Internal Battery Action (e.g., Using Sacrificial Anode, Etc.) Patents (Class 205/730)
  • Publication number: 20070267290
    Abstract: A photovoltaically powered cathodic protection system for an automotive vehicle uses electrical energy arising from a photovoltaic array positioned upon an exterior surface of the vehicle, with the cathodic protection current being controlled by a controller which is also connected with an electrical storage device and with at least one electrogalvanic cell sensor. The controller and associated sensors function to assure that sufficient charge passes through conductors applied to the body of the vehicle to maintain cathodic protection on a consistent basis.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 22, 2007
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: James Richardson
  • Patent number: 7279087
    Abstract: A method for protecting metal-containing structures, in particular electrically conductive structures, deposited on a substrate, against corrosive attacks, in particular electrocorrosion attacks. The method applies at least temporarily to the structure a passivation electric voltage in the passivation range of the conductive material concerned.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: October 9, 2007
    Assignee: Saint-Gobain Glass France
    Inventor: Helmut Maeuser
  • Patent number: 7276144
    Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. The anode body is formed, by pressing together finely divided powder, flakes or fibers of a sacrificial anode material such as zinc to define a porous body having pores therein. The sacrificial anode material of the anode member is directly in contact with the covering material by being buried or inserted as a tight fit into a drilled hole so that any expansion forces therefrom would be applied to the concrete with the potential of causing cracking. The pores are arranged however such that corrosion products from corrosion of the anode body are received into the pores sufficiently to prevent expansion of the anode body to an extent which would cause cracking of the covering material.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: October 2, 2007
    Inventor: David Whitmore
  • Patent number: 7264707
    Abstract: A corrosion inhibitor composition for use in combination with cathodic protection of metallic structures includes between about 5 and 80 percent by weight cyclohexylammonium benzoate; between about 1 and 10 percent by weight monoethanolammonium benzoate; between about 5 and 90 percent by weight dicyclohexylammonium nitrate; and up to about 5 percent by weight fumed silica, and may further include about 2 percent by weight tolyltriazole.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 4, 2007
    Assignee: Cortec Corporation
    Inventors: Alla Furman, Margarita Kharshan, Boris A. Miksic
  • Patent number: 7258780
    Abstract: An apparatus and method for protecting a structure from corrosion, according to which the apparatus includes two pivotally connected members, at least one anode device connected to at least one of the members, and a resilient component engaged with the members.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: August 21, 2007
    Assignee: Wellstream International Limited
    Inventors: Helio Marins David Filho, Robert Ribeiro Braga
  • Patent number: 7192513
    Abstract: A cathodic protection junction box current equalizer has a plurality of output terminals each being connectable through a variable resistors to an anode, the resistors being controlled such that the corresponding anode outputs a desired current.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: March 20, 2007
    Assignee: Saudi Arabian Oil Company
    Inventor: Husain M. Al-Mahrous
  • Patent number: 7189319
    Abstract: First and second axial current meters (ACM) are mechanically connected to a well casing just above and below a corrosive zone and a master axial current meter (MACM) is connected to the casing at the earth's surface, the MACM periodically obtaining measurements of axial current from the ACMs to determine how much cathodic protection current is to be applied to the casing to avoid corrosion.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: March 13, 2007
    Assignee: Saudi Arabian Oil Company
    Inventors: Husain M. Al-Mahrous, Darrell R. Catte
  • Patent number: 7186321
    Abstract: An active cathodic protection system, the apparatus comprising a rectifier element with at least one electrical connection to a source of electrical current, the rectifier element associated with a direct current positive (+) output terminal for electrical connection of via an anode connector to a consumable anode, a direct current negative (?) output terminal for electrical connection via a cathode connector to the structure to be protected, grounding means for electrical grounding of the apparatus and anti-cross connection means for preventing the continuing flow of electrical current when the anode connector is associated with the negative output terminal and the cathode connector is associated with the positive output terminal.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: March 6, 2007
    Inventor: Roger A. Benham
  • Patent number: 7186327
