With Additional Separation Of Liquid Products From Primary Separation Zone Patents (Class 208/102)
  • Patent number: 10800982
    Abstract: This invention describes a novel and efficient processing scheme that can be used to transform a vacuum residue feedstock into 0.5 wt % sulfur bunker fuel that fulfills the specifications required by the International Maritime Organization (IMO).
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: October 13, 2020
    Assignee: IFP Energies nouvelles (IFPEN)
    Inventors: Eric D. Peer, John E. Duddy, Sophie M. Babusiaux
  • Patent number: 10781380
    Abstract: A medium separator is used to recover a gaseous stream from a hydroprocessed liquid stream for hydrogen recovery in a hydrogen recovery unit. A medium flash drum may further remove liquid components from the gaseous stream prior to hydrogen recovery in the hydrogen recovery unit.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: September 22, 2020
    Assignee: UOP LLC
    Inventors: Kiran Ladkat, Richard K. Hoehn, Hemant Mahajan, Rajaraman Panchapakesan
  • Patent number: 10597590
    Abstract: Utilization of at least three strippers is proposed for a slurry hydrocracking unit to reduce heater duty for a product fractionation column. A stripping column for stripping a hydrocracked stream from a wash oil stripper is proposed in addition to a cold stripper for a cold hydrocracked stream and a warm stripper for a warm hydrocracked stream. The arrangement enables omission of heating a hot hydrocracked stream from a hot separator in a fired heater before product fractionation.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: March 24, 2020
    Assignee: UOP LLC
    Inventors: Mark Van Wees, Grant H. Yokomizo
  • Patent number: 10501695
    Abstract: The invention concerns a process for the intense conversion of a heavy hydrocarbon feed, comprising the following steps: a) a first step for ebullated bed hydroconversion; b) a step for separating at least a portion of the hydroconverted liquid effluent obtained from step a); c) a step for hydrocracking at least a portion of the vacuum gas oil fraction obtained from step b); d) a step for fractionating at least a portion of the effluent obtained from step c); e) a step for recycling at least a portion of the unconverted vacuum gas oil fraction obtained from step d) to said first hydroconversion step a).
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: December 10, 2019
    Assignee: AXENS
    Inventors: Frederic Morel, Jacinthe Frecon
  • Patent number: 10160924
    Abstract: A process for refining a heavy hydrocarbon feedstock containing a) at least two stages of deasphalting in series to separate at least one fraction of asphalt, at least one fraction of heavy deasphalted oil, and at least one fraction of light deasphalted oil, at least one of the stages of deasphalting by a mixture of at least one polar solvent and at least one apolar solvent, the stages of deasphalting being implemented under the subcritical conditions of the mixture of solvents, b) a stage of hydrotreatment of at least a part of the fraction of heavy deasphalted oil, in the presence of hydrogen, c) a stage of catalytic cracking of at least a part of the fraction of light deasphalted oil, alone or in a mixture with at least a part of the effluent originating from stage b).
