Using Coated Electrode (e.g., Having Electrocatalytic Coating, Etc.) Patents (Class 205/759)
  • Patent number: 10678068
    Abstract: Embodiments are disclosed of an eye-mountable device (EMD) including a lens enclosure including an anterior layer and a posterior layer sealed to the anterior layer. An anterior electrode is disposed within the lens enclosure on a concave side of the anterior layer, a posterior electrode is disposed within the lens enclosure on a convex side of the posterior layer, and an electrochromic element is disposed across a central region of the lens enclosure, wherein the electrochromic element separates the anterior electrode from the posterior electrode within the central region.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 9, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Jeffrey G. Linhardt, Travis Deyle, Joshua N. Haddock
  • Patent number: 10109430
    Abstract: An asymmetric supercapacitor includes a negative electrode made of a first carbon, a positive electrode made of a soft carbon, a separator and an electrolyte. The separator is disposed in between the negative and positive electrodes. The soft carbon has an activation threshold (AT) larger than 1400, and the activation threshold (AT) is obtained from the following formula: AT=La*(Aa/Ac). La is an in-plane correlation length of the soft carbon, Aa is an area of amorphous peak of the soft carbon analyzed by X-ray diffraction in Gaussian distribution graph, and Ac is an area of crystalline peak of the soft carbon analyzed by X-ray diffraction in Gaussian distribution graph.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: October 23, 2018
    Assignees: NATIONAL TSING HUA UNIVERSITY, DELTA ELECTRONICS, INC.
    Inventors: Chi-Chang Hu, Hsiao-Hsuan Shen
  • Publication number: 20150147593
    Abstract: An electrode for use in bio-electrochemical systems is described, including: a substantially planar electrode material; a frame comprising a non-conductive substance; and one or more first conductive substances linked or secured to the frame. Bio-electrochemical systems, racks for inserting the electrode, and methods of using the racks are also described.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Matthew SILVER, Justin BUCK, Casey CHARTIER, Mark BAROSKY, James Ryan HAWKINS, Zhen HUANG, Quynh Anh Le TRAN, Tzipora WAGNER
  • Publication number: 20150076002
    Abstract: The present disclosure is generally directed to devices and methods of treating aqueous solutions to help remove or otherwise reduce levels, concentrations or amounts of one or more contaminants. The present disclosure relates to a method of which includes the application of a constant current or a pulse width modulation duty cycle to at least one counterelectrode (e.g. cathode) and at least one photoelectrode (e.g. anode) provided or arranged around at least one UV light source in a housing adapted to also receive, contain and/or circulate fluid or aqueous solution.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 19, 2015
    Inventors: Edward Andrews, Terence P. Barry, Ramsey Kropp, Alan Carlson, Grant Frank
  • Publication number: 20150021194
    Abstract: Solution-phase (e.g., homogeneous) or surface-immobilized (e.g., heterogeneous) electrode-driven oxidation catalysts based on iridium coordination compounds which self-assemble upon chemical or electrochemical oxidation of suitable precursors and methods of making and using thereof are. Iridium species such as {[Ir(LX)x(H2O)y(?-O)]zm+}n wherein x, y, m are integers from 0-4, z and n from 1-4 and LX is an oxidation-resistant chelate ligand or ligands, such as such as 2(2-pyridyl)-2-propanolate, form upon oxidation of various molecular iridium complexes, for instance [Cp*Ir(LX)OH] or [(cod)Ir(LX)] (Cp*=pentamethylcyclopentadienyl, cod=cis-cis,1,5-cyclooctadiene) when exposed to oxidative conditions, such as sodium periodate (NaIO4) in aqueous solution at ambient conditions.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 22, 2015
    Inventors: Stafford Wheeler Sheehan, Ulrich Hintermair, Julianne M. Thomsen, Gary W. Brudvig, Robert H. Crabtree
  • Patent number: 8932977
    Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: G. Charles Dismukes, Martha Greenblatt
  • Publication number: 20140353168
    Abstract: The invention relates to an electrode suitable for decreasing the chemical oxygen demand of waste-water comprising: a) a permanent component; and b) a sacrificial component arranged face-to-face and releasably attached to the permanent component and in electrical contact therewith, said permanent component consisting of a Substrate of a valve metal equipped with a catalytic coating containing noble metals or oxides thereof, said sacrificial component containing elemental iron. Further the invention relates to a method for abatement of the chemical oxygen demand in an aqueous waste containing oily compounds, glycols or waxes, optionally consisting of a foundry waste, by an electrolytic process involving anodic chlorine evolution in the presence of trivalent iron. Chlorine evolution may be carried out on the surface of an anode consisting of a catalytically activated-valve metal permanent component coupled to an iron-containing sacrificial component.
