Feed Of Specific Composition Patents (Class 208/144)
  • Patent number: 6175046
    Abstract: There is provided a catalyst that is highly resistant to sulfur and nitrogen compounds and active for hydrogenation and shows a low hydrocracking rate and a long service life as well as a method of converting aromatic hydrocarbons in hydrocarbon oil containing sulfur and nitrogen compounds into saturated hydrocarbons by using such a catalyst. A method of hydrogenating aromatic hydrocarbons in hydrocarbon oil containing 80 wt % or more of a fraction having a boiling point of 170 to 390° C. and said aromatic hydrocarbons is characterized in that the hydrocarbon oil is brought into contact with hydrogen in the presence of a catalyst containing clay minerals having principal ingredients of Si and Mg as carrier and at least one of the VIII-group metals of periodic table as active metal.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: January 16, 2001
    Assignee: Nippon Oil Company, Limited
    Inventors: Toshiyuki Enomoto, Yasuo Nakatsuka, Takashi Ino, Minoru Hatayama
  • Patent number: 6169218
    Abstract: A process for the selective hydrogenation of the diolefins and acetylenic compounds in a olefin rich aliphatic hydrocarbon streams is disclosed wherein the selective hydrogenation is carried out at 40 to 300° F. under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig in a distillation column reactor containing a hydrogenation catalyst which serves as a component of a distillation structure, such as supported PdO encased in tubular wire mesh. Essentially no hydrogenation of the olefins occurs.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: January 2, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Edward M. Jones, Jr., Lawrence A. Smith, Jr., Gary R. Gildert
  • Patent number: 6136181
    Abstract: The present invention relates to a novel platinum palladium alloy catalyst useful in hydrofinishing and hydrocracking non low sulfur content feedstock and the process of hydrofinishing and hydrocracking such non low sulfur content feedstock feeds. The catalyst maintains the activity of a palladium catalyst with the sulfur tolerance of a platinum catalyst without the need for the higher reaction temperatures normally associated with platinum based catalysts and thus avoid the higher rates of undesirable cracking reactions in the fabrication of a lubricating base oil stock.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: October 24, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventor: James N. Ziemer
  • Patent number: 6124514
    Abstract: A process is disclosed for generating pure aromatic compounds from a reformed gasoline which contains aromatic compounds, olefins, diolefin, and triolefins, which comprises the steps of:(a) selectively hydrogenating the olefins, diolefins and triolefins in the reformed gasoline to obtain a mixture of hydrogenated, non-aromatic compounds and aromatic compounds; and(b) separating the aromatic compounds from the hydrogenated, non-aromatic compounds in the mixture formed during step (a) by either extractive distillation, liquid--liquid extraction or both to obtain the pure aromatic compounds.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: September 26, 2000
    Assignee: Krupp Uhde GmbH
    Inventors: Gerd Emmrich, Hans-Christoph Schneider, Helmut Gehrke, Bernhard Firnhaber
  • Patent number: 6084140
    Abstract: A palladium-base catalyst can selectively hydrogenate highly unsaturated hydrocarbon compounds contained in small amounts in an olefin compound prepared by steam cracking or the like of naphtha without causing hydrogenation of the olefin as a side reaction and the precipitation of a carbonaceous material. The catalyst comprises palladium and alumina, and the exposed face of each palladium crystallite is mainly accounted for by (100) and (110) faces. Further, in the desorption of absorbed hydrogen by heating, desorption peaks are observed in the temperature ranges of 40 to 90.degree. C. and of 120 to 170.degree. C. and the ratio of hydrogen desorption amount of the former to the latter is (4:6) to (3:7).
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: July 4, 2000
    Assignee: Sud-Chemie Nissan Catalyst, Inc.
