Solids Of Dissimilar Composition Patents (Class 208/149)
  • Patent number: 4968401
    Abstract: A paraffinic feedstream is aromatized in an FCC external catalyst cooler by contacting the paraffinic feedstream with hot regenerated cracking and additive catalysts.
    Type: Grant
    Filed: June 27, 1988
    Date of Patent: November 6, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4956075
    Abstract: The use of a catalyst containing Mn, a large pore crystalline molecular sieve, and optionally rare earths in catalytic cracking is disclosed. This catalyst gives high gasoline selectivity with low coke yields and is suitable for either gas oil or resid cracking applications.
    Type: Grant
    Filed: December 22, 1988
    Date of Patent: September 11, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Philip J. Angevine, Robert G. Bundens, Joseph A. Herbst, Albin Huss, Jr., Sadi Mizrahi
  • Patent number: 4944864
    Abstract: This invention relates to a catalyst suitable for use in a fluid catalytic process and a method of using the catalyst on hydrocarbons containing one or more poison metal of vanadium or nickel to convert the hydrocarbons to lower boiling fractions. The catalyst contains a particulate and substantially water-insoluble strontium compound (in addition to a conventional zeolite and catalyst matrix) which reacts with and traps the metal poison to preserve the structure of the zeolite and, in addition, lowers the coke make and hydrogen production.
    Type: Grant
    Filed: March 27, 1989
    Date of Patent: July 31, 1990
    Assignee: Exxon Research and Engineering Company
    Inventor: Edwin L. Kugler
  • Patent number: 4944865
    Abstract: A process for cracking high metals content feedstocks which comprises contacting said feedstocks under catalytic cracking conditions with a novel catalytic cracking composition comprising a solid cracking catalyst and a magnesium oxide diluent.
    Type: Grant
    Filed: September 19, 1986
    Date of Patent: July 31, 1990
    Assignee: Chevron Research Company
    Inventors: Mario L. Occelli, James V. Kennedy
  • Patent number: 4938863
    Abstract: A catalytic cracking catalyst and process which tolerates high levels of vanadium and coke precursors in the feed is disclosed. A zeolite in an alumina free binder or coating, preferably silica, is used as the cracking catalyst. RE-USY in silica is especially preferred as it has a low affinity for vanadium, low coking characteristics and high stability. Preferably a vanadium getter additive is present as separate particles to act as a vanadium sink. The catalyst and process may be used in fluidized bed catalytic cracking (FCC) or in moving bed catalytic cracking units. A method of making a coated catalyst, by adding a layer of an alumina free material to a core of alumina containing cracking catalyst is also disclosed.
    Type: Grant
    Filed: June 10, 1988
    Date of Patent: July 3, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Thomas F. Degnan, Billy K. Huh
  • Patent number: 4919787
    Abstract: An improved method for passivating metals in a hydrocarbon feedstock during catalytic cracking has been discovered. The method involves contacting the feedstock with a passivating agent comprising a precipitated porous rare earth oxide, alumina, and aluminum phosphate precipitate. The passivating agent may be coated on a cracking catalyst, be part of the matrix of a cracking catalyst, or be added to the cracking operation as discrete particles.
    Type: Grant
    Filed: April 7, 1989
    Date of Patent: April 24, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Arthur W. Chester, Pochen Chu, Albin Huss, Jr., Garry W. Kirker
  • Patent number: 4895636
    Abstract: An FCC or fluidized catalytic cracking process and apparatus for converting heavy metals laden crudes is disclosed. The heavy feed, conventional catalyst and an additive or vanadium getter contact the feed in a riser reactor. The additive is segregated from conventional FCC catalyst upstream of the conventional FCC regenerator. An elutriating, upflow riser reactor may be used with a coarse, rapidly settling getter. A fine, slowly settling getter may be used, with getter segregation achieved by using an elutriating cyclone on the riser outlet, an elutriating catalyst stripper, a sieve, or the like. The spent getter may be used once through, regenerated in a separate getter regenerator, or used as a source of fuel. Alumina and sponge coke are preferred getters.