    Abstract: A method and apparatus wherein an electrically conductive element is placed inside a previously installed metallic water vessel such as a supply pipe or well. A direct current voltage is then applied between the element and the conductive wall of the vessel. The conductive element can be a partially insulated wire. For causing deposition on the vessel, the voltage applied to the conductive element is of an amount sufficient to cause the potential of the metallic vessel to be lowered below the potential of the element by at least ?0.3 volts, and more adequately ?1.3 volts. An alternative embodiment involves reversing the polarity of the voltage applied between the conductive element and the vessel, causing the oxidation/reduction reaction to reverse, resulting in calcium carbonate being removed from the vessel by the production of acid at the surface of the vessel.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: March 6, 2007
    Inventor: Larry L. Russell
  • Patent number: 7182852
    Abstract: The present invention provides a method of testing a cryogenic metal tank before it is put into service, in which said method said tank (1) is filled with water and appropriate measurements are performed where necessary, the method being characterized in that the following steps are performed: filling said metal cryogenic tank (1) with sea water; and providing the bottom and side metal walls (2, 3) of said tank (1) that are constituted essentially by bare steel, with temporary cathodic protection by injecting an electric current into anodes disposed within said tank (1) once said anodes become immersed. Advantageously, a first anode array (51) is placed in the immediate vicinity of the bottom of the tank using support means (52), said support means (52) and said first anode(s) (51) preferably being removable.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: February 27, 2007
    Assignee: Saipem S.A.
    Inventor: Alphonse Boreave
  • Patent number: 7169288
    Abstract: Systems and methods of cathodic protection. The system includes a metallic housing, a backplane situated within the metallic housing, a cathodic protection card coupled to the backplane and a permanent anode, external to the metallic housing, coupled to the cathodic protection card through an isolated port. The cathodic protection system is powered using span power. The permanent anode and metallic housing are adapted to form a closed circuit when both come in contact with an electrolyte. The permanent anode is maintained at a higher potential than the metallic housing.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: January 30, 2007
    Assignee: ADC DSL Systems, Inc.
    Inventor: Richard J. Drapeau
  • Patent number: 7160433
    Abstract: The cathodic protection system of a concrete structure (22) uses sacrificial anodes such as zinc, aluminum and alloys thereof embedded in mortar. A humectant is employed to impart high ionic conductivity to the mortar in which the anode is encapsulated. Lithium nitrate and lithium bromide and combinations thereof are preferred as the humectant. The anode (10) is surrounded by a compressive, conductive matrix (12) incorporating a void volume between 15% and 50% to accommodate the sacrificial corrosion products of the anode. A void space of at least 5% of the total volume of the anode (12) may be provided opposite to the active face of the anode. Synthetic fibers such as polypropylene, polyethylene, cellulose, nylon and fiberglass have been found to be useful for forming the matrix. A tie wire is used to electrically connect the anode to the reinforcing bar.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: January 9, 2007
    Inventor: John E. Bennett
  • Patent number: 7147768
    Abstract: A process of reducing scaling of a metal surface exposed to an aqueous solution from which scale may form after a period of exposure. The process comprises applying a cathodic potential to the surface for at least some of the period of exposure. In some cases, e.g. when an article is made of a ferrous metal, it is advantageous to coat the article with a different metal (e.g. copper or an alloy of copper) before applying the cathodic potential to avoid hydrogen generation and excessive current flow. An article to be protected from scaling may also advantageously be electrically isolated from other parts of an apparatus.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: December 12, 2006
    Assignee: Alcan International Limited
    Inventor: Raymond Breault
  • Patent number: 7097746
    Abstract: An anode protection device and method are provided. The method includes placing a sacrificial anode in proximity to the positive and negative contacts to shield or distort the field therebetween which provides preferential corrosion of the sacrificial anode, instead of the anode. The protection device is a sacrificial anode having various forms and placed in different configurations. In one form the sacrificial anode is a plate. In another form the sacrificial anode is a ring placed around either the positive contact or negative contact to provide a shield between the negative and positive contacts. In a further device embodiment, the sacrificial anodic plate can be welded to the aluminum case of a rechargeable battery of a behind-the-ear (BTE) hearing device.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: August 29, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: George Tziviskos, C. Geoffrey E Fernald
  • Patent number: 6896779