    Inventors: Tadakuni Kitamura, Kouzou Takeuchi, Junichi Yazaki, Yuzo Satou, Moriyasu Sugeta
  • Patent number: 6072091
    Abstract: A process for the treatment of a feed comprising at least hydrocarbons containing at least 3 to 10 carbon atoms per molecule, including acetylenic and diolefinic hydrocarbons, comprises passing the feed into a distillation zone associated with a selective hydrogenation reaction zone comprising at least one catalytic hydrogenation bed which is internal to or external of the distillation zone, in which hydrogenation of at least a portion of the acetylenic and diolefinic hydrocarbons contained in the feed is carried out in the presence of a gas stream rich in hydrogen. The process is particularly suitable for the treatment of products from catalytic cracking.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: June 6, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Jean Cosyns, Blaise Didillon, Jean-Luc Nocca, Etienne Lebas, Francoise Montecot
  • Patent number: 6071402
    Abstract: The present invention concerns a hydrorefining and/or hydrocracking catalyst for hydrocarbon feeds, comprising at least one mixed sulphide comprising sulphur, at least one group VB element, preferably niobium, and at least one group VIB element, preferably molybdenum or tungsten, more preferably molybdenum, optionally combined with a support and/or at least one group VIIA metal and/or at least one group VIII metal and/or an element selected from the group formed by S, P, B, Si.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: June 6, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Michel Danot, Nabil Allali, Valerie Gaborit, Christophe Geantet, Pavel Afanassiev, Samuel Mignard, Slavik Kasztelan
  • Patent number: 6048450
    Abstract: A process for treating a feed comprising C.sub.5.sup.+ hydrocarbons and comprising at least one unsaturated C.sub.6.sup.+ compound including benzene, is such that the feed is treated in a distillation zone, associated with a hydrogenation zone, comprising at least one catalytic bed, in which the hydrogenation is carried out of unsaturated C.sub.6.sup.+ compounds contained in the feed, and whereof a charge for the hydrogenation step is removed at the height of a removal level and represents at least part of the liquid flowing in the distillation zone, and the effluent from the hydrogenation reaction zone is at least in part reintroduced into the distillation zone to ensure continuity of the distillation operation, the effluents at the top and bottom on the distillation zone being very depleted of unsaturated C.sub.6.sup.+ compounds. The effluent drawn off from the top of the distillation zone is treated in a zone for the isomerisation of C.sub.5 and/or C.sub.6 paraffins.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: April 11, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Paul Mikitenko, Christine Travers, Jean Cosyns, Charles Cameron, Jean-Luc Nocca, Fran.cedilla.oise Montecot
  • Patent number: 6042719
    Abstract: Low sulfur gasoline of relatively high octane-barrel value is produced from cracked, sulfur containing olefinic naphthas by hydrodesulfurization at low temperature and low space velocity over either a conventional catalyst, such as CoMo/Al.sub.2 O.sub.3, or a dual functional catalyst, such as CoMo ZSM-5/Al.sub.2 O.sub.3. This approach also minimizes the olefins/hydrogen sulfide re-combination frequently observed at high temperature. The process produces a gasoline having a reduced sulfur content with a less than 5% change in motor octane number and a less than 10% change in research octane number.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: March 28, 2000
    Assignee: Mobil Oil Corporation
    Inventor: Stuart S. Shih
  • Patent number: 6013847
    Abstract: Benzene is hydrogenated using a platinum containing catalyst in the presence of water and an organic chloride.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: January 11, 2000
    Assignee: Phillips Petroleum Company
    Inventor: Fan-Nan Lin
  • Patent number: 5989410
    Abstract: The invention relates to a process for improving the pour point of a feedstock that comprises paraffins of more than 10 carbon atoms, in which the feedstock that is to be treated is brought into contact with a catalyst that comprises the IM-5 zeolite and at least one hydro-dehydrogenating element, at a temperature of between 170 and 500.degree. C., a pressure of between 1 and 250 bar, and an hourly volume velocity of between 0.05 and 100 h.sup.-1, in the presence of hydrogen at a ratio of 50 to 2000 l/l of feedstock. The oils that are obtained have good pour points and high viscosity indices (VI). The process can also be applied to gas-oils and other feedstocks whose pour points need to be lowered.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: November 23, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nathalie George-Marchal, Christophe Gueret, Patrick Briot, Alain Billon, Pierre Marion
  • Patent number: 5986154
    Abstract: The invention concerns a process for the hydrogenation of aromatic compounds contained in feeds with an initial boiling point of more than 100.degree. C. and which contain at least 10% by weight of aromatic compounds. It consists of introducing chlorine in a concentration of 0.5-500 ppm by weight with respect to the feed at a temperature of between 200.degree. C. and 450.degree. C., a pressure in the range 1 MPa to 25 MPa, an HSV of between 0.1 h.sup.-1 and 10 h.sup.-1 and a volume ratio of hydrogen to feed of 100-2000. The catalyst used is a noble metal type and contains less than 1% of at least one halogen. Preferably, the catalyst is fluorinated or chlorinated.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: November 16, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Virginie Harle, Slavik Kasztelan, Nathalie Marchal-George
