas Flavian Strange, Ralph Jason Hemphill
  • Patent number: 6224738
    Abstract: This present invention is directed to a method of etching anodic foil for electrolytic capacitors and provides a method of electrolytically growing a porous oxide mask on a surface of a high purity etchable strip of anodic foil for forming etch tunnels at strategic locations on the foil. Unetched high purity aluminum foil is placed in a prepared electrolyte doped with chloride. By passing current through the foil, a porous oxide mask is formed on the surface of the anode foil, with an optimized pore spacing. This oxide mask is then partially removed with a stripping agent in order to expose the underlying anode foil at the bottom of the mask pores to the etch solution. The mask is not removed completely, and the anode foil is exposed only at the pore sites. The foil can then be etched using a conventional etch solution. Etch pits and tunnels form only at the pore sites.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: May 1, 2001
    Assignee: Pacesetter, Inc.
    Inventors: Katherine Crawford Sudduth, Thomas Flavian Strange
  • Patent number: 6203690
    Abstract: A process for reworking of PGA chip carriers where one or more I/O pins is unplated. The process includes electrolytically etching the I/O pins which removes any corrosion product from the unplated I/O pins and removes the top gold layer from the remaining I/O pins. The etchant includes a metal-providing compound selected from the group consisting of a silver salt, copper cyanide, silver cyanide, gold cyanide or mixtures thereof, at a concentration in the range from about 2.7 to about 4.1 g/l as metal; potassium or sodium carbonate at a concentration in the range from about 10 to about 100 g/l; and potassium or sodium cyanide at a concentration in the range from about 29 to about 35 g/l.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: March 20, 2001
    Assignee: International Business Machines Corporation
    Inventors: Paul F. Findeis, John P. Gauci, Krystyna W. Semkow, Renee L. Weisman
  • Patent number: 6180526
    Abstract: A method for improving the conformity of the conductive layer in a contact hole, thus allowing for the formation of a plug in the resulting contact hole. The aforementioned method includes the following steps. First, immerse the conductive layer of the semiconductor wafer into an electrolyte. The first portion of the conductive layer at the opening of the contact hole contact with the electrolyte, the conductive layer in the contact hole is not in contact with the electrolyte due to the surface tension of the electrolyte. Second, electrically couple the electrolyte to the anode of the source power. Finally, electrically couple the conductive layer to the cathode of the power source until the first portion of the conductive layer at the opening of the contact hole is removed.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: January 30, 2001
    Assignee: Industrial Technology Research Institute
    Inventor: Chung-Liang Chang
  • Patent number: 6120674
    Abstract: An electrochemical procedure is employed to selectively remove certain material from a structure without significantly electrochemically attacking other material of the same chemical type as the removed material. The material to be removed constitutes part or all of an electrically non-insulating region (52C). The material which is of the same chemical type as the removed material but which is not to be significantly electrochemically attacked during the removal procedure constitutes part or all of another electrically non-insulating region (52A) electrically decoupled from the first-mentioned non-insulating region. The electrochemical removal procedure is performed with an organically based electrolytic solution containing organic solvent and acid.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: September 19, 2000
    Assignee: Candescent Technologies Corporation
    Inventors: John D. Porter, Gabriela S. Chakarova
  • Patent number: 6103095
    Abstract: A method for selectively wet etching material during the formation of a field emission display device. In one embodiment, the selective wet etching method comprises immersing, in a fluid bath, a structure having a conductive row layer and a resistor layer. The structure further includes a pad area. In this embodiment, the fluid bath includes an organic-acid etchant. The present embodiment then applies a potential to the structure such that exposed regions of the resistor layer are selectively wet etched without significantly etching the conductive row layer or the pad area. In so doing, the present embodiment etches selected materials without requiring the use of highly toxic and hazardous conventional etchants.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: August 15, 2000
    Assignee: Candescent Technologies Corporation
    Inventor: Kishore K. Chakravorty
  • Patent number: 6074546
    Abstract: A method is provided for photochemical polishing of a silicon wafer using electromagnetic waves within the spectrum of 150 to 2000 nanometers wavelength. A photochemical polishing apparatus is also disclosed in which the electromagnetic waves are provided by a waveguide in close proximity to the surface of a silicon wafer electrode.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: June 13, 2000
    Assignee: Rodel Holdings, Inc.
