Combined Gravitating Bed And Suspension Zones Patents (Class 208/148)
  • Patent number: 10215607
    Abstract: Described and shown is a method for operating a flowmeter (1) having a measuring tube (2), wherein the flow (d) of a medium (4) through the measuring tube (2) is measured. A continuous dwell time of the measured flow (d) greater than or equal to a flow threshold (ds) is assigned to a flow interval (?tD,1, ?tD,2) and a flow volume (V1, V2) is determined from the measured flow (d) in the flow interval (?tD,1, ?tD,2). In each case, a continuous dwell time of the measured flow (d) less than the flow threshold (ds) is assigned to a zero flow interval (?tN,1). In each case, a deviation volume of the flow volume (V1, V2) in one of the flow intervals (?tD,1, ?tD,2) from a reference flow volume is determined and the deviation volume is compared to a threshold deviation volume.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: February 26, 2019
    Assignee: KROHNE Messtechnik GmbH
    Inventors: Helmut Brockhaus, Markus Dabrowski, Wilhelm Florin
  • Patent number: 9771528
    Abstract: A process for reducing sulfur, nitrogen, metals and asphaltene contents, while increasing the yield of distillable fractions in heavy hydrocarbons, by using a cooled light fraction as a liquid quench stream. The light fraction is obtained by splitting heavy hydrocarbons into a heavy fraction, and a light fraction which may be injected at spaced locations along a system of fixed-bed reactors series that comprises a first hydrodemetallization (HDM)/hydrodeasphaltenization (HDAs) step, followed by a second hydrodesulfurization (HDS)/hydrodenitrogenation (HDN)/hydrocracking step. The metal and asphaltene rich heavy fraction have contact with the entire catalyst system, while the light fraction is injected as side feed and quench stream(s) into the second reactor, where it is treated in admixture with the heavy fraction for elimination of the impurities of the light fraction.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: September 26, 2017
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jorge Ancheyta Juárez, Anton Alvarez Majmutov, Gustavo Jesús Marroquín Sánchez, Guillermo Centeno Nolasco
  • Patent number: 8540854
    Abstract: Provided are a substrate plating apparatus and a substrate plating method. In the substrate plating apparatus, a substrate support member supports a substrate to allow a plating surface to look up. A plating solution containing positive ions dissolved from a positive electrode is supplied from a plating solution supply member onto the substrate at an upper side of the substrate support member. A plating bath surrounds the substrate support member. The substrate support member is rotated in a state where it is immersed into the plating solution and an additive. The substrate can be supported by the substrate support member without reversing the substrate. Also, a pattern defect due to bubbles generated during a plating process can be prevented.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 24, 2013
    Assignee: Semes Co., Ltd.
    Inventors: Yijung Kim, Eun Su Rho, Jeong Yong Bae
  • Patent number: 7780845
    Abstract: The instant invention relates to a process to produce low sulfur distillate products through the hydrotreating of distillate boiling range feedstreams in the presence of a bulk metal hydrotreating catalyst.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Sonja Eijsbouts
  • Patent number: 7776205
    Abstract: The instant invention relates to a process to produce liquid products through the hydroprocessing of hydrocarbonaceous feedstreams in the presence of a bulk metal hydroprocessing catalyst.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: August 17, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Sonja Eijsbouts
  • Patent number: 7736491
    Abstract: A process for the fluid catalytic cracking of mixed hydrocarbon feeds from different sources is described, such as feeds A and B of different crackability, the process being especially directed to obtaining light fractions such as LPG and comprising injecting feed A in the base of the riser reactive section and feed B, of lower crackability, at a height between 10% and 80% of the riser, with feed B comprising between 5% and 50% of the total processed feed. The process requires that the feeds present differences in the contaminant content, improved dispersion of feeds A and B and feed B injection temperature same or higher than that of feed A.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: June 15, 2010
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Claudia Maria de Lacerda Alvarenga Baptista, Henrique Soares Cerqueira, Emanuel Freire Sandes
  • Patent number: 7658837
    Abstract: A process and device to optimize the yield of fluid catalytic cracking products through a reactive stripping process are disclosed. One or more hydrocarbon streams (3) are introduced in an intermediary region of the stripper (1) of a fluid catalytic cracking unit (FCC), from a device that allows a homogeneous distribution with adequate dispersion. This/these stream(s) react(s) with the catalyst of FCC, although its activity is reduced due to the adsorption of hydrocarbons in the reaction zone, generating products that improve and/or change the global distribution of products, providing a refinery profile adequate to meet quality demands and requirements.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 9, 2010