  • Patent number: 5954941
    Abstract: The invention concerns a jet engine fuel having the following characteristics:i) distilling range from 140 to 300.degree. C.;ii) cis-decalin/trans-decalin ratio greater than 0.2;iii) aromatics content less than 22% by volume;iv) sulfur content less than 100 ppm, andv) lower heating value per unit volume greater than 34.65 Mj/liter.Also process for making the same wherein for example a cut from catalytic cracking distilling between 140 and 300.degree.0 C. is subjected to a hydrotreatment step and then to a dearomatization step.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: September 21, 1999
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Sophie Mercier, Michel Laborde, Fran.cedilla.ois-Xavier Cormerais, Michel Thebault
  • Patent number: 5948239
    Abstract: Disclosed herein is a highly efficient process for producing distillate fuels using a multi-bed hydrogenation reactor. The temperature of the feed to the second and subsequent reactor beds is controlled by removing effluent from the prior bed, cooling the effluent in an external heat exchanger, injecting hydrogen gas into the effluent mixture, and inserting the cooled mixture containing hydrogen gas into the inlet of the next reaction zone.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: September 7, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Harjeet S. Virdi, Benjamin Klein, R. John McNab
  • Patent number: 5925799
    Abstract: In an olefins plant for the production and recovery of ethylene and propylene, the hydrogenation of the C.sub.2 acetylenes, the C.sub.3 acetylenes and dienes and the C.sub.4 and heavier acetylenes, dienes and olefins and the selective separation of the resulting products is carried out by the use of various arrangements of one or more reaction distillation columns. These columns contain a hydrogenation catalyst in enriching and stripping sections and concurrently perform a catalytic hydrogenation reaction and a distillation function.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: July 20, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Stephen J. Stanley, Charles Sumner
  • Patent number: 5904838
    Abstract: A process for the simultaneous conversion of waste lubricating oil and pyrolysis oil derived from organic waste to produce a synthetic crude oil by means of contacting the combined feed with a hot hydrogen-rich gaseous stream to increase the temperature of the combined feed to vaporize at least a portion of the distillable organic compounds contained therein which is immediately hydrogenated in a hydrogenation reaction zone. The resulting effluent from the hydrogenation reaction zone is then introduced into a hydroprocessing zone to produce higher hydrogen-content hydrocarbons and to remove heterogeneous components such as sulfur, oxygen, nitrogen and halide, for example. The resulting effluent is cooled and partially condensed to produce a gaseous stream containing hydrogen and gaseous water-soluble inorganic compounds and a liquid stream containing hydrocarbon compounds.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: May 18, 1999
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5865985
    Abstract: A process for the production of a diesel fuel includes contacting a feedstock comprising cracked stocks in the presence of hydrogen under conditions of elevated temperature and pressure with a first catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on a substantially non-acidic carrier, and then contacting at least a portion of the effluent from the first catalyst with a second catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an acidic carrier. This process can produce diesel fuels having an improved cetane index and API gravity. The effluent from the second catalyst bed may be contacted with a third catalyst bed which contains a catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on a substantially non-acidic carrier.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: February 2, 1999
    Assignee: Akzo Nobel NV
    Inventors: Pankaj Himatlal Desai, Johannes Wilhelmus Sonnemans, Terry Allan Reid
  • Patent number: 5855767
    Abstract: A process for saturating aromatics in a lube range hydrocarbon is disclosed. The process can be used to raise the viscosity index of the lube range products. The process is carried out over a noble metal catalyst under mild process conditions. The catalyst is resistant to sulfur and nitrogen compounds.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: January 5, 1999
    Assignee: Star Enterprise
    Inventors: John Robert Powers, Gerald Foley Prescott, James Roger Whiteman
  • Patent number: 5817901
    Abstract: A process for the selective hydrogenation of a fraction of hydrocarbons containing 2 to 20 carbon atoms and comprising monounsaturated olefinic hydrocarbons and/or aromatic compounds and at least one polyunsaturated hydrocarbon from the group formed by acetylenic compounds and dienes, in which the hydrocarbon fraction, which is at least partially in the liquid phase, circulates with hydrogen in a given direction in a reactor containing at least one fixed bed of a hydrogenation catalyst in the form of a divided solid, characterized in that said reactor is provided with at least one inlet conduit for a fluid mixture comprising said hydrocarbon fraction and hydrogen and at least one outlet conduit for the hydrogenated hydrocarbon fraction, and in that it comprises at least one static mixer upstream of said outlet for the hydrogenated hydrocarbon fraction.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: October 6, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Pierre Trambouze, Jean-Paul Euzen, Gerard Leger, Henri Delhomme