    Type: Grant
    Filed: June 10, 1988
    Date of Patent: January 23, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Nai Y. Chen, Billy K. Huh, Thomas F. Degnan
  • Patent number: 4895637
    Abstract: This application is directed to a process and apparatus for regenerating an elutriable mixture of fluidized catalytic cracking (FCC) catalyst and a demetallizing additive. Deactivated catalyst and coke containing additive are added to a single dense bed regenerator. Within the regenerator, differences in settling velocity segregate the elutriable mixture into a lower dense bed containing most of the additive and a contiguous upper dense bed containing most of the FCC catalyst. Some regeneration gas is added to the lower dense bed to at least partially decoke the additive, while additional regeneration gas is added to the upper dense bed. Decoked additive and regenerated FCC catalyst are preferably withdrawn separately and charged to a riser reactor for demetallizing and catalytic cracking of heavy feed. Flue gas is withdrawn from the regenerator from a dilute phase vapor space above the single dense bed.
    Type: Grant
    Filed: October 18, 1988
    Date of Patent: January 23, 1990
    Assignee: Mobil Oil Corporation
    Inventor: Hartley Owen
  • Patent number: 4895639
    Abstract: In an ebullated bed process, a residual hydrocarbon oil and a hydrogen containing gas is passed upwardly through an ebullated bed of catalyst in a hydrocracking zone at a temperature in the range of 650.degree. F. to 950.degree. F. and pressure of 1000 psia to 5000 psia. FCCU catalyst fines are added to the ebullated bed in an amount of 15 wt % to 21 wt % of total catalyst comprising hydrocracking catalyst and fines. A hydrocracked oil is recovered characterized by having a reduced sediment content.
    Type: Grant
    Filed: March 9, 1989
    Date of Patent: January 23, 1990
    Assignee: Texaco, Inc.
    Inventors: Michael P. Bellinger, Scott M. Sayles
  • Patent number: 4894143
    Abstract: Catalytic compositions which comprise alumina bound spinel and/or spinel-mullite mixtures having an alkali metal content of below about 0.50 weight percent, preferably below about 0.10. The compositions are obtained by calcining and caustic leaching preformed particulate composites of clay and alumina sol, preferably chlorhydrol. The catalysts are particularly useful for the catalytic cracking of heavy hydrocarbon feedstocks to obtain gasoline and light cycle oil. When used for cracking feedstocks high in vanadium content these compositions may contain added alkaline earth oxide in order to passivate the vanadium.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: January 16, 1990
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Roger J. Lussier
  • Patent number: 4889615
    Abstract: A catalytic cracking process especially useful for the catalytic cracking of high metals content feeds including resids in which the feed is cracked in the presence of a catalyst additive comprising a dehydrated magnesium-aluminum hydrotalcite which acts as a trap for vanadium as well as an agent for reducing the content of sulfur oxides in the regenerator flue gas. The additive is used in the form of a separate additive from the cracking catalyst particles in order to keep the vanadium away from the cracking catalyst and so preserve the activity of the catalyst.
    Type: Grant
    Filed: December 6, 1988
    Date of Patent: December 26, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Arthur A. Chin, Ivy D. Johnson, Charles T. Kresge, Michael S. Sarli
  • Patent number: 4875994
    Abstract: A process and apparatus for cracking heavy hydrocarbons using a mixture of fluid cracking catalyst and a demetallizing additive differing in physical characteristics from the cracking catalyst is described. A heavy, metals containing feed such as a resid contacts demetallizing additive in the base of a riser reactor. The demetallized resid is cracked by contact with a stream of hot, regenerated catalyst. A mixture of metal containing additive, deactivated cracking catalyst, and cracked products is discharged from the riser. The metal containing additive and deactivated catalyst are stripped, preferably with steam, and charged to a two-stage regenerator. The first stage of the regenerator partially regenerates the cracking catalyst and separates it by elutriation from the demetallizing additive, which accumulates as a dense phase fluidized bed in a lower portion of the first stage regenerator.
    Type: Grant
    Filed: June 10, 1988
    Date of Patent: October 24, 1989
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4863887
    Abstract: There is provided an additive for the hydroconversion of a heavy hydrocarbon oil, which is obtained by suspending a fine powder of a carbonaceous substance and a solution of a heteropolymolybdic acid and/or transition metal salts thereof in a hydrocarbon oil. By the use of the additive of the present invention, the hydroconversion of a heavy hydrocarbon oil can be effectively performed at high conversion without occurrence of coking.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: September 5, 1989
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Nobumitsu Ohtake, Tokitaka Kaneshima
  • Patent number: 4859313
    Abstract: A method for operating a fluid catalytic cracking unit comprising a regeneration zone and a reaction zone with a relatively reduced temperature in the regeneration zone while processing a hydrocarbon feedstock having a 50 volume percent distillation temperature greater than about 500.degree. F. which method comprises contacting the feedstock in a reaction zone with a mixture of regenerated fluidizable cracking catalyst and fluidizable low coke make solid particles comprising a refractory inorganic oxide in a ratio of low coke make solid particles to cracking catalyst from about 1:100 to about 10:1, the low coke made solid particles having a surface area of less than about 5 m.sup.2 /g and a coke making capability of less than about 0.