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: December 25, 2018
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Isabelle Merdrignac, Jerome Majcher
  • Patent number: 10131593
    Abstract: To reduce the emission of carbon dioxide and improve the energy efficiency in a hydrogen supply system. The hydrogen supply system (1) comprises: a reformer (5) for performing steam reforming of a hydrocarbon; a shift reaction unit (6) for producing a gas containing hydrogen and carbon dioxide by causing a water gas shift reaction of a gas obtained from the reformer; a first absorber (36) for absorbing the carbon dioxide contained in the gas obtained from the shift reaction unit in an absorption liquid; a hydrogenation reaction unit (8) for producing a hydrogenated aromatic compound by causing a hydrogenation reaction of an aromatic compound with a gas that has passed through the first absorber; and a regenerator (37) for separating the carbon dioxide from the absorption liquid by re-circulating the absorption liquid from the first absorber and heating the absorption liquid with heat generated from the hydrogenation reaction.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: November 20, 2018
    Assignee: CHIYODA CORPORATION
    Inventors: Yoshimi Okada, Tomohiko Shirasaki, Osamu Ikeda, Kenichi Imagawa, Hironori Kawai, Masato Shiraga, Tatsuo Ishiyama
  • Patent number: 9914888
    Abstract: Processes for treating a hydrocarbon stream to remove heteroatoms from the hydrocarbons. A portion of the hydrotreated effluent is separated in a membrane separation zone to remove hydrogen sulfide and ammonia from the effluent portion which includes hydrogen. The hydrogen effluent portion may be recombined with the remaining hydrotreated effluent and passed to a hydrocracking zone. The hydrogen sulfide and ammonia may be combined with an effluent from the hydrocracking zone.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: March 13, 2018
    Assignee: UOP LLC
    Inventors: Venkat Ram Naidu Pandranki, Krishnan Vaidyanathan, Satyam Mishra
  • Patent number: 9718042
    Abstract: The present invention discloses aromatization reactor vessels with hydrogen membrane tubes, and associated aromatization reactor vessel systems. Also disclosed are processes for conducting aromatization reactions utilizing these reactor vessels and systems.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: August 1, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Cori A. Demmelmaier, Daniel M. Hasenberg, Scott H. Brown, Vincent D. McGahee, Scott G. Morrison
  • Patent number: 9273253
    Abstract: The invention provides a process for the preparation of a gas oil fraction comprising the steps of: (a) providing a stream of a first hydrocarbon product of which a major portion of the hydrocarbons have a boiling point in the range of from 370-540° C. and a stream of a second hydrocarbon product of which a major portion of the hydrocarbons have a boiling point of less than 370° C.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: March 1, 2016
    Assignee: Shell Oil Company
    Inventor: Edmundo Steven Van Doesburg
  • Publication number: 20150041365
    Abstract: One exemplary embodiment can be a process for treating a hydroprocessing fraction. The process can include obtaining a bottom stream from a fractionation zone, and passing at least a portion of the bottom stream to a film generating evaporator zone for separating a first stream containing less heavy polynuclear aromatic compounds than a second stream.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Richard K. Hoehn, Soumendra Mohan Banerjee, David M. Bowman, Xin X. Zhu
  • Patent number: 8921633
    Abstract: In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12+ olefinic and aromatic hydrocarbons is recovered from the first stream and blended said second stream with a residual fraction from a steam cracker or an atmospheric or vacuum distillation unit to produce a third stream. The third stream is then catalytically pyrolyzed in a reactor under conditions effective to produce a fourth stream having an increased benzene and/or toluene content compared with said second stream and a C3-olefin by-product. The C3-olefin by-product is recovered and benzene and/or toluene are recovered from the fourth stream.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Stephen M. Davis, Steven E. Silverberg
  • Patent number: 8877040
    Abstract: One exemplary embodiment can be a process for treating a hydroprocessing fraction. The process can include obtaining a bottom stream from a fractionation zone, and passing at least a portion of the bottom stream to a film generating evaporator zone for separating a first stream containing less heavy polynuclear aromatic compounds than a second stream.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Richard Hoehn, Soumendra Mohan Banerjee, Dave Bowman, Xin X. Zhu
  • Patent number: 8864978
    Abstract: Provided is a process for the supercritical upgrading of petroleum feedstock, wherein the process includes the use of a start-up agent, wherein the use of the start-up agent facilitates mixing of the petroleum feedstock and water, thereby reducing or eliminating the production of coke, coke precursor, and sludge.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 21, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Publication number: 20140262947