    Type: Application
    Filed: February 7, 2013
    Publication date: December 4, 2014
    Inventor: Mariachiara Benedetto
  • Publication number: 20140209480
    Abstract: Disclosed herein are embodiments of an electrochemical device comprising graphene material made using embodiments of the method disclosed herein. Also disclosed is a graphene electrode comprising the graphene material made using embodiments of the method disclosed herein. The graphene material disclosed herein for use in the disclosed electrochemical devices has superior properties and activity compared to carbon-based materials known and used in the art. The disclosed graphene material can be used in multiple different technologies, such as water treatment, batteries, fuel cells, electrochemical sensors, solar cells, and ultracapacitors (both aqueous and non-aqueous).
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicant: University of Idaho
    Inventors: I. Francis Cheng, Yuqun Xie, Isaiah Gyan, Nolan Nicholas, David N. McIlroy, Peter R. Griffiths
  • Publication number: 20130277230
    Abstract: Apparatus for sanitizing a water stream comprises a first electrolysis cell which produces ions with algaecidal and bactericidal properties and a second electrolysis cell which oxidizes water to produce hydrogen peroxide. The first cell has copper electrodes and the second cell has titanium electrodes and the polarity of the electrodes is periodically reversed at a frequency of from three to nine minutes. Air is introduced into the stream prior to entering the cells.
    Type: Application
    Filed: October 27, 2011
    Publication date: October 24, 2013
    Applicant: PURAPOOL PTY LTD
    Inventors: Mark Knipe, Scott Sawyer
  • Patent number: 8518253
    Abstract: An electrochemical device comprises an electrochemical cell. The electrochemical cell comprises a composite cation-exchange member including a conductive base and a cation-exchange material in physical contact with the conductive base, a composite anion-exchange member including a conductive base and an anion-exchange material in physical contact with the conductive base; and a compartment between the composite cation-exchange and anion-exchange members. The compartment comprises an inlet for introducing a feed stream, and an outlet for exiting of an output stream out of the compartment. The electrochemical device comprises a control device configured to transmit an electrical current to the composite cation-exchange and anion-exchange members at a regeneration stage in a manner that the conductive base on the composite cation-exchange member loses electrons and the conductive base on the composite anion-exchange member gains electrons.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: August 27, 2013
    Assignee: General Electric Company
    Inventors: Rihua Xiong, Wei Cai, Liping Zheng, Hai Yang, Su Lu, Zhigang Deng, Lin Chen
  • Publication number: 20130040806
    Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2?yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
    Type: Application
    Filed: June 24, 2011
    Publication date: February 14, 2013
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: G. Charles Dismukes, Martha Greenblatt
  • Patent number: 8323474
    Abstract: Provided is an electro-chemical water treatment apparatus and method for removing total nitrogen ingredients of ammonia nitrogen, nitrous acid nitrogen, nitrate nitrogen etc., organic materials of BOD and COD induction ingredients, and cyanogen included in wastewater and dirty water.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 4, 2012
    Inventors: Chi-Jung Jeon, Jong-Sung Kim, Kwang-Su Kim, Sang-Ki Hong
  • Publication number: 20120279872
    Abstract: The present invention utilizes the marriage of photocatalytic degradation and electrochemical oxidation to provide wastewater remediation and water purification based on the use of bifunctional electrodes. The bifunctional electrode provides for combined photocatalytic and electrochemical wastewater remediation for removing any one or combination of organic chemical pollutants, inorganic chemical pollutants and microorganisms. The electrode includes an electronically conducting substrate having a photocatalyst applied to a portion of the surface, the photocatalyst having a bandgap energy (Eg), and an electrocatalyst applied to another portion of the surface. Under illumination the photocatalyst produces electron-hole pairs which are separated by an anodic bias potential applied across the photocatalyst. The same bias is applied across the electrocatalyst.