    Abstract: A system using tank corrosion sensors to provide for an overall assessment and monitoring of the electro-chemical corrosion and coatings condition in ships' tanks, and particularly in ships' seawater or compensated fuel tanks. The system includes reference half-cells mounted along a suspended cable and one instrumented sacrificial anode at the end of the cable to provide optimal sensing capability within a tank structure. The reference half-cells and the sacrificial anode measure a potential and current output, respectively. Together the measurements provide objective information that can be used to predict corrosion damage and coating deterioration occurring throughout the structure of the tank. The system may be used for an overall assessment and monitoring of the electro-chemical corrosion and coatings condition. In a preferred embodiment, the measurements are stored in a datalogger that is optimally contained within an associated instrument housing.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: May 24, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Elvin D. Thomas, III, Keith E. Lucas, Paul Slebodnick, Elizabeth A. Hogan
  • Patent number: 6866770
    Abstract: A prefabricated ground mat with cathodic protection adapted to protect persons from induced electrical potentials in a pipe or other electrical conductor buried below a ground-level surface, adapted to protect test stands, valve sites, metering stations, pig launchers and receivers, access portals, or other exposed, above-ground equipment which are electrically connected to the buried conductor, from such electrical potentials, and adapted to protect the buried conductor from oxidation due to the ground grid. Multiple mats may be buried between the underground conductor and the ground-level surface and electrically connected to either the underground conductor, the above-grade buried conductor, or both. The mats are made of materials such that the galvanic cell formed by the electrical union of the underground conductor with the mat cause the mat to be consumed.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: March 15, 2005
    Assignee: Corrosion Restoration Technologies, Inc.
    Inventor: Jorge E. Costa
  • Patent number: 6863799
    Abstract: A method for manufacturing improved cast anodes for corrosion protection in storage tanks calls for integrating a plurality of spaced steel core rods into a sacrificial galvanic anode material sheet. The sheet is divided into segments such that a width of each segment is four to eight times the thickness of the galvanic sheet.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: March 8, 2005
    Inventor: James B. Bushman
  • Patent number: 6811681
    Abstract: An apparatus, system, method and computer program product directed to controlling corrosion of a conductive structure in contact with a corrosive environment and coated with a semiconductive coating, where the corrosion is controlled by a controllable filter and a corresponding electronic control unit configured to process at least one stored or measured parameter.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: November 2, 2004
    Assignee: Applied Semiconductor International Ltd.
    Inventors: David B. Dowling, Farshad Khorrami
  • Publication number: 20040211678
    Abstract: The present invention provides a curable cathodic corrosion protection powder coating, which comprises a thermosetting resin, a zinc borate compound, a curing agent in an amount effective to cure the coating. Further, the present invention also provides a method of cathode corrosion protection which includes the steps of subjecting the substrate to a mechanical treatment, applying to said treated steel surface, the cathodic protective coating, and polarizing the coated material as a cathode.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 28, 2004
    Inventor: Stephen J. Edmondson
  • Patent number: 6793800
    Abstract: Cathodic protection of an existing concrete structure, including a steel member at least partly buried, such as steel rebar, in the concrete structure, is provided by embedding anodes into a fresh concrete layer applied over an excavated patch and/or as a covering overlay. The anodes are embedded at spaced positions or as an array in the layer and connected to the rebar. A corrosion inhibitor is added into the fresh concrete at least at the interface and more preferably in admixture with the fresh concrete which acts to reduce the flow of ionic current to the steel or between the anode member and the steel in the fresh covering material without significantly increasing the resistivity of the fresh covering material and without inhibiting the ionic current between the anode member and the fresh covering material. In this way the current to the steel in the existing concrete is maximized to maximize the cathodic protection to the existing steel which is the primary target.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: September 21, 2004
    Inventor: David Whitmore
  • Publication number: 20040112762
    Abstract: The present invention relates to a method for protecting surfaces (S) which are in contact or come into contact with a water-containing medium (M) against biological macro-fouling, wherein 1) S is electrically conducting and 2) such a potential (P) fluctuating over time is applied to S that it inhibits the growth of organisms that live in M and/or propagate therein and which have the tendency to form deposits on S, characterised in that P does not assume values that are higher than the corrosion potential of S in M and the average value of P is lower than the said corrosion potential.