  • Patent number: 5817227
    Abstract: The invention is concerned with a process for treating a charge of which the major part is constituted by hydrocarbons comprising at least 5 carbon atoms per molecule and comprising at least one unsaturated compound comprising at the most six carbon atoms per molecule including benzene, such that said charge is treated in a distillation zone, comprising a drainage zone and a stripping zone, associated with a hydrogenation reaction zone, comprising at least one catalytic bed, in which hydrogenation is carried out of at least part of the unsaturated compounds comprising at the most six carbon atoms per molecule and contained in the charge, the charge of said reaction zone being removed at the height of a removal level and representing at least a part of the liquid flowing in the distillation zone, the effluent of the reaction zone being at least partly reintroduced into the distillation zone, in such a way as to ensure the continuity of the distillation operation and in such a way as to remove from the top of t
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: October 6, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Paul Mikitenko, Christine Travers, Jean Cosyns, Charles Cameron, Jean-Luc Nocca, Fran.cedilla.oise Montecot
  • Patent number: 5789637
    Abstract: The invention concerns a process for the hydrogenation of aromatic compounds contained in feeds with an initial boiling point of more than 100.degree. C. and which contain at least 10% by weight of aromatic compounds. It consists of introducing chlorine in a concentration of 0.5-500 ppm by weight with respect to the feed at a temperature of between 200.degree. C. and 450.degree. C., a pressure in the range 1 MPa to 25 MPa, an HSV of between 0.1 h.sup.-1 and 10 h.sup.-1 and a volume ratio of hydrogen to feed of 100-2000. The catalyst used is a noble metal type and contains less than 1% of at least one halogen. Preferably, the catalyst is fluorinated or chlorinated.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: August 4, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Virginie France Harle, Slavik Kasztelan, Nathalie Marchal-George
  • Patent number: 5780703
    Abstract: A process for converting at least one olefin and at least one isoparaffin to a diesel fuel blending component comprising the steps of contacting the olefin and the isoparaffin with a catalyst comprising an acidic solid comprising a Group IVB metal oxide modified with an oxyanion of a Group VIB metal to provide a diesel fuel. Process conditions can be varied to favor the formation of gasoline, distillate, lube range products or mixtures thereof.
    Type: Grant
    Filed: August 9, 1995
    Date of Patent: July 14, 1998
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Stuart D. Hellring, David O. Marler, Jose G. Santiesteban, James C. Vartuli
  • Patent number: 5773549
    Abstract: The invention provides a process for hydrotreating an organic feedstock containing a halogenated component and contaminated with distillable oxygen compounds, and/or distillable nitrogen compounds having boiling points lower than the halogenated compounds by means of removing the distillable oxygen compounds and distillable nitrogen compounds with a fractionation zone and then contacting the resulting organic feedstock having a reduced concentration of distillable oxygen and nitrogen compounds and a gaseous recycle stream containing hydrogen with a hydrogenation catalyst in a hydrogenation reaction zone to produce an anhydrous liquid stream comprising hydrogenated hydrocarbonaceous compounds having a reduced concentration of organic halide and a hydrogen halide compound. The resulting effluent from the hydrogenation zone is optionally separated to produce a hydrogenated hydrocarbonaceous stream having a reduced level of halogen and an anhydrous stream comprising a hydrogen halide compound.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: June 30, 1998
    Assignee: UOP LLC
    Inventors: Mark D. Moser, Tom N. Kalnes, Chwu-Ching Jan
  • Patent number: 5741414
    Abstract: There is provided a method of manufacturing gas oil containing low-sulfur and low-aromatic-compound content, said method including a first step of putting distilled petroleum to contact with hydrogen gas in the presence of a hydrotreating catalyst to reduce the sulfur concentration to not higher than 0.05 wt % and a second step of reducing the aromatic compound concentration in the presence of a noble metal type catalyst, with at least a pair of high temperature high pressure gas liquid separators arranged between the two steps to separate the gaseous and liquid components of distilled petroleum and hydrogen gas or hydrogen containing gas is introduced into the liquid component in each of the separators.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: April 21, 1998
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Toshio Waku, Masanari Akiyama
  • Patent number: 5738779
    Abstract: In a hydrotreating process a two phase flow splitter is used in combination with parallel heat exchanger trains for heat transfer stability. Flow maldistribution of liquid and vapor between heat exchanger trains is thereby avoided without more complex feedback control. The two phase flow splitter is inherently phase volume ratio stable. Prior methods of flow splitting were only phase volume ratio metastable. Improved heat recovery at lower equipment cost is thereby achieved.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: April 14, 1998
    Assignee: Texaco Inc.