    Type: Application
    Filed: May 19, 2010
    Publication date: November 8, 2012
    Applicant: LAKEHEAD UNIVERSITY
    Inventors: Aicheng Chen, Robert Matthew Asmussen, Min Tian
  • Patent number: 8273225
    Abstract: The present invention provides a solid diamond electrode, a reactor, in particular a reactor comprising an anode, a cathode and at least one bipolar electrode having first and second major working surfaces positioned therebetween wherein the at least one bipolar electrode consists essentially of diamond, and methods in which the reactors are used.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: September 25, 2012
    Assignee: Element Six Limited
    Inventors: Jonathan James Wilman, Patrick Simon Bray, Timothy Peter Mollart
  • Patent number: 8226813
    Abstract: A method of purifying cooling water which requires the lowest maintenance and management cost without the need for a cumbersome cleaning operation for removing scale in an electrolytic purifying vessel by taking out the electrodes from the electrolytic purifying vessel, and an apparatus therefor are provided. In the method of purifying circulating cooling water by applying a DC voltage across opposing electrodes while flowing water to be treated therebetween, so that ions in the water are electrolytically precipitated on the surfaces of electrodes on the negative pole side, thereby purifying the water to be treated, the electrodes comprise titanium and have an oxide film preformed by heating having a thickness of 5 nm to 130 nm thereon, and electric current is flown between the electrodes in an amount large enough to apply a voltage capable of dielectrically breaking down the oxide film on the surfaces of electrodes on the positive pole side.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: July 24, 2012
    Assignee: Koganei Corporation
    Inventor: Takayuki Nakano
  • Publication number: 20120175272
    Abstract: A method of sterilizing water that includes: immersing at least one electrode unit having a negative electrode within a container and a positive electrode within the container, the positive electrode separated from and facing the negative electrode, wherein the negative electrode has a plurality of negative electrode projections thereon, and the positive electrode has a plurality of positive electrode projections thereon, each positive electrode projection arranged to face and be aligned with each negative electrode projection one by one; and, supplying direct current by at least one power supply to the electrode unit immersed under the water.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 12, 2012
    Inventor: Chil-Young Kim
  • Patent number: 8216445
    Abstract: A nanoporous insulating oxide deionization device, method of manufacture and method of use thereof for deionizing a water supply (such as a hard water supply), for desalinating a salt water supply, and for treating a bacteria-containing water supply. The device contains two composite electrodes each constructed from a conductive backing electrode and a composite oxide layer being an insulating oxide or a non-insulating oxide and an intermediate porous layer. The composite layer being substantially free of mixed oxidation states and nanoporous and having a median pore diameter of 0.5-500 nanometers and average surface area of 300-600 m2/g. The composite layer made from a stable sol-gel suspension containing particles of the insulating oxide, the median primary particle diameter being 1-50 nanometers.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 10, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Marc A. Anderson, Kevin C. Leonard
  • Publication number: 20120037512
    Abstract: Electrodes for electrolysis of water, for encouraging growth of algae and aerobic bacteria, for removing suspended solids from wastewater during treatment, or for rendering water sterile and potable have a concrete coating over a metallic or carbon fibre core. The coating is from 2 to 50 mm thick; preferably 5 to 25 mm thick. Preferably, a DC current passed between the immersed electrodes periodically reversed but there is no visible “rusting” at the anode if the DC current is steady. The resistive nature of the concrete tends to suppress concentrations of current upon the electrode surface.
    Type: Application
    Filed: April 15, 2010
    Publication date: February 16, 2012
    Inventor: Maurice James Robertson
  • Patent number: 8083921
    Abstract: An electrode for high overvoltage oxygen anodic evolution is described comprising a substrate of titanium or other valve metal, a first protective interlayer containing valve metal oxides, a second interlayer containing platinum or other noble metal, and an outer layer comprising tin, copper and antimony oxides. The electrode of the invention may be employed as anode in waste water treatment.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: December 27, 2011
    Assignee: Industrie de Nora S.p.A.