    Type: Application
    Filed: February 5, 2004
    Publication date: June 17, 2004
    Inventors: Marc Erwin Wilms, Hendrik Jacobus Arie Breur
  • Patent number: 6692633
    Abstract: Resistance to corrosion of aluminum metallization on semiconductor devices during wafer sawing process is provided by a sacrificial anode containing magnesium in contact with the integrated circuit wafer and the dicing saw. A relatively thin film or disc of magnesium directly in contact with the surface of the dicing blade makes use of cooling water to serve as the electrolyte between the magnesium and aluminum surfaces, and in turn corrosion is transferred to the magnesium anode in preference to the aluminum of the semiconductor device.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: February 17, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: John P. Tellkamp
  • Patent number: 6689270
    Abstract: Water having dissolved salts therein causing scaling is treated by flowing through a passage in an elongate tubular member. The tubular member has a first metal inside surface exposed to the water. A second metal surface is positioned therein and the two surfaces have areas of 1:1 up to about 125% with the second metal being different from the first metal. The metal surfaces are electrically insulated from each other so that current flow between the two is through the water.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: February 10, 2004
    Inventor: Lynn Evert
  • Patent number: 6669837
    Abstract: A process for reducing the corrosion of nickel metal in an alkali metal hydroxide evaporator equipment which comprises the step of impressing a total protection potential directly upon the nickel metal material in alkali metal hydroxide evaporator that is in contact with an aqueous alkali metal hydroxide solution during evaporation of that solution; said total potential being sufficient to reduce the amount of corrosion of the nickel metal to an oxide that may dissolve in the alkali metal hydroxide solution.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: December 30, 2003
    Assignee: Sunbelt Chlor Alkali Partnership
    Inventors: Jonathan B. Diminnie, Sanders H. Moore, James F. Pickering, Thomas E. Corvin
  • Patent number: 6613216
    Abstract: A storage tank for fluids comprises a novel striker plate. The striker plate is comprised of a sacrificial galvanic anode and a steel core, and it is situated opposite an access opening used for measuring depth of fluid in the tank. The striker plate can also function adjacent other corrosive areas in a tank, such as along a seam in a tank wall, to reduce corrosion.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: September 2, 2003
    Inventors: James B. Bushman, Brian C. Donovan
  • Patent number: 6572760
    Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. Each anode is inserted into a drilled hole in the layer and is electrically attached to the rebar in the same or an adjacent hole by a steel pin which is attached to the reinforcement by arc welding or by impact. In the arrangement where the anode and the attachment are in the same hole, the pin passes into or through the anode so as to hold the anode rigidly within the hole. The hole is filled by a settable filler material.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 3, 2003
    Inventor: David Whitmore
  • Patent number: 6562206
    Abstract: A propeller attachment is disclosed including a body, the body including an anodic material, at least one projection projecting from the body, and a fastener coupled to the body. An anode is also disclosed including an annular body constructed from an anodic material, a fastener disposed centrally in the annular body, and at least one extension coupled to the annular body, the at least one extension is configured to allow for gripping of the anode. A fastener for coupling a propeller to a drive shaft of a lower unit is disclosed including a fastening portion configured to threadably engage the drive shaft and retain the propeller. The fastener further includes an anodic portion disposed around the fastening portion. The anodic portion is shaped to form at least one grip, and the anodic portion preferentially corrodes to prevent corrosion of the lower unit.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: May 13, 2003
    Assignee: Johnson Outdoors Inc.