    Inventors: Lizhong Sun, James Shen, Lee Melbourne Cook
  • Patent number: 5993638
    Abstract: There is disclosed a method for edge rounding of cutting tool inserts, in combination with a high surface finish over the whole insert, of cemented carbide or titanium-based carbonitride alloys. An electrolytic method is used with an electrolyte which provides an even removal of both binder phase and hard constituent phases. The electrolyte comprises perchloric (HClO.sub.4) or sulphuric (H.sub.2 SO.sub.4) acid, in amounts >15 and <50 volume %, in methanol or other suitable organic liquid. The method is easier to control than conventional mechanical methods and is particularly useful for providing very small edge radii of about 10 .mu.m in combination with a high surface finish over the whole insert which cannot be made by mechanical or other electrolytic methods.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: November 30, 1999
    Assignee: Sandvik AB
    Inventor: Ulf Rolander
  • Patent number: 5911864
    Abstract: The present invention provides for a wet etch and method for preparing a semiconductor device structure from a silicon carbide wafer. A first embodiment of the wet etch comprises a vessel, a tetrahydrofurfuryl alcohol and potassium nitrite etching solution within the vessel, an electrode, a wafer support for positioning at least a portion of the silicon carbide wafer within the etching solution, and a voltage source coupled with the electrode and the wafer support. A second embodiment of the wet etch comprises a wafer carrier for holding at least one wafer, a polishing plate adjacent the wafer carrier, a voltage source having a first terminal electrically coupled with the wafer and a second terminal electrically coupled with the polishing plate, and an applicator adjacent the polishing plate for depositing an etching solution on a surface of the polishing plate.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: June 15, 1999
    Assignee: Northrop Grumman Corporation
    Inventor: Graeme W. Eldridge
  • Patent number: 5911867
    Abstract: The present invention relates to a method for polishing coated cutting tools and wear parts, where at least the outer layer of the coating consists of TiN, TiC or Ti(C,N), to a high surface finish. An electrolytic method is used with an electrolyte consisting of perchloric (HClO.sub.4) or sulphuric (H.sub.2 SO.sub.4) acid, 2-50 volume %, in methanol or other organic liquid. The method is easier to control than conventional mechanical methods and renders a high surface finish over the whole coated part.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: June 15, 1999
    Assignee: Sandvik AB
    Inventors: Ulf Rolander, Hans Johansson
  • Patent number: 5733433
    Abstract: A heat generating type ink-jet print head including an ink supply passage for receiving an ink from an ink container, a micro chamber for storing the ink and nozzles, all being directly formed on a substrate, and a method for fabricating the ink-jet print head using an electrolytic polishing process, and a method for fabricating the ink-jet print head. The ink-jet print head is fabricated using an electrolytic polishing process, thereby achieving an accurate and inexpensive fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 31, 1998
    Inventors: Ho Jun Lee, Hi Deok Lee, Jae Duk Lee, Jun Bo Yoon, Ki Ho Han, Jae Kwan Kim, Chul Hi Han, Choong Ki Kim, Doo Won Seo
  • Patent number: 5690807
    Abstract: The invention provides a method for producing semiconductor particles in which a semiconductor material of the type for which particles are desired is placed in an electrolytic solution of an anodic cell. The anodic cell is configured with a cathode also positioned in the electrolytic solution. The electrolytic solution of the anodic cell includes an etchant and a surfactant that is characterized by an attractive affinity for the semiconductor material. To produce semiconductor particles from the semiconductor material, an electrical potential is applied between the semiconductor material in the electrolytic solution and the cathode in the electrolytic solution to anodically etch the semiconductor material. During the etch process, particles of the semiconductor material form and are encapsulated by the surfactant. This method for producing semiconductor particles uses an uncomplicated apparatus and procedure that results in inexpensive and high-volume production of particles of a semiconductor material.