    Inventor: Paolo Rossi
  • Publication number: 20110120887
    Abstract: The object of the invention is to provide a method for cleaning circulation water, which reduces the cost of operation and maintenance as much as possible, without a cumbersome cleaning operation such as by detaching electrode plates from an electrolysis cleaning tank and removing scale from inside the tank, and to provide a device used in this method.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 26, 2011
    Applicant: KOGANEI CORPORATION
    Inventors: Yoshiyuki Taguchi, Takayuki Nakano, Masahito Kato
  • Patent number: 7824537
    Abstract: An electrochemical device including: (a) a semiconductor layer, wherein the semiconductor is silicon or silicon carbide, and where the layer has a thickness from 1 to 1000 ?m; (b) a TiO2 layer on the semiconductor layer, where the layer may include an alkaline earth oxide MO up to an amount where the layer is MtiO3, and where the layer has a thickness from 5 nm to 1 mm; (c) a grid of inert metal on the TiO2 layer, arranged so as to be able to apply a electric field across the TiO2 layer; and (d) an ohmic contact on the semiconductor layer.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: November 2, 2010
    Assignee: Gen-X Power Corp
    Inventors: Paul Andrew Christensen, Nicholas George Wright, Terrence Arthur Egerton
  • Patent number: 7722746
    Abstract: A water treatment system includes a circulation pump and an electrolytic chamber in fluid communication with a main body of water. Electrolytic plates within the electrolytic chamber generate chlorine. When mineral deposits foul the electrolytic plates, water is isolated within the electrolytic chamber and a minimal amount of a pH-reducing agent is added to the electrolytic chamber to remove the mineral deposits. In a first embodiment, the pH-reducing agent is admitted on a periodic timed basis. In a second embodiment, the pH-reducing agent is added when the pH of the main body of water falls below a predetermined threshold. In both embodiments, cleaning is accomplished by adding the pH-reducing agent when the circulation pump is not operating so that the acid dwells within the electrolytic chamber for a sufficient amount of time. Activation of the circulation pump causes the pH-reducing agent to enter the main body of water.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: May 25, 2010
    Assignee: Maytal Tech, LLC
    Inventor: Omer C. Eyal
  • Publication number: 20100116689
    Abstract: The present disclosure generally provides systems and methods of controlling an ion concentration in water, for example, a silver ion concentration. The method of depositing ions in the water includes determining a conductivity level of the water using a reference probe. A power level based on the determined conductivity level is also determined. Power is applied to a deposition probe corresponding to the determined power level using a first electrical circuit, and a concentration of ions are deposited in the water.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 13, 2010
    Inventors: Tom Greene, Richard Moyers
  • Publication number: 20090314656
    Abstract: A method of purifying cooling water which requires the lowest maintenance and management cost without the need for a cumbersome cleaning operation for removing scale in an electrolytic purifying vessel by taking out the electrodes from the electrolytic purifying vessel, and an apparatus therefor are provided.
    Type: Application
    Filed: July 31, 2007
    Publication date: December 24, 2009
    Inventor: Takayuki Nakano
  • Patent number: 7507323
    Abstract: A water treatment system includes a circulation pump and an electrolytic chamber in fluid communication with a main body of water. Electrolytic plates within the electrolytic chamber generate chlorine. When mineral deposits foul the electrolytic plates, water is isolated within the electrolytic chamber and a minimal amount of a pH-reducing agent is added to the electrolytic chamber to remove the mineral deposits. In a first embodiment, the pH-reducing agent is admitted on a periodic timed basis. In a second embodiment, the pH-reducing agent is added when the pH of the main body of water falls below a predetermined threshold. In both embodiments, cleaning is accomplished by adding the pH-reducing agent when the circulation pump is not operating so that the acid dwells within the electrolytic chamber for a sufficient amount of time. Activation of the circulation pump causes the pH-reducing agent to enter the main body of water.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: March 24, 2009
    Assignee: Maytal Tech, Inc.