    Inventors: Michael Markel Dach, Rich Walter Barkley, Jon Andrew Branson, James Raymond Stoy, James Lindsey Gilbert Schrodt
  • Patent number: 5658453
    Abstract: A process combination is disclosed to selectively upgrade naphtha in a manner to obtain an aromatics-rich, low-olefin product from the combination. Preferably the naphtha is subjected to aromatization to obtain an aromatics concentrate which is upgraded by hydrogenation of olefins in the aromatics-rich stream. Olefin saturation is effected following separation of the major portion of hydrogen from the aromatics concentrate and before fractionation/stabilization for removal of light ends, with concomitant low saturation of aromatics and with removal of light ends in a fractionator which would be associated with the aromatization in any case.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: August 19, 1997
    Assignee: UOP
    Inventors: Michael B. Russ, Aaron P. Kelly, John Y. G. Park
  • Patent number: 5609752
    Abstract: There is provided a process for increasing the Cetane Index of a distillate fraction by reacting the fraction with hydrogen over a catalyst comprising a hydrogenation component, such as platinum, and zeolite Beta. The process results in the selective ring opening of cyclic compounds, such as aromatics, with a minimum of cracking of paraffinic hydrocarbons.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: March 11, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Kenneth J. Del Rossi, Gregory A. Jablonski, David O. Marler
  • Patent number: 5573657
    Abstract: A hydrogenation process for reducing the unsaturation of lubricants uses a catalyst which is based on an ultra-large pore crystalline material. The crystalline material has pores of at least 13 .ANG. diameter arranged in a uniform manner and exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams (50 torr and 25.degree. C.). A preferred form of the catalyst has a hexagonal structure which exhibits a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 .ANG.. The hydrogenation catalysts based on these materials are capable of reducing the unsaturation in poly alpha olefin lubricants to a low level.
    Type: Grant
    Filed: September 20, 1994
    Date of Patent: November 12, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Thomas F. Degnan, Richard C. Dougherty, George H. Hatzikos, Stuart S. Shih, Tsoung Y. Yan
  • Patent number: 5520799
    Abstract: This invention is a process for the upgrading of distillate feeds. A batch of supported hydroprocessing catalyst is placed in a reaction zone, which is usually a fixed bed reactor. The hydroprocessing catalyst comprises an effective amount of a noble metal or metals and has a specific activity. Both low aromatic diesel and jet fuel may be produced in separate blocks over the same catalyst batch, using different feeds and often different conditions. The activity of the catalyst is restored each time the feed is switched. When production is switched from jet fuel to low aromatics diesel, activity may be regained more quickly by holding the catalyst at a higher temperature than the reaction temperature for a specific period of time prior to dropping the temperature to the reaction temperature. Switching from one feed to the other may continue for about one year before the catalyst batch is changed. A dual catalyst system may alternatively be employed.
    Type: Grant
    Filed: September 20, 1994
    Date of Patent: May 28, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Stephen H. Brown, Paul P. Durand, Timothy L. Hilbert, Thomas R. Kiliany, Chang-Kuei Lee, Jeffrey C. Trewella
  • Patent number: 5482616
    Abstract: This invention relates to a catalyst for hydrogenation and/or dehydrogenation having an improved resistance against deactivation by sulfur compounds, comprising at least one hydrogenation component, at least one metal-oxide containing component and at least one component acting as a support material, in which at least a part of the hydrogenation component and a part of the metal-oxide containing component are present on said support material as separate particles, the particles of the hydrogenation component and the particles of the metal-oxide containing component being homogeneously distributed in the catalyst.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: January 9, 1996
    Assignee: Engelhard De Meern B. V.
    Inventors: Nilanjan Brahma, John W. Geus, Eugene G. M. Kuijpers
  • Patent number: 5470454
    Abstract: A process for the preparation of a lubricating base oil, comprising treating a hydrocarbonaceous product with hydrogen, at elevated temperature and pressure and in the presence of a catalyst, which hydrocarbonaceous product has been prepared by contacting hydrocarbons and/or derivatives thereof with an active hydrogen-containing system by a process which comprises generating a hydrogen-containing plasma and allowing contact of the hydrocarbons and/or derivatives thereof in liquid form with the plasma-generated system and recovering the hydrocarbonaceous product.