    Abstract: The disclosure relates to processes for upgrading heavy hydrocarbon oils such as heavy crude oils, atmospheric residuum, vacuum residuum, heavy oils from catalytic treatment, heavy cycle oils from fluid catalytic cracking, thermal tars, as oils from visbreaking, oils from oil sands, bitumen, deasphlter rock, and heavy oils derived from coal. The process utilizes a utility fluid including recycled liquid hydroprocessed product containing a significant amount of single or multi-ring aromatics. Unlike conventional fixed bed resid hydroprocessing, the process can be operated at temperatures pressures and reactor conditions that favor the desired hydrocracking reactions over aromatics hydrogenation reduce the coking tendencies of heavy hydrocarbon oils.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stephen H. Brown, Stephen Mark Davis
  • Publication number: 20140262948
    Abstract: Two or three strippers are used to strip three hydroprocessed effluent streams, perhaps from a slurry hydrocracking reactor, separated by temperature instead of a single stripper to preserve separations previously made and conserving energy and reducing vessel size. A cold stripped stream may be taken as a diesel blending stock without further fractionation.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: UOP LLC
    Inventors: Mark Van Wees, David M. Bowman, Xin X. Zhu
  • Patent number: 8784645
    Abstract: The method for manufacturing a hydrocarbon oil of the present invention comprises a first step wherein a plurality of reaction zones filled with a specific catalyst is disposed in series and a feedstock oil containing an oxygen-containing hydrocarbon compound derived from an animal or vegetable oil is supplied and hydrotreated under the conditions of a hydrogen pressure of 1 MPa or more and 10 MPa or less in each of the reaction zones; and a second step wherein hydrogen, hydrogen sulfide, carbon dioxide and water are removed from a product to be treated obtained in the first step to obtain a hydrocarbon oil. Among the plurality of reaction zones, the inlet temperature of the reaction zone disposed on the most upstream side is 150° C. or more and 250° C. or less, the inlet temperature of the second most upstream reaction zone or below is equal to or higher than the condensation temperature of water, and the outlet temperature of the reaction zone disposed on the most downstream side is 260° C.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: July 22, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasutoshi Iguchi, Tatsuo Hamamatsu, Hideki Ono, Akira Koyama, Hideshi Iki
  • Publication number: 20140158585
    Abstract: The invention provides a process for the preparation of a gas oil fraction comprising the steps of: (a) providing a stream of a first hydrocarbon product of which a major portion of the hydrocarbons have a boiling point in the range of from 370-540° C. and a stream of a second hydrocarbon product of which a major portion of the hydrocarbons have a boiling point of less than 370° C.
    Type: Application
    Filed: June 8, 2012
    Publication date: June 12, 2014
    Inventor: Edmundo Steven Van Doesburg
  • Publication number: 20130220885
    Abstract: A hydrocracking process comprising the steps of: (a) combining a hydrocarbonaceous feedstock and a heavy bottom fraction recycle stream with a hydrogen-rich gas to obtain a mixture comprising hydrocarbonaceous feedstock and hydrogen; (b) catalytically hydrocracking the mixture comprising hydrocarbonaceous feedstock and hydrogen in a hydrocracking zone to obtain a hydrocracked effluent; (c) separating the hydrocracked effluent into a first vapour portion and a first liquid portion in a separation zone; (d) heating the first liquid portion to form a vapourised first liquid portion; (e) feeding the vapourised first liquid portion to a fractionation section producing individual product fractions including a heavy bottom fraction comprising unconverted oil at the bottom zone of the fractionation section; (f) withdrawing from the fractionation section the heavy bottom fraction; (g) splitting the heavy bottom fraction in a stream for stripping and a heavy bottom fraction recycle stream; (h) stripping the stream for
    Type: Application
    Filed: October 5, 2011
    Publication date: August 29, 2013
    Applicant: Haldor Topsoe A/S
    Inventors: Gordon Gongngai Low, Michael Glenn
  • Patent number: 8506891
    Abstract: An apparatus is disclosed for catalytically converting two feed streams. The feed to a first catalytic reactor may be contacted with product from a second catalytic reactor to effect heat exchange between the two streams and to transfer catalyst from the product stream to the feed stream. The feed to the second catalytic reactor may be a portion of the product from the first catalytic reactor.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 13, 2013
    Assignee: UOP LLC
    Inventors: Laura E. Leonard, Jibreel A. Qafisheh, Robert L. Mehlberg
  • Publication number: 20130140214
    Abstract: Provided is a process for the supercritical upgrading of petroleum feedstock, wherein the process includes the use of a start-up agent, wherein the use of the start-up agent facilitates mixing of the petroleum feedstock and water, thereby reducing or eliminating the production of coke, coke precursor, and sludge.