    Inventor: Omer C. Eyal
  • Publication number: 20090071845
    Abstract: A coating installation, comprising at least one apparatus for pretreating the substrates to be coated (pretreatment installation), at least one apparatus for coating the substrate with coating substances (coating apparatus), and at least one apparatus for drying and hardening the applied coating substances (hardening apparatus), wherein at least one of the pretreatment installations comprises at least one arrangement for the anodic oxidation of the deionized, i.e. fully de-mineralized, water used in the pretreatment installation with at least one electrode, the electrode having a layer (3) of diamond, on a base body (1, 2) as shown in FIG.
    Type: Application
    Filed: September 6, 2005
    Publication date: March 19, 2009
    Inventor: Boris Muller
  • Patent number: 7494583
    Abstract: An electrode having a valve metal substrate and an electrocatalytic surface composition comprising titanium dioxide doped with bismuth is provided, and an electrolytic water purification process utilizing this electrode, wherein organic substances dissolved or dispersed in water are oxidized and degraded in a nonselective manner with good current efficiency.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 24, 2009
    Inventor: Oleh Weres
  • Publication number: 20080314764
    Abstract: The present invention relates to a process for electrochemical decolorization of indigo-containing aqueous dispersions by direct anodic oxidation on diamond-coated silicon anodes.
    Type: Application
    Filed: February 7, 2006
    Publication date: December 25, 2008
    Applicant: DyStar Textilfarben GmbH & Co. Deutschland KG
    Inventors: Wolfgang Schrott, Franz Suetsch, Thomas Bechtold, Aurora Turcanu
  • Publication number: 20080292717
    Abstract: A highly stable aqueous solution having a molecular cluster with dimensions which are small enough to ensure substantial chemical-physical stability thereof for a relatively long time. To prepare the solution a fluid treatment device is used, which comprises at least one chamber (7) and at least one anode (4) and one cathode (3) arranged in the chamber (7). The anode (4) and cathode (3) are at least partly made of a first metallic material. At least one of the at least one cathode (3) and anode (4) comprises a coating of nanoparticles (5) of a second metallic material.
    Type: Application
    Filed: October 23, 2006
    Publication date: November 27, 2008
    Applicant: AKUATECH S.R.L.
    Inventors: Yongge Chen, Roberto De Noni
  • Patent number: 7452456
    Abstract: A water sanitization apparatus is provided. The apparatus includes a power unit, a housing with inlet and outlet openings for permitting the passage of water containing a bromide salt into the housing and water containing a free bromine and a sanitizing metal ion out of the housing, respectively, and first and second electrodes electrically connected to the power unit. The first electrode has a graphite or carbon substrate doped with copper, silver, and/or zinc. When operated as an anode, the first electrode converts bromide salt to free bromine and oxidize doped metal to sanitizing metal ion. Also provided are related water treatment systems and methods.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: November 18, 2008
    Assignee: Pioneer H2O Technologies, Inc.
    Inventor: Paul Birkbeck
  • Patent number: 7378005
    Abstract: An object is to provide an electrode for electrolysis which is preferable in generation of ozone water usable in cleaning and sterilizing of water and sewage, or cleaning in a semiconductor device manufacturing process by an electrolysis process, and a method of manufacturing this electrode for electrolysis. The surface of a conductive substrate constituting the electrode for electrolysis is coated with a noble metal such as platinum or a noble metal oxide to form an intermediate layer, further a surface layer is constituted of a dielectric material on the surface of the intermediate layer, and the surface layer is provided with holes.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: May 27, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kazuhiro Kaneda, Mineo Ikematsu, Yurika Koizumi, Tsuyoshi Rakuma, Daizo Takaoka
  • Patent number: 7326330
    Abstract: Method and apparatus for electrolytically controlling the formation of scale and biofilm in water purification and other systems. An anode is deposited on or disposed on or adjacent to a surface, such as that of a quartz UV tube, providing a low pH environment which inhibits the formation of carbonate scale and biofilm.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: February 5, 2008
    Assignees: MIOX Corporation, ABQ UV Pollution Solutions, Inc.