    Type: Grant
    Filed: August 15, 1986
    Date of Patent: August 22, 1989
    Assignee: UOP Inc.
    Inventors: Robert A. Lengemann, Gregory J. Thompson, Anthony G. Vickers, Raymond W. Mott
  • Patent number: 4846960
    Abstract: A composition of matter, suitable as cracking catalyst, comprises zeolite, silica matrix and vanadium oxide(s) at a level of at least 0.2 weight-% V. A process for preparing the above composition of matter comprises the steps of contacting zeolite in a silica matrix with at least one vanadium compound and calcining the thus contacted material. A process for cracking substantially liquid hydrocarbon-containing feed streams, which contain at least about 5 ppmw vanadium, in the presence of the above composition of matter as catalyst, is provided.
    Type: Grant
    Filed: June 14, 1988
    Date of Patent: July 11, 1989
    Assignee: Phillips Petroleum Company
    Inventors: Darrell W. Walker, Fu M. Lee
  • Patent number: 4840724
    Abstract: There is disclosed a process for cracking a hydrocarbon feed in the presence of a fluidizable cracking catalyst composition containing a sepiolite, an ultrastable Y-zeolite and a matrix material, characterized in that the hydrocarbon feed is metal-free.
    Type: Grant
    Filed: January 12, 1989
    Date of Patent: June 20, 1989
    Assignee: Akzo NV
    Inventors: Cornelis J. Groenenboom, Peter A. Wieringa
  • Patent number: 4836913
    Abstract: Catalysts which comprise or contain caustic leached spinel/mullite are found to possess a particularly high activity and stability for the catalytic conversion of hydrocarbons.
    Type: Grant
    Filed: March 24, 1988
    Date of Patent: June 6, 1989
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Roger J. Lussier, George J. Surland
  • Patent number: 4828680
    Abstract: Combustible carbonaceous particles such as particles of sponge coke or coal are incorporated with the circulating inventory of cracking catalyst in a fluid catalytic cracking unit. The carbonaceous particles selectively sorb metal contaminants in the feed, thereby extending catalyst life, and they also serve to reduce NO.sub.x emissions in certain instances. The sorbed metals values may be recovered as the carbonaceous particles are burned.
    Type: Grant
    Filed: January 20, 1988
    Date of Patent: May 9, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Gary J. Green, Billy K. Huh, Tsoung Y. Yan
  • Patent number: 4770765
    Abstract: In a catalytic cracking process which includes contacting a hydrocarbon feedstock in a contacting zone in the presence of solid composition containing molecular sieve-containing catalyst capable of promoting hydrocarbon cracking at conditions effective to crack the hydrocarbon feedstock to lower boiling components, the improvement comprising conducting the contacting in the presence of at least one metal component, other than the catalyst, containing calcium and tin. A composition of matter comprising such catalyst and metal component is also disclosed.
    Type: Grant
    Filed: July 14, 1987
    Date of Patent: September 13, 1988
    Assignee: Katalistiks International, Inc.
    Inventors: Robert Bartek, Gerald M. Woltermann
  • Patent number: 4575414
    Abstract: An apparatus and method for mixing a fluidized solid and a fluid wherein the fluidized solid flows in a space defined between an outer member and an inner member positioned within the outer member. A body means is provided in the space between the members to occupy a predetermined volume in the space. A stream of solid particles flows around the body, and is directed across the upper end of the inner member. Fluid is released at the upper end of the inner member which mixes with the fluidized solid.
    Type: Grant
    Filed: July 26, 1985
    Date of Patent: March 11, 1986
    Assignee: Phillips Petroleum Company
    Inventor: Frank W. Skraba
  • Patent number: 4389301
    Abstract: A heavy hydrocarbonaceous oil feed is hydrogenated in a two-stage process by contacting the oil with hydrogen in the presence of added dispersed hydrogenation catalyst, suspended in the oil, and porous solid contact particles. At least part of the normally liquid product from the first stage is hydrogenated in a second stage catalytic hydrogenation reactor.