    Type: Application
    Filed: October 31, 2012
    Publication date: June 6, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventor: Ki-Hyouk Choi
  • Patent number: 8287720
    Abstract: Processes for upgrading resid hydrocarbon feeds are disclosed. The upgrading processes may include: hydrocracking a resid in a first reaction stage to form a first stage effluent; hydrocracking a deasphalted oil fraction in a second reaction stage to form a second stage effluent; fractionating the first stage effluent and the second stage effluent to recover at least one distillate hydrocarbon fraction and a resid hydrocarbon fraction; feeding the resid hydrocarbon fraction to a solvent deasphalting unit to provide an asphaltene fraction and the deasphalted oil fraction.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 16, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Avinash Gupta
  • Patent number: 8231847
    Abstract: An apparatus is disclosed for recovering product from catalytically converted product streams. Gaseous unstabilized naphtha from an overhead receiver from a main fractionation column is compressed in a compressor. Liquid unstabilized naphtha from the overhead receiver and liquid naphtha fraction from the compressor are sent to a naphtha splitter column upstream of a primary absorber. Consequently, less naphtha is circulated in the gas recovery system.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: July 31, 2012
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, Saadet Ulas Acikgoz, Xin X. Zhu, Laura E. Leonard
  • Patent number: 8066868
    Abstract: Processing schemes and arrangements are provided for the processing a heavy hydrocarbon feedstock via fluidized catalytic cracking with selected hydrocarbon fractions including light olefins being obtained via absorption and separation product recovery.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: November 29, 2011
    Assignee: UOP LLC
    Inventor: Joseph E. Zimmermann
  • Patent number: 8017000
    Abstract: Process for the conversion of heavy feedstocks selected from heavy crude oils, distillation residues, heavy oils coming from catalytic treatment, thermal tars, oil sand bitumens, various kinds of coals and other high-boiling feedstocks of a hydrocarbon origin known as black oils, by the combined use of the following three process units: hydroconversion with catalysts in slurry phase (HT), distillation or flash (D), and deasphalting (SDA).
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: September 13, 2011
    Assignees: ENI S.p.A., SNAMPROGETTI S.p.A., ENITECNOLOGIE S.p.A.
    Inventors: Romolo Montanari, Mario Marchionna, Nicoletta Panariti, Alberto Delbianco, Sergio Rosi
  • Patent number: 8007661
    Abstract: Processing schemes and arrangements are provided arrangements are provided for the processing a heavy hydrocarbon feedstock via hydrocarbon cracking processing with selected hydrocarbon fractions being obtained via absorption-based product recovery while minimizing or avoiding loss of light olefins via system purging.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 30, 2011
    Assignees: UOP LLC, SNI S.p.A.
    Inventors: Michael A. Schultz, David A. Wegerer, Gavin P. Towler
  • Patent number: 7799964
    Abstract: Liquefied Petroleum Gas (LPG) can be recovered from various streams using a multiple membrane recovery process producing hydrogen stream at high yield and high purity and a C3+ LPG stream at high yield with low energy expenditure.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, David W. Staubs
  • Patent number: 7780843
    Abstract: A method is provided for treating the effluent from a hydrocarbon pyrolysis unit processing heavier than naphtha feeds to recover heat and remove tar therefrom. The method comprises passing the gaseous effluent to at least one primary transfer line heat exchanger, thereby cooling the gaseous effluent and generating superheated steam. Thereafter, the gaseous effluent is passed through at least one secondary transfer line heat exchanger having a heat exchange surface with a liquid coating on said surface, thereby further cooling the remainder of the gaseous effluent to a temperature at which tar, formed by the pyrolysis process, condenses. The condensed tar is then removed from the gaseous effluent in at least one knock-out drum. An apparatus for carrying out the method is also provided.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Chemical Company Patents Inc.