    Inventors: Rodney E. Herrington, Michael Fraim
  • Patent number: 7247229
    Abstract: A process for electroplating of metal utilizing a valve metal electrode substrate containing multiple coating layers is disclosed. A top coating layer of a valve metal oxide is applied over a first coating layer of an electrochemically active coating. The electrode may find use in an electroplating system containing organic substituents in which the consumption of the organic substituent is significantly decreased or in systems where it is desirable to suppress the oxidation of a species in an electrochemical cell.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 24, 2007
    Assignee: ELTECH Systems Corporation
    Inventor: Kenneth I Hardee
  • Patent number: 7241373
    Abstract: There is provided a nitrogen treating method capable of treating nitrogen compounds efficiently. The method is a nitrogen treating method of treating nitrogen compounds in for-treatment water by electrolysis and performs a first treating step of producing ammonia from the nitrogen compounds in the for-treatment water by electrolysis using a cathode and an anode between which a cation exchange film is interposed so as to define a cathode reaction region and an anode reaction region, and a second treating step of removing the ammonia in the for-treatment water treated in the cathode reaction region by the first treating step.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: July 10, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Naoki Hiro, Motoki Kouchi, Tomohito Koizumi, Tsuyoshi Rakuma
  • Patent number: 7156962
    Abstract: There are provided an electrode for electrolysis which takes into consideration safety to human bodies and environmental pollution upon disposal of the electrode, produces ozone with high efficiency and has excellent durability, a production process of the electrode, and an active oxygen producing device using the electrode. In an electrode 5 for electrolysis which has an electrode catalyst at least on the surface and produces ozone or active oxygen in for-treatment water by electrolysis, the electrode catalyst contains a dielectric which constitutes more than 70% of the surface area of the electrode catalyst.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: January 2, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tomohito Koizumi, Naoki Hiro, Tsuyoshi Rakuma, Katsuhiko Mushiake, Masahiro Iseki, Hiroyuki Umezawa, Yurika Koizumi, Yasuhito Kondo
  • Patent number: 6821403
    Abstract: Method for cleaning and disinfecting treatment of water, during which the water is exposed to at least one electric field, whereby the electric field is a low-current field with pulsating direct voltage. Device for realization of the method which includes a source of pulsating direct voltage; two conducting elements, which are connected in a conducting manner to the source of pulsating direct voltage and which are arranged to achieve a low-current field with pulsating direct voltage between them; together with a device for changing in a time-dependent manner the direction of direct voltage. Device for realization of the method which includes a source of a rectified pulsating magnetic field and a conducting element, which is arranged in the pulsating magnetic field such that, during operation of the device, an electric field is produced around the conducting element by electromagnetic induction.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: November 23, 2004
    Inventor: Anders Lundquist
  • Patent number: 6811660
    Abstract: Various kinds of wastewater and water such as methane fermentation digestion liquids, domestic wastewater, sewage, service water, culture pond water, wastewater defined by an active sludge law and wastewater from food industries are decomposed, cleaned and treated with a high efficiency with oxygen radicals, hydroxyl radicals and diphenyl para picrihydoral radicals, and injurious materials are decomposed, cleaned and treated by oxidizing and reducing functions. An apparatus for cleaning dissolved organic matters and a trace amount of injurious materials consisting of a anode which is formed or welded by coating clay or glass with a material prepared by mixing 2 to 15% by weight of a transition metal with 1 to 10% of an oxidized transition metal and sintering the glass within a range from 800 to 1500° C.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: November 2, 2004
    Inventor: Takaaki Maekawa
  • Patent number: 6802956
    Abstract: A variety of pollutants and other contaminants may be removed from a variety of aqueous media using electrolytic treatments. The treatment includes inserting an anode and a cathode into the medium undergoing treatment, and applying a high current and voltage to the electrodes. The treatment may also include the addition of catalytic enzymes to the medium undergoing treatment. The present methods are compatible with aquatic lifeforms, and offer an effective alternative to chemical-based water treatment systems.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: October 12, 2004
    Assignee: Aquatic Technologies
    Inventor: David N. Orlebeke
  • Publication number: 20040108222
    Abstract: An electrochemical cell design is disclosed for the particular application of the electrochemical treatment of contaminants in water. The cell is designed to allow the treatment of low concentrations of contaminants in low conductivity water efficiently, and to be simple to fabricate. The design incorporates tapered inlet and outlet fluid flow manifolds so that the cell pressure drop will be almost entirely due to fluid contacting the electrodes, thus maximising the effective use of the system pump power. A short anode to cathode distance and thin working electrodes are used to minimise resistive electrical power losses. The parallel slacked arrangement of the electrodes and the smooth inlet and outlet designs leads to relatively even distributions of current density and mass transfer resulting in maximal utilisation of the entire active electrode surface area.