    Inventor: Shawn Showcatally
  • Patent number: 6562229
    Abstract: A metal anode useful in a galvanic or impressed current cathodic protection system for a steel reinforced concrete article is a unitary, multi-plane, porous, metal anode strip or ribbon having a plurality of louvers defining a plane or planes at the lateral extremities of said louvers. In one embodiment, louvers extending in their long dimension longitudinally on the anode strip are spaced apart from adjacent louver units by an intermediate plane. Louvered anode strips consisting of a valve metal or alloy or mixture thereof are useful at an anode current density of up to about 20 milliamps per square foot. Louvered metal anodes comprising an electrocatalytically active coating on a valve metal substrate are useful at higher anode current densities. Sacrificial metal anodes such as zinc anodes are useful in galvanic cathodic protection systems.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: May 13, 2003
    Inventors: John W. Burgher, Dennis F. Dong, Richard E. Loftfield
  • Patent number: 6514401
    Abstract: An anti-biofouling system adapted to be used for an underwater structure immersed in seawater is disclosed. The anti-biofouling system includes a conductive layer, comprising carbon fiber, graphite powder and binder, formed on a surface of the underwater structure for serving as an anode, a cathode, and a power supply for providing a current, thereby performing an electrolytic reaction for the anti-biofouling system such that a fouling organism is prohibited from attaching on the surface of the underwater structure.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: February 4, 2003
    Assignee: Taiwan Power Company
    Inventors: San-Der Chyou, Wen-Chi Chiang, Ran Huang, Jiann-Kuo Wu
  • Publication number: 20030012968
    Abstract: A method of partially galvanizing a piece obtained by injection molding, the method comprising the following steps:
    Type: Application
    Filed: July 11, 2002
    Publication date: January 16, 2003
    Applicant: ALCATEL
    Inventors: Marc Phu, Emmanuel Roche, Bertrand Cupif
  • Publication number: 20020185381
    Abstract: A method for manufacturing improved cast anodes for corrosion protection in storage tanks calls for integrating a plurality of spaced steel core rods into a sacrificial galvanic anode material sheet. The sheet is divided into segments such that a width of each segment is four to eight times the thickness of the galvanic sheet.
    Type: Application
    Filed: May 22, 2002
    Publication date: December 12, 2002
    Inventor: James B. Bushman
  • Publication number: 20020162753
    Abstract: An anti-biofouling system adapted to be used for an underwater structure immersed in seawater is disclosed. The anti-biofouling system includes a conductive layer, comprising carbon fiber, graphite powder and binder, formed on a surface of the underwater structure for serving as an anode, a cathode, and a power supply for providing a current, thereby performing an electrolytic reaction for the anti-biofouling system such that a fouling organism is prohibited from attaching on the surface of the underwater structure.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 7, 2002
    Inventors: San-Der Chyou, Wen-Chi Chiang, Ran Huang, Jiann-Kuo Wu
  • Patent number: 6471851
    Abstract: Humectants are applied to cathodic protection systems which utilize thermally-sprayed zinc or zinc alloy anodes applied to the surface of reinforced concrete structures. The humectants are deliquescent or hygroscopic organic or inorganic salts, hydrophilic polymers or colloids, or organic liquid desiccants. The humectants are positioned at or near the interface between the anodes and the concrete and increase the moisture content at the interface. This increases the ability of the anode to deliver cathodic protection current to steel embedded in the concrete. The humectants may be applied to the concrete surface prior to application of the anode, or may be applied subsequent to installation of the anode.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: October 29, 2002
    Inventor: Jack E. Bennett
  • Patent number: 6423208
    Abstract: Control of lead contamination in residential water supplies is accomplished by cathodic protection of lead-containing piping and lead-containing fixtures. Specifically, a partially insulated wire is inserted into lead-containing service lateral piping. Application of a DC current to the partially insulated wire causes the wire to act as an anode and transforms the walls of the pipe into the cathode, thereby protecting against corrosion. Alternatively, a sacrificial anode is inserted into a lead-containing fixture. The electrical potential generated by corrosion of this sacrificial anode transforms the walls of the fixture into a cathode thereby preventing corrosion. Carbonate scaling built-up prior to the initiation of cathodic protection may be removed by temporarily blocking the water pipe and introducing cleaning chemicals.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: July 23, 2002
    Inventor: Larry L. Russell
  • Publication number: 20020023848
    Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. Each anode is inserted into a drilled hole in the layer and is electrically attached to the rebar in the same or an adjacent hole by a steel pin which is attached to the reinforcement by arc welding or by impact. In the arrangement where the anode and the attachment are in the same hole, the pin passes into or through the anode so as to hold the anode rigidly within the hole. The hole is filled by a settable filler material.