    Type: Grant
    Filed: October 22, 1981
    Date of Patent: June 21, 1983
    Assignee: Chevron Research Company
    Inventors: Arthur J. Dahlberg, John H. Shinn, Joel W. Rosenthal, Tim T. Chu
  • Patent number: 4330397
    Abstract: A fluid-contacting process wherein fluid is contacted with convex and polylobal particles, the contacting stopped, a mixture of the particles formed and subsequently separated by screening. Also disclosed is a catalytic conversion process wherein a reaction is carried out in the presence of convex and polylobal catalysts, the reacting stopped, the catalysts withdrawn as a physical mixture from which one of the catalysts is separated, regenerated and returned to the process.
    Type: Grant
    Filed: December 1, 1978
    Date of Patent: May 18, 1982
    Assignee: Chevron Research Company
    Inventor: Robert P. Sieg
  • Patent number: 4294688
    Abstract: Heat transfer in a hydrocarbon conversion process utilizing a magnetically stabilized fluid bed reactor and a magnetically stabilized catalyst regenerator is improved by the use of a fluidizable solids mixture comprising substantially inert heat carrier particles and magnetizable catalyst particles wherein the inert particles have settling rates higher than the settling rates of the catalyst particles. The heat carrier particles and the magnetizable catalyst particles are completely or partially separated in settling zones associated with the reactor and regenerator. The separated heat carrier particles and catalyst particles are independently circulated between the reactor and regenerator so that the heat carrier particles can be passed through one or more heat exchangers to provide the desired temperature levels in the system.
    Type: Grant
    Filed: March 19, 1980
    Date of Patent: October 13, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventor: Francis X. Mayer
  • Patent number: 4292171
    Abstract: A hydrocarbon conversion process wherein a hydrocarbon feedstock is contacted with a magnetically stabilized fluid bed of particulate solids comprising a mixture of separate, discrete (a) magnetizable substantially non-catalytic particles, and (b) non-magnetizable catalytic particles. The particulate solids mixture is withdrawn from the magnetically stabilized, fluidized bed and separated into magnetizable, substantially non-catalytic particles and non-magnetizable catalyst particles. The non-magnetizable catalytic particles are thereafter regenerated and returned to the hydrocarbon conversion zone. The separated magnetizable, substantially non-catalytic particles are subjected to heat transfer prior to their return to the conversion zone.
    Type: Grant
    Filed: March 19, 1980
    Date of Patent: September 29, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventors: Francis X. Mayer, William F. Arey, Jr.
  • Patent number: 4280893
    Abstract: An integrated process for the conversion of coal to liquid and gaseous fuels is disclosed. Coal and oil are hydrocracked in the presence of a particulate maxture of sand or clay and an iron and chromium alloy to form carbon-coated sand and an overhead product comprising cracked oil vapors and fuel gases. The carbon is removed from the sand to form carbon monoxide with the concomitant generation of heat. The carbon monoxide is used to reduce oxidized iron and chromium alloy located in a hydrogen generating bed. Steam is passed into the bed of reduced metallic alloy to form hydrogen for use in the coal reactor and the regenerated particulate mixture of sand and iron and chromium alloy is returned to the coal reactor, to continue the sequence of carbon removal and to provide heat for the hydrocracking reaction.
    Type: Grant
    Filed: September 26, 1978
    Date of Patent: July 28, 1981
    Inventor: Arnold M. Leas
  • Patent number: 3988260
    Abstract: Molecular sieve catalyst compositions having decreased catalytic activity as a result of accumulating more than 2 weight-% carbonaceous coke deposits are restored essentially to their pre-coked activity by heating an essentially homogeneous mixture of particles thereof with particles of an inert refractory material in the weight ratio of from 1:2 to 1:10 in air at a temperature of from 500.degree. C. to 725.degree. C. for a period of time sufficient to decrease the carbonaceous coke to less than two weight percent.
    Type: Grant
    Filed: May 9, 1975
    Date of Patent: October 26, 1976
    Assignee: Union Carbide Corporation
    Inventors: Willis W. Weber, Donald F. Best