    Type: Application
    Filed: September 3, 2003
    Publication date: June 10, 2004
    Inventors: Michael Gattrell, Thierry Guena, Barry MacDougall
  • Patent number: 6673229
    Abstract: The invention relates to an apparatus for purifying fluids comprising at least one electrochemical cell having a cathode (3), an anode (5) and an electrolyte (7), said cathode (3) comprising a metal complex, ML, where M represents a metal and L represents an organic or inorganic ligand, said complex being capable of forming the hydroxyl radical by a reaction wherein the metal in the complex is oxidised and acquires an additional positive charge, said anode (5) creating positive ions and electrons, said electrolyte (7) allowing the transfer of a positive charges, said cathode being arranged such that the fluid to be purified can come into contact with the metal complex on the cathode. The invention also provides a related electrode and a related electrochemical cell as well as a corresponding method for purifying fluids.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: January 6, 2004
    Assignee: Sony International (Europe) GmbH
    Inventors: William Ford, Jurina Wessels, Tobias Vossmeyer
  • Publication number: 20030132124
    Abstract: There is provided a nitrogen treating method capable of treating nitrogen compounds efficiently. The method is a nitrogen treating method of treating nitrogen compounds in for-treatment water by electrolysis and performs a first treating step of producing ammonia from the nitrogen compounds in the for-treatment water by electrolysis using a cathode and an anode between which a cation exchange film is interposed so as to define a cathode reaction region and an anode reaction region, and a second treating step of removing the ammonia in the for-treatment water treated in the cathode reaction region by the first treating step.
    Type: Application
    Filed: December 3, 2002
    Publication date: July 17, 2003
    Inventors: Naoki Hiro, Motoki Kouchi, Tomohito Koizumi, Tsuyoshi Rakuma
  • Publication number: 20030098246
    Abstract: A process for an electrochemical reduction of a reducible dye by contacting said reducible dye with a cathode comprising a support of an electrically conductive material and an electrically conductive, cathodically polarized layer formed thereon in situ by alluviation comprises conducting said electrochemical reduction in the presence of a base.
    Type: Application
    Filed: November 13, 2002
    Publication date: May 29, 2003
    Inventors: Claudia Merk, Jorg Botzem, Gunther Huber, Norbert Grund
  • Patent number: 6547951
    Abstract: Disclosed is a novel method for treatment of wastewater containing organic contaminant materials by oxidatively decomposing the contaminant materials by a radical reaction involving hydroxyl radicals. The method comprises passing the wastewater through a wastewater treatment conduit (6) comprising a straightly tubular member (6) and a radical generating part consisting of a truncated pyramidal or conical tubular member (1) having an inner surface layer of titanium dioxide to serve as a positive electrode and connected to the upstream end of the straightly tubular member and a negative electrode rod (4) coaxially held relative to the truncated tubular member and applying a pulsed DC voltage having a rectangular wave form at a specified frequency.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: April 15, 2003
    Assignee: Daishin Design Corporation
    Inventor: Takaaki Maekawa
  • Publication number: 20030062267
    Abstract: In a method and an apparatus for generating a portable sterilizing water that can be easily used at, for example, hospitals, cafeterias of nursing facilities, restaurants, hair salons or homes, an electrolyzer is structured such that a tubular-shaped ferrite anode and a cathode are arranged alternately in a concentric manner with an inter-electrode distance, and integrated with a pressurizable solution container containing halogen ions and a power control apparatus so that it can be carried and operated by one hand.