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: November 28, 1995
    Assignee: Shell Oil Company
    Inventors: Pierre Grandvallet, Daniel G. P. Allais, Pierre E. J. G. Dejaifve
  • Patent number: 5457252
    Abstract: A novel catalyst has been provided for the selective hydrogenation of benzene in gasoline. The catalyst mixture comprises a water-soluble, organo-metallic, selective benzene hydrogenation catalyst comprising catalytically-active mixture of (A) M[L].sub.x [X].sub.y wherein M is a metal selected from the group consisting of Cr, Fe, Co, Ni, Mo, Ru, Rh, Pd, Ta, W, Re, Os, Ir, Pt, La and Ce; L is an aromatic hydrocarbon, e.g., benzene, diphenyl, etc., or a diaromatic hydrocarbon, e.g., naphthalene; X is a halogen; x is an integer from 1 to 10 inclusive; and y is an integer from 1 to 10 inclusive; and (B) tris(triphenylphosphine)rhodium(I)halide or tris(triphenylphosphine)ruthenium(I)halide. In use the process comprises admixing the gasoline with water. The above-identified water-soluble, organo-metallic selective benzene hydrogenation catalyst mixture is then added. A catalytic hydrogenation is then carried out in a hydrogenation zone at a temperature of about 150.degree. to about 245.degree. C.
    Type: Grant
    Filed: September 2, 1993
    Date of Patent: October 10, 1995
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Energy, Mines & Resources
    Inventors: Udai S. Gill, Craig W. Fairbridge, Brian A. Farnand, Esteban C. Castellanos
  • Patent number: 5449452
    Abstract: A naphtha or a middle distillate hydrocarbon is hydrodearomatized by hydrotreating in the presence of a catalyst containing boron, non-noble Group VIII metal, and Group VIB metal on a carbon support.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: September 12, 1995
    Inventors: Chakka Sudhakar, Frank Dolfinger, Jr., Max R. Cesar, Jeffrey G. Weissman
  • Patent number: 5435907
    Abstract: A naphtha or a middle distillate hydrocarbon is dehydroaromatized by hydrotreating in the presence of a catalyst containing non-noble Group VIII metal and Group VI-B metal on carbon.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: July 25, 1995
    Assignee: Texaco Inc.
    Inventors: Chakka Sudhakar, Frank Dolfinger, Jr., Dennis J. Pao, John Hazen
  • Patent number: 5417844
    Abstract: The invention relates to a process for the selective hydrogenation of diolefins in steam cracking petrol in the presence of a nickel catalyst and is characterized in that prior to the use of the catalyst, a suphur-containing organic compound is incorporated into the catalyst outside of the reactor.
    Type: Grant
    Filed: November 18, 1992
    Date of Patent: May 23, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Paul Boitiaux, Patrick Sarrazin
  • Patent number: 5401894
    Abstract: A process for the conversion of a halogenated organic feedstock to produce a stream of hydrocarbonaceous compounds having an exceedingly low concentration of halogenated organic compounds and an aqueous stream containing hydrogen halide.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: March 28, 1995
    Assignee: UOP
    Inventors: Robert S. Brasier, Robert B. James, Jr.
  • Patent number: 5397459
    Abstract: Lubricating basestock oil suitable for use as such or as blending oil is obtained by the low severity hydrotreatment of industrial circulating oils of the type employed in low severity lubricating applications, and which have been mildly degraded and are no longer suitable for use for their intended purpose.
    Type: Grant
    Filed: January 6, 1994
    Date of Patent: March 14, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventor: Kevin D. Butler
  • Patent number: 5384037
    Abstract: A process for the production of a distillable hydrocarbon product stream from a first distillate hydrocarbon stream, a second distillate hydrocarbon stream and a waste lubricant stream by means of contacting the waste lubricant stream with a hot hydrogen-rich gaseous stream to increase the temperature of this feed stream and vaporize at least portion of the distillable hydrocarbonaceous compounds thereby producing a distillable hydrocarbonaceous stream which is immediately hydrogenated in an integrated hydrogenation zone. The vaporized waste oil stream is admixed with a first distillate hydrocarbon stream before introduction into the hydrogenation zone. The second distillate hydrocarbon stream is converted in a hydrocracking conversion zone in order to produce lower boiling distillable hydrocarbon products and an aqueous ammonia solution which is admixed with a partially condensed effluent from the hydrogenation zone in order to neutralize at least one acid gas.