    Inventors: Robert David Strack, David R. Spicer, George Stephens, James Mitchell Frye
  • Patent number: 7763162
    Abstract: A method is disclosed for treating the effluent from a hydrocarbon pyrolysis unit processing heavier than naphtha feeds to recover heat and remove tar therefrom. The method comprises passing the gaseous effluent to at least one primary heat exchanger, thereby cooling the gaseous effluent and generating superheated steam. Thereafter, the gaseous effluent is passed through at least one secondary heat exchanger having a heat exchange surface maintained at a temperature such that part of the gaseous effluent condenses to form a liquid coating on said surface, thereby further cooling the remainder of the gaseous effluent to a temperature at which tar, formed by the pyrolysis process, condenses. The condensed tar is then removed from the gaseous effluent in at least one knock-out drum. An apparatus for carrying out this method is also provided.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: July 27, 2010
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventor: Robert David Strack
  • Patent number: 7749372
    Abstract: A method is disclosed for treating the effluent from a hydrocarbon pyrolysis unit without employing a primary fractionator. The method comprises passing the gaseous effluent to at least one primary heat exchanger, thereby cooling the gaseous effluent and generating high pressure steam, and then cooling the gaseous effluent to a temperature at which tar, formed by reactions among constituents of the effluent, condenses. The gaseous effluent and the condensed tar are fed to at least one knock-out drum, whereby the tar is separated from the gaseous effluent. The gaseous effluent is then further cooled to condense a pyrolysis gasoline fraction from the effluent and to reduce the temperature of the effluent to a point at which it can be compressed efficiently. The condensed pyrolysis gasoline fraction is separated from the effluent and then distilled so as to reduce its final boiling point.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: July 6, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert David Strack, John R. Messinger
  • Patent number: 7678951
    Abstract: The subject of the invention is a method for treating a natural gas containing ethane, comprising the following stages: (a) extraction of at least one part of the ethane from the natural gas; (b) reforming of at least one part of the extracted ethane into a synthesis gas; (c) methanation of the synthesis gas into a methane-rich gas; and (d) mixing of the methane-rich gas with the natural gas. Installation for implementing this method.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: March 16, 2010
    Assignee: Total S.A.
    Inventor: Denis Chretien
  • Patent number: 7674366
    Abstract: A method is disclosed for treating the effluent from a hydrocarbon pyrolysis unit without employing a primary fractionator. The method comprises cooling the gaseous effluent, e.g., by direct quench and/or at least one primary heat exchanger, thereby generating high pressure steam, and then cooling the gaseous effluent to a temperature at which tar, formed by reactions among constituents of the effluent, condenses. The resulting mixed gaseous and liquid effluent is passed through a quench oil knock-out drum, to separate quench oil from the gaseous effluent which is then cooled to condense a liquid effluent comprising pyrolysis gasoline and water condensed from steam, which fractions are separated in a distillate drum. The cooled gaseous effluent is directed to a recovery train, to recover light olefins. The pyrolysis gasoline-containing fraction passes to a tailing tower which provides an overhead stream rich in pyrolysis gasoline and a bottoms stream rich in gas oil.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: March 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert David Strack, John R. Messinger
  • Patent number: 7618530
    Abstract: A method for the efficient conversion of heavy oil to distillates using sequential hydrocracking in the presence of both supported and colloidal catalyst immediately followed by a high temperature-short residence time thermal treatment. The hydrocracker reaction products or a heavy oil and hydrogen donor diluent may be advantageously heated by direct contact with high velocity combustion products.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 17, 2009
    Assignee: The BOC Group, Inc.
    Inventor: Donald P. Satchell, Jr.
  • Patent number: 7560020
    Abstract: Tar is contacted with stripping agent, such as steam or tail gas, in a stripping tower. A product comprising deasphalted tar is recovered as overheads and a product comprising heavy tar is recovered as bottoms from the stripping tower.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: July 14, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Subramanian Annamalai, James N McCoy, Paul F Keusenkothen
  • Patent number: 7544284