    Type: Application
    Filed: May 24, 2002
    Publication date: April 3, 2003
    Inventors: Shinichi Nakamura, Kunihiko Fukuzuka, Masaki Miyashita
  • Patent number: 6531050
    Abstract: A process for removing nitrate ions from an aqueous solution thereof which comprises passing the solution through an electrochemical cell comprising at least one anode and at least one cathode and passing a current therebetween, wherein the cathode surface (s) comprise rhodium metal.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: March 11, 2003
    Assignee: Ionex Limited
    Inventor: Michael Waite
  • Patent number: 6517699
    Abstract: The present invention has an object to obtain a cooking liquor containing polysulfide-sulfur at a high concentration by minimizing by-production of thiosulfate ions. The present invention is a method for producing polysulfides, which comprises introducing a solution containing sulfide ions into an anode compartment of an electrolytic cell comprising the anode compartment provided with a porous anode, a cathode compartment provided with a cathode, and a diaphragm partitioning the anode compartment and the cathode compartment, for electrolytic oxidation to obtain polysulfide ions, characterized in that the porous anode is disposed so that a space is provided at least partly between the porous anode and the diaphragm, and the apparent volume of the porous anode is from 60% to 99% based on the volume of the anode compartment.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: February 11, 2003
    Assignees: Asahi Glass Company, Limited, Kawasaki Kasei Chemicals Ltd., Nippon Paper Industries Co., Ltd.
    Inventors: Tetsuji Shimohira, Tatsuya Andoh, Junji Tanaka, Keigo Watanabe, Yasunori Nanri
  • Publication number: 20020170830
    Abstract: There is provided a method for water treatment, capable of greatly improving the effect of removing microbes contained in water for eating and drinking, or discharged water.
    Type: Application
    Filed: July 2, 2002
    Publication date: November 21, 2002
    Inventors: Yasuhito Kondo, Yasuhito Shimizu, Masahiro Iseki
  • Publication number: 20020134691
    Abstract: The present invention provides reducing electrolyzed water which has a pH of 3 to 12 and an oxidation-reduction potential of up to −200 mV, preferably a pH of 5 to 11 and an oxidation-reduction potential of up to −500 mV, and in which the common logarithm of the product of the hydrogen ion concentration [H+] and the electron concentration [e−] is at least −4.5, preferably at least 0. The reducing electrolyzed water is used as potable water, agricultural fertilizers, drip solutions and other injections, dialysis solutions and face lotion, and particularly shows significant medical effects.
    Type: Application
    Filed: April 10, 1998
    Publication date: September 26, 2002
    Inventors: FUMITAKE SATOH, SHOUKA HAN, TOMOYUKI YANAGIHARA, TATSUYA NAITOU, TAKEMI KOIZUMI
  • Publication number: 20020130051
    Abstract: The invention concerns a bipolar electrode with a semiconductor coating and a cathode, as well as a procedure for the electrolytic dissociation of water, especially for the recovery of hydrogen. The body material of the cathode and/or the anode in this procedure is preferably comprised of titanium or platinum coated titanium, whereby, on the anode an additional semiconductor coating is applied, said coating being preferentially titanium dioxide (TiO2), which is dosed with iron (Fe). The advantage of the bipolar electrode is that an increased volume of hydrogen per time unit can be recovered and further, with these bipolar electrodes a simple procedure at ambient surroundings and conditions is achieved without expensive equipment for hydrogen production. In addition the anode of the invented bipolar electrodes can also be radiated with UV-radiation for the purpose of an increase in efficiency.
    Type: Application
    Filed: February 26, 2002
    Publication date: September 19, 2002
    Applicant: PROVERA GmbH
    Inventors: Helmar Haug, Rene Nikolai Janicke
  • Patent number: 6280637
    Abstract: An electrocatalytic process for treating liquid waste material containing at least one environment-polluting substance, comprising causing the liquid waste material to be treated to pass between and to contact at least one pair of spaced apart electrodes, across which a dc potential difference is applied, to cause the at least one environment-polluting organic substance to be at least partially decomposed into a gaseous or liquid form. The invention also relates to a treatment unit for performing the process.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: August 28, 2001
    Inventor: Christopher Robert Eccles