    Type: Grant
    Filed: August 3, 1995
    Date of Patent: November 25, 1997
    Assignee: Massachusetts Institute of Technology
    Inventors: Harry R. Clark, Jr., Brian S. Ahern
  • Patent number: 5650059
    Abstract: A carbide substrate including a binder prepared to receive a cutting material such as a diamond coating thereon. The substrate is immersed in an electrolyte solution with the substrate acting as the anode thereby providing for an electro-polished substrate surface. The electro-polished substrate surface is then etched to substantially remove the binder phase of the carbide substrate, the etching being to a depth of up to about 15 microns. The resulting surface is susceptible for receiving a coating of the diamond cutting material.
    Type: Grant
    Filed: August 11, 1995
    Date of Patent: July 22, 1997
    Assignee: Credo Tool Company
    Inventors: Carl Shumaker, Zane D. Lockhart, Jr., Oscar H. Miller
  • Patent number: 5639363
    Abstract: An apparatus and a method for mirror surface grinding which enables high quality, stable ELID grinding; and a grinding wheel for electrolytic dressing. The apparatus comprises a grinding wheel 3 having a contact surface 2 for contacting a workpiece 1, an electrode 4 facing the surface 2, nozzles 5 for supplying conductive fluid between the grinding wheel 3 and the electrode 4, and a power source 6 and feeder 7 for applying a voltage between the grinding wheel and the electrode 4. The bond material, which is selected from among iron, ferrous metal, cobalt, nickel and combinations of two or more thereof, along with grains and sintering aid are molded together and sintered to obtain the conductive grinding wheel. Next, a conductive water-soluble grinding fluid containing an alkanolamine and anions is supplied between the grinding wheel and the electrode, and a pulse wave voltage is applied between the grinding wheel and the electrode to dress the grinding wheel electrolytically during grinding.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: June 17, 1997
    Assignee: Rikagaku Kenkyusho
    Inventors: Hitoshi Ohmori, Takeo Nakagawa, Katsuhiko Karikomi
  • Patent number: 5591320
    Abstract: There is disclosed a method for edge rounding of cutting tool inserts of cemented carbide or titanium based carbonitride alloys. An electrolytic method is used with an electrolyte which provides an even removal of both binder phase and hard constituent phases. The electrolyte comprises perchloric (HC10.sub.4) sulphuric (H.sub.2 SO.sub.4) acid, 2-15 vol %, and mixtures thereof in methanol or other suitable organic liquid. The method is easier to control than conventional mechanical methods and is particularly useful for providing very small edge radii of about 10 .mu.m which cannot be made by mechanical methods.
    Type: Grant
    Filed: December 4, 1995
    Date of Patent: January 7, 1997
    Assignee: Sandvik AB
    Inventor: Ulf Rolander
  • Patent number: 5574486
    Abstract: The present invention provides an ink jet print head capable of fast, efficient and consistent printing. Such ink jet print heads include an ink ejecting component which incorporates electropolished surfaces. Electropolishing techniques useful in the production of such ink ejecting components are also discussed.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: November 12, 1996
    Assignee: Tektronix, Inc.
    Inventors: Maridana L. Whitlow, J. Kirk McGlothlan, Jeffrey J. Anderson, Randy C. Karambelas, Richard Schmachtenberg, III
  • Patent number: 5538600
    Abstract: A method of forming a highly-deflective surface on aluminum alloys. The, the composition comprising: cleaning a body formed from an aluminum alloy; electrobrightening the body; and desmutting the surface of the freshly-brightened body without etching. The bath comprises: 15-95 vol. % nitric acid and 1-85 vol. % acetic acid; 1-40 vol. % total water; and a source of fluoride ion supplying at least 35 grams per liter of fluoride. Ammonium bifluoride is the preferred source of fluoride.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: July 23, 1996
    Assignee: Aluminum Company of America
    Inventors: Paul B. Schultz, Albert L. Askin
  • Patent number: 5503718
    Abstract: A method of etching an aluminum foil for electrolytic capacitors, comprising the steps of electrolytically etching an aluminum foil for electrolytic capacitors that has a high cubic texture in an electrolyte containing a chloride to form pits, and enlarging the pits formed in the above step by etching, in which step of forming pits the current density is increased from 0 to a maximum value quickly and then is decreased gradually.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: April 2, 1996
    Assignee: Nihon Chikudenki Kogyo Kabushiki
    Inventor: Kaoru Kakizakai