    Abstract: Process for the treatment of a hydrocarbon mixture that comprises hydrogen, in which the mixture is separated at pressure P1 into a liquid L1 and a gas G1 that is compressed under a pressure P2>2×P1; compressed gas G1** is then brought into contact with at least a portion of L1 so as to recover a liquid L2 and a hydrogen-rich gas G2; at least one stabilized liquid and a light liquid stream LL comprising primarily LPG, of which at least a portion is reduced in pressure and mixed with gas G1 to facilitate its compression, are recovered by fractionation from G1** and/or from L2. The invention also relates to a process for reforming hydrocarbons with such an effluent treatment.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: June 9, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Eric Sanchez, Béatrice Fischer
  • Patent number: 7479217
    Abstract: The invention concerns a process for treating a hydrocarbon feed comprising a series of a first upstream process for hydrocarbon hydroconversion comprising at least one reaction chamber, the reaction or reactions occurring inside said chambers and employing at least one solid phase, at least one liquid phase and at least one gas phase, and a second downstream steam reforming process comprising at least one reaction chamber, characterized in that the said upstream process is carried out in a “slurry” and/or an ebullated bed mode and in that the downstream process comprises a first step for at least partial conversion of hydrocarbons heavier than methane into methane, termed the pre-reforming step, and in that the reaction or reactions occurring inside the chambers of the downstream stream reforming process enables the production of a reagent, namely hydrogen, which is necessary for the reactions in the first upstream process.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: January 20, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Mathieu Pinault, Thierry Gauthier, Stéphane Kressmann, Arnault Selmen
  • Patent number: 7452458
    Abstract: Process for treatment of a hydrocarbon feedstock that comprises a hydrocarbon-containing liquid phase and hydrogen, in which the feedstock is separated under a pressure P1 into a liquid L1 and a gas G1, that is compressed and brought into contact with a portion of L1 under a pressure P2>2×P1 to recover a liquid L2 and a hydrogen-rich gas G2; L2 is fractionated to obtain a stabilized liquid L4a that is free of LPG and lighter products, a liquid stream of LPG, and a gas stream G4 that is recycled, and in which one of gas streams: recompressed G1 and G4 is in counter-current contact with an unstabilized liquid AL that is obtained from or extracted from L1 or L2, whereby this unstabilized liquid is supercooled by at least 10° C. below its bubble point at pressure P2.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: November 18, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Eric Sanchez, Béatrice Fischer
  • Patent number: 7311813
    Abstract: This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: December 25, 2007
    Assignee: Ineos USA LLC
    Inventors: Rian Reyneke, Michael Foral, Christos G. Papadopoulos, Jeffrey S. Logsdon, Wayne W. Y. Eng, Guang-Chung Lee, Ian Sinclair
  • Patent number: 7214720
    Abstract: The invention relates to an installation and a process for the production of liquid fuels starting from a solid feedstock that contains the organic material in which: a) the solid feedstock is subjected to a gasification stage so as to convert said feedstock into synthesis gas, b) the synthesis gas is subjected to a purification treatment, c) the purified synthesis gas is subjected to a conversion stage that comprises the implementation of a Fischer-Tropsch-type synthesis so as to convert said synthesis gas into a liquid effluent and a gaseous effluent, d) the liquid effluent is fractionated so as to obtain a gaseous fraction, a naphtha fraction, a kerosene fraction and a gas oil fraction, and e) at least a portion of the naphtha fraction is recycled in gasification stage a).
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: May 8, 2007
    Assignees: Institut Francais du Petrole, Commissariat a l'Energie Atomic
    Inventors: Jérôme Bayle, Guillaume Boissonnet, Eric Marty, Jean-Marie Seiller
  • Patent number: 7005057
    Abstract: A catalytic hydrocracking process for the production of ultra low sulfur diesel wherein a hydrocarbonaceous feedstock is hydrocracked at elevated temperature and pressure to obtain conversion to diesel boiling range hydrocarbons. The resulting hydrocracking zone effluent is hydrogen stripped in a stripping zone maintained at essentially the same pressure as the hydrocracking zone to produce a first gaseous hydrocarbonaceous stream and a first liquid hydrocarbonaceous stream. The first gaseous hydrocarbonaceous stream containing diesel boiling range hydrocarbons is introduced into a desulfurization zone and subsequently partially condensed to produce a hydrogen-rich gaseous stream and a second liquid hydrocarbonaceous stream containing diesel boiling range hydrocarbons. At least a portion of the first liquid stream is separated in a dividing wall column to produce a liquid hydrocarbonaceous stream containing diesel boiling range hydrocarbons which is also introduced into the desulfurization zone.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: February 28, 2006
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Patent number: 6860985