    Type: Application
    Filed: July 24, 2001
    Publication date: February 28, 2002
    Inventor: David Whitmore
  • Patent number: 6331243
    Abstract: An apparatus for prevention of corrosion in metal objects uses a capacitively coupled fastener or pad attached to a metal body being protected from corrosion. The metal body and the negative terminal of a source of DC voltage (battery) are grounded. The positive terminal of the source of DC voltage is connected to electronic circuitry that imparts pulses of low voltage DC through the capacitor to the fastener. These pulses of electrical current inhibit the oxidation of the metal object by providing a source of electrons to the oxidizing chemicals in contact with the metal. The electronic circuitry includes a reverse voltage protector to prevent the application of reverse source voltage. The circuitry also includes a power conditioner to supply a constant DC voltage to a microprocessor. The microprocessor generates pulses of DC signals that are amplified by a pulse amplifier and imparted to the conductive facing of the pad. The invention also includes a battery voltage monitor and a power indicator.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: December 18, 2001
    Assignee: Red Swan, Inc.
    Inventor: Michael E. Lewis
  • Patent number: 6331242
    Abstract: Corrosible metallic elements of tank are protected by an anodic encasement sleeve. The anodic encasement sleeve employs an inner sacrificial anodic layer and an outer environmental barrier layer to provide both cathodic and barrier protection against corrosion. Following application of the sleeve, typically by drawing or wrapping, the anodic encasement sleeve remains substantially unbonded from the tank, though it is electrically connected by conductive means. Because of the substantially unbonded relationship between the sacrificial anodic layer and the metallic elements of the tank, if electrolyte is present under the environmental barrier (due to breaches, installation error, condensation, etc.), the electrolyte may enter the unbonded area between the tank and the anodic material. This increases the ratio of anodic material to tank available, which makes the cathodic protection more efficient and effective for an extended duration.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: December 18, 2001
    Assignee: United States Pipe and Foundry Company, Inc.
    Inventor: A. Michael Horton
  • Patent number: 6303017
    Abstract: Reinforcement in concrete is cathodically protected by galvanically connecting a sacrificial anode, such as a zinc or zinc alloy anode, to the reinforcement, and contacting the anode with an electrolyte solution having a pH which is maintained sufficiently high for corrosion of the anode to occur, and for passive film formation on the anode to be avoided. The pH of the electrolyte is preferably at least 0.2 units, and preferably from 0.5 units to more than 1.0 units, above the pH value at which passivity of the anode would occur. The electrolyte may be for example sodium hydroxide or potassium hydroxide but is preferably lithium hydroxide which also acts as an alkali-silica reaction inhibitor.
    Type: Grant
    Filed: August 20, 1999
    Date of Patent: October 16, 2001
    Assignee: Aston Material Services Limited
    Inventors: Christopher L. Page, George Sergi
  • Patent number: 6261439
    Abstract: A cathodic protection system utilizes dynamic control of an output from a power supply to vary an impressed current applied to a structure to be protected proportional to a measurement of stray electrical current. The current is also supplied to an anode bed in an amount sufficient to maintain the structure more negatively charged than the anode bed such that the stray electrical currents are directed away from the structure, thus avoiding electrolytic attack.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: July 17, 2001
    Inventors: Robert J. Schwabe, Alexey V. Poliakov, Earle C. Bascom, III, Oleg Zuev, Igor Chernienko, Yuri Ya. Iossel, John F. Troisi, Shalom Zelingher, Vladimir Fedorov, Vladimir Leonov
  • Patent number: 6238545
    Abstract: An anode is embedded in an electrolyte layer applied to the surface of a structure such as a pipe section to provide an ionic conductive path between the anode and structure to supply cathodic protection to the structure, where the natural environment may not provide a continuous electrolyte. The anode is comprised of a material normally used as a cathodic protection anode material, such as, an expanded valve metal mesh or ribbon having either an electrochemically active coating or noble metal coating, or a sacrificial anode metal alloy. The anode material is made continuous from one end of the structure to the other and may be connected to a common bus wire from one end to the other. The anode and structure to be protected are connected using wires to a DC power supply that causes cathodic protection current flow to the structure in the case of an impressed current system. No separate power supply is needed in the case of a galvanic or sacrificial anode system.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: May 29, 2001
    Inventors: Carl I. Allebach, Albert A. Smith, Walter T. Young
  • Patent number: 6224743
    Abstract: Apparatus, compositions and methods provide cathodic protection to a structure by placing an anode layer (10) directly between the structure (22) and its underlying foundation (30). Structures contemplated to be protected in this manner include especially very large structures such as above ground storage tanks. In one aspect of preferred embodiments, the anode layer (10) comprises sheets of at least 85% aluminum with other alloying elements such as magnesium (0.05 to 6%), zinc (0.1 to 8%), indium (0.005 to 0.03%) and tin (0.05 to 0.2%) added for the purposes of optimizing current yield, polarization and ease of manufacturing the sheet.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: May 1, 2001
    Assignee: Fluor Daniel, Inc.