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Henrique Soares Cerqueira, Claudia Maria de Lacerda Alvarenga Baptista, William Richard Gilbert, Oscar Rene Chamberlain Pravia
  • Patent number: 7399450
    Abstract: A fluidized-bed reactor is disclosed. The fluidized-bed reactor steadies the gas flow through the fluidized bed chamber of the reactor. The swirl chamber of the reactor consists of a conical housing in which a conical insert is also situated. This creates an annular gap between the housing and the insert, which acts as the swirl chamber and which, according to the geometry of the two components, causes a velocity of the gas flow which remains the same along the height, which increases or which decreases. Such a reactor can also be called a constant annular-gap reactor.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: July 15, 2008
    Inventor: Sebastian Zimmer
  • Patent number: 7368052
    Abstract: A process is disclosed for discharging and transferring upwardly fluidized particles from a dense fluidizing layer forming section to a high-velocity transferring section having a diameter which is smaller than that of the dense fluidizing fluidized layer forming section, wherein at least one intermediate cylindrical section is provided between the dense fluidizing fluidized layer forming section and the high-velocity transferring section. The process can decrease the degree of changes in the amount of particles to be discharged from the dense fluidizing layer forming section and transferred by the riser, thereby proving a stable and uniform transfer of the fluidized particles.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: May 6, 2008
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Yoneichi Ikeda, Yuichiro Fujiyama
  • Patent number: 5916529
    Abstract: A method, and a reactor, for hydroprocessing a hydrocarbon feed stream through multistage moving catalyst beds contained within a single onstream reactor vessel, with separate catalyst addition and withdrawal systems for each of the multistages of moving catalyst beds. The reactor contains two or more different and distinct moving catalyst beds for any hydroprocessing application. The method includes serially passing, without leaving the reactor vessel, at least a partially treated hydrocarbon stream from one hydroconversion reaction zone containing a moving catalyst bed with a first set of catalytic characteristics to another hydroconversion reaction zone containing a moving catalyst bed with a second set of catalytic characteristics that differ in catalytic abilities from the first set of catalytic characteristics.
    Type: Grant
    Filed: April 24, 1996
    Date of Patent: June 29, 1999
    Assignee: Chevron U.S.A. Inc
    Inventor: Georgieanna L. Scheuerman
  • Patent number: 5840176
    Abstract: A method for replacing particles in a process that transfers particles is disclosed. This invention employs a seal zone which is in communication with two zones of the process and in which particles that are being added to the process are purged. This invention allows particles to be replaced without reducing the normal rate of particle transfer through the process, which results in a savings in downtime costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: November 24, 1998
    Assignee: UOP LLC
    Inventors: Roger R. Lawrence, Frank T. Micklich, Charles T. Ressl, Paul A. Sechrist
  • Patent number: 5733440
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: March 31, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5660715
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed which substantially fills the entire volume of a reactor vessel. Catalyst are selected to be essentially the same density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed catalyst bed at the design feed rates. The liquid and gas components of the hydrocarbon feed stream flow into the bed of catalyst and a quenching medium, which is preferably a liquid, is injected into the bed of catalyst. Injection of a liquid quench reduces the gas component of the hydrocarbon feed stream while simultaneously increasing the residence time and reducing the liquid velocity of the liquid component of the hydrocarbon feed stream within the substantially packed bed of catalyst.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 26, 1997
    Assignee: Chevron U.S.A. Inc.
    Inventors: Harold J. Trimble, Bruce E. Reynolds, Robert W. Bachtel, Robert J. Klett, David N. Brossard, David E. Earls
  • Patent number: 5599440
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: February 4, 1997
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5589057
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. The liquid and gas components of the hydrocarbon feed flow into the catalyst bed from concentric annular rings that are coaxial with the catalyst bed. At the desired hydrocarbon flow rate, such catalyst bed continually flows in a plug-like manner downwardly through the reactor vessel. Catalyst is removed on a periodic or semicontinuous basis by laminarly flowing catalyst particles in a liquid stream out of the bottom of the catalyst bed.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: December 31, 1996
    Assignee: Chevron U.S.A. Inc.