    Abstract: The invention relates to a method for improving yield in petroleum streams derived from coking processes. In a preferred embodiment, the invention relates to a method for regenerating filters employed to remove particulate matter from coker gas oil to improve coker gas oil yield and yield of upgraded coker gas oil products.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 1, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Ramesh R. Hemrajani, Glen E. Phillips, Simon R. Kelemen, Kuangnan Qian
  • Patent number: 6592749
    Abstract: An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step uses a rubbery polymeric membrane selective for all C1-C6 hydrocarbons over hydrogen. The process can produce three products: a high-purity hydrogen stream, an LPG stream and a light hydrocarbon fuel gas stream.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: July 15, 2003
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6540904
    Abstract: The present invention provides a process for the upgradation of petroleum residue into useful fractions by subjecting petroleum residue in the presence of a solvent and ferrous sulphate catalyst to a pressure in the range of 10 atm. to 120 atm., temperature in the range of 380-420° C., for a period in the range of 0-120 minutes, in a reactor vessel, in an inert atmosphere. The charge is then cooled to room temperature and the product gas released through scrubbers. The residue is re-heated, if required, for free flow of liquid product. The resulting liquid product is distilled to obtain useful fractions.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: April 1, 2003
    Inventors: Suhas Ranjan Gun, Priya Bandhu Chowdhury, Kashi Nath Bhattacharya, Achinta Kumar Roy, Umanand Sharma, Swapan Kumar Ghosh, Awadhesh Kumar Sinha, Santosh Kumar Chanda, Sukumar Mandal, Sanjay Kumar Ray, Asit Kumar Das, Satish Makhija, Sobhan Ghosh, Akhilesh Kumar Bhatnagar
  • Patent number: 6517705
    Abstract: A catalytic hydrocracking process for the production of lube base oil wherein a hydrocarbonaceous feedstock is contacted with hydrogen and a metal promoted hydrocracking catalyst in a hydrocracking reaction zone at elevated temperature and pressure to obtain conversion to higher hydrogen-content hydrocarbons including lube base oil. The resulting hot, uncooled effluent from the hydrocracking reaction zone is hydrogen stripped in a hot, high pressure stripping zone maintained at essentially the same pressure as the hydrocracking zone to produce a first gaseous hydrocarbonaceous stream and a first liquid hydrocarbonaceous stream. At least a portion of the first gaseous hydrocarbonaceous stream is condensed to produce a second liquid hydrocarbonaceous stream and a second hydrogen-rich gaseous stream. The first liquid hydrocarbonaceous stream is preferably separated at a pressure greater than atmospheric pressure to provide at least one lube base oil product stream.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: February 11, 2003
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Vasant P. Thakkar
  • Patent number: 6333445
    Abstract: The olefin-hydrogen effluent vapor stream from a dehydrogenation process is separated by a cryogenic separation method utilizing a cryogenic separation system. The method does not require external refrigeration and reheats and portions an expander feed stream to extract energy and controls the warm end and cold end temperature differences in the primary heat exchanger to provide energy savings and economical operation and material use.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: December 25, 2001
    Assignee: Chart, Inc.
    Inventor: John V. O'Brien
  • Patent number: 6264828
    Abstract: Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: July 24, 2001
    Assignee: Membrane Tehnology and Research, Inc.
    Inventors: Richard W. Baker, Kaaeid A. Lokhandwala, Zhenjie He, Ingo Pinnau
  • Patent number: 6197163
    Abstract: The impurity content, e.g. propionitrile, in a fraction containing C5 or C6 tertiary olefins obtained by cracking hydrocarbons is reduced by distilling with an alkanol and removing the impurity as a higher boiling point fraction.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: March 6, 2001
    Assignee: Catalytic Distillation Technologies
    Inventor: Claus-Peter Thomas Hälsig
  • Patent number: 6190540
    Abstract: A process for hydroprocessing a fluid stream containing at least hydrogen and hydrocarbons. The process uses a hydrocarbon-selective membrane to reduce the concentration of hydrocarbons and contaminants in the hydrogen stream recycled to the hydroprocessing reactor. The membrane can operate in the presence of hydrogen sulfide. The process also provides the opportunity for increased NGL recovery from the hydrocarbon-enriched membrane permeate stream.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: February 20, 2001
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6190536
    Abstract: Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: February 20, 2001
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6183628
    Abstract: An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: February 6, 2001
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Richard W. Baker, Kaaeid A. Lokhandwala, Zhenjie He, Ingo Pinnau
  • Patent number: 6179996
    Abstract: Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: January 30, 2001
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Richard W. Baker, Kaaeid A. Lokhandwala