    Inventor: Reddi Satyanarayana
  • Patent number: 6183625
    Abstract: A galvanic monitor system uses two annunciators, such like light emitting diodes, to alert a boat operator of the current status of the boat's galvanic protection system. A reference electrode is used to monitor the voltage potential at a location in the water and near the component to be protected. The voltage potential of the electrode is compared to upper and lower limits to determine if the actual sensed voltage potential is above the lower limit and below the upper limit. The two annunciators lights are used to inform the operator if the protection is proper or if the component to be protected is either being over protected or under protected.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: February 6, 2001
    Assignee: Brunswick Corporation
    Inventor: Richard E. Staerzl
  • Patent number: 6103097
    Abstract: Control of lead contamination in residential water supplies is accomplished by cathodic protection of lead-containing piping and lead-containing fixtures. Specifically, a partially insulated wire is inserted into lead-containing service lateral piping. Application of a DC current to the partially insulated wire causes the wire to act as an anode and transforms the walls of the pipe into the cathode, thereby protecting against corrosion. Alternatively, a sacrificial anode is inserted into a lead-containing fixture. The electrical potential generated by corrosion of this sacrificial anode transforms the walls of the fixture into a cathode, thereby preventing corrosion. Carbonate scaling built-up prior to the initiation of cathodic protection may be removed by temporarily blocking the water pipe and introducing cleaning chemicals.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: August 15, 2000
    Inventor: Larry L. Russell
  • Patent number: 6033553
    Abstract: The present invention relates to the field of cathodic protection of reinforced concrete. A conductive metal is thermally applied onto an exposed surface of the concrete in an amount effective to form an anode on the surface. This establishes an interface between the anode and the concrete. The thermal application is performed in a manner which is effective to impart permeability to the anode. A lithium salt solution selected from the group consisting of lithium nitrate solution, lithium bromide solution, and combinations thereof is applied to the external surface of the anode. The solution migrates by capillary attraction to the interface of the anode with the concrete depositing the lithium salt at the interface. The lithium salt functions as a current enhancing agent. The salt also functions as a humectant absorbing moisture from the atmosphere thereby providing an electrolyte at the interface. These combined effects substantially increase current delivery from the anode.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: March 7, 2000
    Inventor: Jack E. Bennett
  • Patent number: 5999107
    Abstract: A cathodic protection monitoring system for buried metal objects comprising a transponder hard-wire connected to a sacrificial anode and a reference electrode, each of the transponder, the sacrificial anode and the reference electrode being buried underground in close proximity to the buried metal object to be protected, thereby forming a first principal circuit between the sacrificial anode and the buried metal object and forming a second principal circuit between the reference electrode and the buried metal object. The system further comprises a portable transceiver disposed above ground tuned to a frequency of the transponder. Power for operation of the transponder is drawn from the cathodic protection circuit, thereby obviating the need for connections to above ground power supplies.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: December 7, 1999
    Assignee: Institute of Gas Technology
    Inventors: Joel Cooper, Albert W. Gershman, Joe W. McCarty, Arthur Shapiro, Christopher J. Ziolkowski
  • Patent number: 5968339
    Abstract: The present invention resides in a method for cathodic protection of and/or chloride removal from a reinforced concrete structure. The method comprises the steps of: providing an anode comprising a conductive corrodible metal; providing a corrosive environment for said anode; electrically connecting the anode and the reinforcement of the concrete structure; distributing the current flow from the anode across a surface of the concrete structure; and positioning a humectant at said surface in an effective amount to increase the current flow from the anode. The present invention can also be used to migrate lithium into concrete, thus mitigating alkali-aggregate deterioration.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: October 19, 1999