    Type: Grant
    Filed: June 29, 1993
    Date of Patent: January 24, 1995
    Assignee: UOP
    Inventor: Tom N. Kalnes
  • Patent number: 5350504
    Abstract: Non-acidic tin-, lead-, or indium-modified Pt/ZSM-5 catalysts are effective catalysts for the shape selective preferential hydrogenation of certain aromatic hydrocarbons in admixture with others. These catalysts can be used to reduce the aromatic content of gasoline and distillates.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: September 27, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Ralph M. Dessau
  • Patent number: 5346612
    Abstract: A process and catalyst are provided for the hydrogenation of a hydrocarbon feedstock consisting essentially of hydrocarbon boiling between about 150.degree. F. and 700.degree. F. at atmospheric pressure. The process comprises reacting the feedstock with hydrogen at hydrogenation conditions in the presence of a catalyst comprising hydrogenation metals and a support comprising beta zeolite. The hydrogenation metals comprise from about 0.1 percent by weight to about 2.0 percent by weight each of palladium and platinum measured as a percentage of the catalyst. The beta zeolite comprises from about 1 ppm by weight to about 3.0 percent by weight sodium calculated as a percentage of said beta zeolite.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: September 13, 1994
    Assignee: Amoco Corporation
    Inventors: Simon G. Kukes, Frederick T. Clark, P. Donald Hopkins
  • Patent number: 5344554
    Abstract: The invention relates to a downflow fluid cracking process and apparatus. More specifically, sampling takes place of the at least partly regenerated catalyst, which must be recycled to the reactor 1 from a dense phase 17a, contained in a regenerator 17 and the stage of introducing the catalyst into the upper part 3 of the reactor 1 takes place under conditions such that the density of the thus formed gas-solid suspension is between 80 and 500 kg/m.sup.3 prior to its contacting with the charge, which is introduced by the injectors 5.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: September 6, 1994
    Assignee: Institut Francais Du Petrole
    Inventors: Renaud Pontier, Frederic Hoffmann, Pierre Galtier
  • Patent number: 5284984
    Abstract: A method for upgrading an aromatics-containing charge composition boiling in the gasoline boiling range comprises i) contacting the charge composition with a nitrating agent under nitrating conditions to form a product comprising nitrated aromatics; ii) hydrogenating a feed containing the product of i) under conditions sufficient to substantially reduce the nitro group of the nitrated aromatics so as to form a product comprising aromatic amines, water and heavy amines; and iii) removing the water and heavy amines from the product of step ii) to provide a gasoline boiling range product of an octane rating greater than the charge composition.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: February 8, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Ralph M. Dessau, Quang N. Le, Samuel A. Tabak, Robert T. Thomson
  • Patent number: 5275718
    Abstract: A hydrofinishing process for improving the color, thermal and oxidative stability of a base stock for lubricating oil wherein the lubricating oil stock is contacted with hydrogen in the presence of a nickel-molybdenum catalyst, at a pressure in the range of 400 psi to 3000 psi, at a weight hourly space velocity in the range of 0.25-4.5 and at a temperature in the range of 550.degree. F. to 750.degree. F.
    Type: Grant
    Filed: April 19, 1991
    Date of Patent: January 4, 1994
    Assignee: Lyondell Petrochemical Company
    Inventors: C. Monroe Copeland, Frank McKay, John M. Noreyko, Michael Rombs, Darrell Sutherland
  • Patent number: 5271828
    Abstract: A process and catalyst is provided for the hydrogenation of a hydrocarbon feedstock comprising a substantial portion of a distillate hydrocarbon feedstock, wherein said distillate hydrocarbon feedstock consists essentially of material boiling between about 150.degree. F. and about 700.degree. F. at atmospheric pressure, which comprises reacting the feedstock with hydrogen at hydrogenation conditions in the presence of a catalyst comprising from about 0.1% to about 2.0% by weight of palladium and from about 0.1% to about 2.0% by weight of platinum and a support comprising borosilicate, for producing a hydrogenated product.