    Inventors: Harold J. Trimble, Brian A. Darsow
  • Patent number: 5545312
    Abstract: A method and apparatus for replacing particles in a process that transfers particles is disclosed. This invention employs a seal zone which is in communication with two zones of the process and in which particles that are being added to the process are purged. This invention allows particles to be replaced without reducing the normal rate of particle transfer through the process, which results in a savings in downtime costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: August 13, 1996
    Assignee: UOP
    Inventors: Roger R. Lawrence, Frank T. Micklich, Charles T. Ressl, Paul A. Sechrist
  • Patent number: 5498326
    Abstract: The invention relates to a process for catalytic cracking and the associated apparatus in which the cracking reaction takes place in two substantially vertical and successive reaction zones, the loads being introduced into the first zone where it circulates from the top downwards, then at least a part of the product obtained is introduced into a second reaction zone in which it circulates in an ascending fashion. A supplementary hydrocarbonated phase is advantageously introduced into the product entering the second zone. The invention applies particularly to heavy loads, with a U-shaped apparatus.
    Type: Grant
    Filed: May 7, 1993
    Date of Patent: March 12, 1996
    Assignee: Institut Francats du Petrole
    Inventors: Pierre Galtier, Regis Bonifay, Sigismond Franckowiak, Thierry Gauthier, Renaud Pontier
  • Patent number: 5498327
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 12, 1996
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanne L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5492617
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed which substantially fills the entire volume of a reactor vessel. Catalyst are selected to be essentially the same density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed catalyst bed at the design feed rates. The liquid and gas components of the hydrocarbon feed stream flow into the bed of catalyst and a quenching medium, which is preferably a liquid, is injected into the bed of catalyst. Injection of a liquid quench reduces the gas component of the hydrocarbon feed stream while simultaneously increasing the residence time and reducing the liquid velocity of the liquid component of the hydrocarbon feed stream within the substantially packed bed of catalyst.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: February 20, 1996
    Inventors: Harold J. Trimble, Bruce E. Reynolds, Robert W. Bachtel, Robert J. Klett, David N. Brossard, David E. Earls
  • Patent number: 5409598
    Abstract: On-stream catalyst replacement hydroprocessing method wherein an upstream mixture of hydrogen and hydrocarbon liquid counter flows through a downwardly moving bed of hydroprocessing catalyst in a reactor vessel. The mixed feed stream of hydrogen and liquid hydrocarbon components enters a surge zone between the lower end of the reactor and a plenum zone to form a common pool under a conical support for the lower end of the downflowing catalyst bed. The mixed feed enters the plenum chamber through a plurality of passageways extending downwardly from the plenum zone to the same depth adjacent the lower end of the surge zone so that the liquid component normally prevents hydrogen from establishing independent paths before entering the plenum zone. Separation of the hydrogen and hydrocarbon liquid components from the mixed feed is thus assured to occur in the plenum zone directly below the pervious conical support to form a plurality of stepped concentric local reservoir rings under the conical support.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: April 25, 1995
    Assignee: Chevron Research Company
    Inventors: David C. Kramer, Bruce E. Stangeland, David S. Smith, James T. McCall, Georgieanna Scheuerman, Robert W. Bachtel
  • Patent number: 5310477
    Abstract: FCC process uses an open reactor vessel to house cyclones or other separation devices that reduce the carry through of product gases with the catalyst into the reactor vessel to less than 10 wt. % so that the catalyst in the reactor vessel provides a secondary dealkylation zone. By using a highly efficient separation device to remove product from the catalyst, the environment in the reactor vessel receives a low volume of cracked hydrocarbons from the riser conversion zone and provides a convenient secondary reaction zone that receives a recycled heavy gasoline fraction separated from the riser product stream. Dealkylation in the secondary reaction zone provides additional light gasoline to satisfy T90 requirements.
    Type: Grant
    Filed: April 22, 1992
    Date of Patent: May 10, 1994
    Assignee: UOP
    Inventor: David A. Lomas
  • Patent number: 5308476
    Abstract: A resid refining reactor has an ebullated catalyst bed. Hydrogen gas is released into the catalyst bed at a point which is far enough above a distributor plate at the bottom of the catalyst bed to form a gas updraft in a committed zone through the bed. This committed updraft causes a reduction in gas holdup which increases the residence time of a liquid phase in the catalyst bed.