    Inventor: Kenneth C. Clear
  • Patent number: 5932087
    Abstract: An anode and bracket assembly for attaching sacrificial anodes to submerged structures utilizes one or more shepard's hook hanger brackets. The anode or anodes are cast directly on the bracket with a relatively deep spiral grooved profile for vortex shedding in high currents reducing vibration of the anode, bracket and structure. The hooks extend vertically and have a crook or notch designed to mate with a horizontal structural member which may be circular or rectangular. The hook has a long approach or tip and a lifting eye on top to assist in the quick placement of the bracket on the structure. A pointed contact bolt is mounted in the hook to be driven into the underside of the structure. This clamps the bracket to the structure and also provides good electrical contact between the structure and anode. The anode may extend horizontally spanning between two or more hooks or simply hang vertically from a single hook.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: August 3, 1999
    Assignee: Corrpro Companies, Inc.
    Inventor: Leon J. Terrase
  • Patent number: 5820737
    Abstract: A marine structure submersible in seawater, such as a hull, which when electrically activated is then resistant to fouling by marine organisms. The hull is formed by a structural laminate having a core sandwiched between inner and outer skins. The outer skin which forms the exposed surface of the hull is coated with a metallic paint defining a cathodic electrode. The core is constituted by balsa wood or foam plastic modules attached to an open-mesh scrim that includes conductive fibers to create an electrical grid defining an anodic electrode that is embedded in the laminate. Impressed across the electrodes is a direct voltage to establish an electric field causing marine organisms which seek to foul the hull surface to migrate away from this surface. Alternatively, the cathodic electrode may be formed by an open-mesh scrim defining an electrical grid interposed between the core and the outer skin.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: October 13, 1998
    Inventor: Henri-Armand Kohn
  • Patent number: 5785842
    Abstract: A system for monitoring and alternatively adjusting the electrical energy input and output of remotely located corrosion protection rectifiers on a section of a longer pipeline includes three elements. The first element is a monitoring unit which monitors electrical input, output voltage, output amperage and level of applied cathodic protection of the electrical energy provided to the pipeline by a rectifier. This data on electrical energy is then transmitted to the second element, a low-level communication satellite. The low-level communication satellite then retransmits the data to the third element, a management data center. The information received at the management data center may be monitored, recorded or transformed into adjustment signals which are then retransmitted via the low-level communication satellite back to the rectifier on the pipeline.
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: July 28, 1998
    Inventor: Robert M. Speck
  • Patent number: 5665221
    Abstract: A device is placed in a container containing flowing fluid to neutralize fluid contaminants and prevent their deposition on the walls of the container. The device includes a weak electrical current generator having an electric half-cell that forms an electric circuit with the earth-grounded container via the liquid and generates electrons to neutralize the charged contaminants. The generator includes one or more cupriferous tubes containing a mixture of vegetable oil, and powders of copper, zinc, manganese, cellulose and predominantly iron. Preferably, each tube contains:vegetable oil--5.0-20.0%iron powder--50.0-80.0%copper powder--2.0-10.0%zinc powder--2.0-10.0%manganese powder--2.0-10.0%cellulose powder--2.0-15.0%trace minerals--.ltoreq.0.50%.This device may be placed in the line of flow of a deep oil well to prevent deposition of paraffin and other contaminants onto the walls of the pipeline.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: September 9, 1997
    Assignee: A Rx Technologies Inc.
    Inventor: Bruce W. Owen