    Type: Grant
    Filed: March 16, 1992
    Date of Patent: December 21, 1993
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Simon G. Kukes, P. Donald Hopkins
  • Patent number: 5254763
    Abstract: A novel process is provided for the selective hydrogenation of benzene in a solution of gasoline and other aromatic organic compounds. The process includes the steps of carrying out the catalytic hydrogenation in a hydrogenation zone at a temperature of about 45.degree. to about 250.degree. C. at a pressure of about 200 psi to about 500 psi in a biphasic system of aqueous and organic liquids the hydrogenation catalyst being water-soluble. The organic liquid is removed from the hydrogenation zone. At least a catalytic amount of the catalyst is retained in the hydrogenation zone. The catalyst above described is also a facet of this invention.
    Type: Grant
    Filed: December 2, 1991
    Date of Patent: October 19, 1993
    Inventors: Udai S. Gill, Craig W. Fairbridge, Brian A. Farnand
  • Patent number: 5246567
    Abstract: A process is provided for the hydrogenation of benzene and the isomerization of a light naphtha feedstock consisting essentially of a stream having a boiling range of from about 50.degree. F. to about 240.degree. F. comprising the steps of contacting the light naphtha feedstock at isomerization conditions in an isomerization reaction zone with an isomerization catalyst in the presence of hydrogen and producing an isomerization reaction zone effluent, combining the isomerization reaction zone effluent with a supplemental benzene-containing stream comprising at least 1 weight percent benzene and forming a hydrogenation zone feedstock, and hydrotreating the hydrogenation zone feedstock at hydrogenation conditions in a hydrogenation reaction zone with a hydrogenation catalyst in the presence of hydrogen for producing an isomerate product comprising less than 0.1 weight percent benzene.
    Type: Grant
    Filed: February 10, 1992
    Date of Patent: September 21, 1993
    Assignee: Amoco Corporation
    Inventors: Robert D. Buttke, Frank S. Modica, Bruce A. Fleming
  • Patent number: 5242578
    Abstract: A refining process uses a two or four stage solvent separator coupled to receive an incoming feedstream of low sulfur resid and a solvent. In the preferred two stage separator, the mixture at the top of the first separator stage is fed to the second stage separator via a heat exchanger. The mixture at the bottom of the first stage separator includes resins and asphaltenes which are fed to a hydrotreater and then, in turn, to a fractionator. The output from the bottom of this fractionator can be fed back to the resid feedstream of the first stage separator for recycled separation. The material at the top of the second stage separator is fed back through the heat exchanger where it helps heat the mixture fed from the top of the first to the second stage separator, this feedback recovers the solvent for reuse in the first stage. The material settling to the bottom of the second stage separator is fed into a catalytic cracker or processed elsewhere.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: September 7, 1993
    Assignee: Amoco Corporation
    Inventors: James L. Taylor, Jeffrey J. Kolstad, William I. Beaton
  • Patent number: 5183556
    Abstract: A process for producing diesel fuel from a diesel hydrocarbon feed. Hydrogen is fed cocurrently with the feed to a first hydrogenation zone in the presence of a hydrogenation catalyst. Liquid effluent from the first hydrogenation zone is then passed to a second hydrogenation zone, wherein the liquid effluent is contacted countercurrently with hydrogen in the presence of a hydrogenation catalyst. Preferred hydrogenation catalysts are those comprising non-noble metals in the first hydrogenation zone, and may comprise noble or non-noble metals in the second hydrogenation zone.
    Type: Grant
    Filed: March 13, 1991
    Date of Patent: February 2, 1993
    Assignee: ABB Lummus Crest Inc.
    Inventors: James W. Reilly, Gary Hamilton
  • Patent number: 5176816
    Abstract: An integrated process for the production of a hydrogenated distillable hydrocarbonaceous product from a temperature-sensitive hydrocarbonaceous stream containing a non-distillable component by the utilization of a hot hydrogen flash zone and a secondary separation zone to achieve a high yield of hydrogenated distillable hydrocarbonaceous product.
    Type: Grant
    Filed: April 2, 1992
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventors: Steven P. Lankton, Robert B. James, Jr.
  • Patent number: 5158671
    Abstract: A method is described for rendering total liquid product hydroisomerates daylight stable and improving their oxidation stability, which method involves treating the hydroisomerate total liquid product with a Group VIII metal on refractory metal oxide catalyst or Group VIII metal on halogenated refractory metal oxide catalyst under mild conditions, which conditions are a temperature in the range of 170.degree. to 270.degree. C., a pressure in the range of 300 to 1500 psi H.sub.2, 0.25 to 10 v/v/hr and 500 to 10,000 SCF/B,H.sub.2.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: October 27, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Donald T. Eadie, John M. MacDonald, Glen P. Hamner