    Type: Grant
    Filed: November 4, 1991
    Date of Patent: May 3, 1994
    Assignee: Amoco Corporation
    Inventors: Robert D. Buttke, Lawrence B. Peck, Christos Nikolaides
  • Patent number: 5176815
    Abstract: An FCC process uses an open reactor vessel to house cyclones or other separation devices that reduce the carry though of product gases with the catalyst into the reactor vessel to less than 5 wt. % so that the catalyst in the reactor vessel can contact a secondary feedstock. By using a highly efficient separation device to remove product from the catalyst the environment in the reactor vessel receives a low volume of feed hydrocarbons and riser by-products. These by products comprise mainly C.sub.2 and lighter gases which are inert to a variety of other feedstreams. Possible secondary feedstreams include hydrotreated heavy naphtha, hydrotreated light cycle oil, light reformate and olefins. It is highly useful to use the secondary feedstream to heat the catalyst in the reactor vessel to facilitate hot stripping of the catalyst. Heat may be introduced in this manner by heating the secondary feedstream or using a feedstream that produces an exothermic reaction in the reactor vessel.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventor: David A. Lomas
  • Patent number: 5076908
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid at a rate insufficient to levitate the bed and with catalyst selected by a density, shape and size at a design feed rate of liquids and gas to prevent ebulation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion in a large pilot plant run with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: July 19, 1989
    Date of Patent: December 31, 1991
    Assignee: Chevron Research & Technology Company
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel
  • Patent number: 4820494
    Abstract: An apparatus for delivering fluidization gas to a bed of particulate solids to selectively, locally fluidize the solids above a delivery conduit in communication with a reaction chamber. Also an apparatus is disclosed for intimately mixing hydrocarbon feed with the particulate solids at the end of the delivery conduit in the reaction chamber.
    Type: Grant
    Filed: October 19, 1981
    Date of Patent: April 11, 1989
    Inventors: Robert J. Gartside, Herman N. Woebcke
  • Patent number: 4514285
    Abstract: A fluid catalytic hydrocarbon conversion process and apparatus in which hot freshly regenerated catalyst is contacted with hydrocarbon feedstock in a gravity flow catalytic reactor. Spent catalyst from the reactor is separated from reactants in a ballistic separator and completely regenerated in a riser regenerator.
    Type: Grant
    Filed: March 23, 1983
    Date of Patent: April 30, 1985
    Assignee: Texaco Inc.
    Inventors: Phillip K. Niccum, Dorrance P. Bunn, Jr.
  • Patent number: 4338187
    Abstract: An apparatus and process for delivering fluidization gas to a bed of particulate solids to selectively locally fluidize the solids above a delivery conduit in communication with a reaction chamber. Also an apparatus and process for intimately mixing hydrocarbon feed with the particulate solids at the end of the delivery conduit in the reaction chamber.
    Type: Grant
    Filed: October 22, 1979
    Date of Patent: July 6, 1982
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Robert J. Gartside, Herman N. Woebcke
  • Patent number: 4325833
    Abstract: Coke-containing catalyst is regenerated in a three-stage system to provide complete coke removal while avoiding carbon monoxide and nitrogen oxides contamination of the flue gas formed in burning the coke.
    Type: Grant
    Filed: June 27, 1980
    Date of Patent: April 20, 1982
    Assignee: Chevron Research Company
    Inventor: John W. Scott
  • Patent number: 4054509
    Abstract: A catalytic reactor in which feed, catalyst and diluent gas enter the bottom of a reactor which has a cross-sectional area which does not decrease substantially, preferably which has a substantially constant cross-sectional area, from the point at which catalyst and feed first come in contact to the reactor outlet. Atop the reactor is a disengagement vessel of relatively large diameter in which the product gases are separated from the catalyst. The catalyst drops through a stripper culminating in a bend which collects catalyst to provide a seal between the reactor and a regenerator. A lift line carries the catalyst to the top of the regenerator through which the catalyst moves downward to a transfer line that returns the catalyst to the reactor. Flue gases are removed from the top of the regenerator. The transfer line culminates in a bend to collect solid catalyst, providing a seal between the regenerator and the reactor.
    Type: Grant
    Filed: February 27, 1976
    Date of Patent: October 18, 1977
    Assignee: Atlantic Richfield Company
    Inventor: George V. Lampadarios
  • Patent number: 3976433
    Abstract: A catalytic reactor in which feed, catalyst and diluent gas enter the bottom of a reactor which has a cross-sectional area which does not decrease substantially, preferably which has a substantially constant cross-sectional area, from the point at which catalyst and feed first come in contact to the reactor outlet. Atop the reactor is a disengagement vessel of relatively large diameter in which the product gases are separated from the catalyst. The catalyst drops through a stripper culminating in a bend which collects catalyst to provide a seal between the reactor and a regenerator. A lift line carries the catalyst to the top of the regenerator through which the catalyst moves downward to a transfer line that returns the catalyst to the reactor. Flue gases are removed from the top of the regenerator. The transfer line culminates in a bend to collect solid catalyst, providing a seal between the regenerator and the reactor.
    Type: Grant
    Filed: December 11, 1974
    Date of Patent: August 24, 1976
    Assignee: Atlantic Richfield Company
    Inventor: George V. Lampadarios