Plural Stages Patents (Class 208/151)
  • Patent number: 10118144
    Abstract: A vessel provides for removing hydrocarbons from a catalyst. In an FCC unit, the vessel includes first and second sections. The first section includes at least one grid having a plurality of intersecting members and openings therebetween. The second section includes structured packing such as a plurality of ribbons. Grids are supported by pipes that are supported by the second section.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: November 6, 2018
    Assignee: UOP LLC
    Inventors: Minwoo Kim, Michael S. Sandacz, Kyle L. Kron
  • Patent number: 9446398
    Abstract: A stripping vessel for removing hydrocarbons from a catalyst and a process for removing hydrocarbons from a catalyst. In an FCC unit, the stripping vessel includes first and second stripping sections. The first stripping section includes at least one grid having a plurality of interesting members and openings therebetween. The second stripping section includes structured packing such as a plurality of ribbons. The one or more grids are spaced from the structured packing, and from each other, so as to minimize the accumulation of catalyst within the stripping vessel, preferably between about 0.91 m (3 ft) to about 1.5 m (5 ft).
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: September 20, 2016
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Andrew Jonathan Craig
  • Patent number: 8765622
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. Filtering in the deoiling zone can comprise filtering the slurry and solvent through a cross-flow microfiltration unit, recovering a retentate stream of the cross-flow microfiltration unit, combining the retentate stream of the cross-flow microfiltration unit with solvent to form a combined retentate-solvent stream, and filtering the combined retentate-solvent stream through a cross-flow microfiltration unit.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 1, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lalit S. Shah, Christopher A. Powers, James R. Stoy, Fred D. Brent, Bruce E. Reynolds, Andre R. Da Costa
  • Patent number: 8722556
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. The deoiling zone can comprise a membrane that is rapidly displaced in a horizontal direction.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 13, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Andre R. DaCosta, Paul Bryan
  • Patent number: 8702972
    Abstract: A process is disclosed for the separation of solids from gases in a mixture which is most particularly applicable to an FCC apparatus. The mixture of solids and gases are passed through a conduit and exit through a swirl arm that imparts a swirl motion having a first annular direction to centripetally separate the heavier solids from the lighter gases. The mixture then enters a gas recovery conduit in which at least one plate radially extending from an inner wall impedes rotational motion of the mixture. The mixture enters cyclones at the other end of the gas recovery conduit without substantial swirling motion.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: April 22, 2014
    Assignee: UOP LLC
    Inventors: Lawrence A. Lacijan, Hadjira Iddir
  • Patent number: 8383051
    Abstract: The present invention provides a compact riser separation system for Fluid Catalytic Cracking reactors possessing an external riser system wherein the riser enters the reactor from outside the reactor vessel.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: February 26, 2013
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Eusebius Anku Gbordzoe, Chris Robert Santner
  • Patent number: 8282887
    Abstract: A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: David N. Myers, Lev Davydov
  • Patent number: 8062507
    Abstract: A process for stripping gases from catalyst material in which catalyst travels down baffles at a first acute angle and then at a second acute angle on the same baffle. Traveling down the baffle at the second angle assures the catalyst will cross a downcomer channel and land on an adjacent baffle.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventors: Jason P. Lambin, Keith A. Couch, Paolo Palmas, Giovanni Spinelli
  • Patent number: 7658837
    Abstract: A process and device to optimize the yield of fluid catalytic cracking products through a reactive stripping process are disclosed. One or more hydrocarbon streams (3) are introduced in an intermediary region of the stripper (1) of a fluid catalytic cracking unit (FCC), from a device that allows a homogeneous distribution with adequate dispersion. This/these stream(s) react(s) with the catalyst of FCC, although its activity is reduced due to the adsorption of hydrocarbons in the reaction zone, generating products that improve and/or change the global distribution of products, providing a refinery profile adequate to meet quality demands and requirements.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 9, 2010
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Henrique Soares Cerqueira, Claudia Maria de Lacerda Alvarenga Baptista, William Richard Gilbert, Oscar Rene Chamberlain Pravia
  • Patent number: 7419585
    Abstract: A process for upgrading a residua feedstock using a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles. The residua feedstock is preferably atomized so that the Sauter mean diameter of the residua feedstock entering the reactor is less than about 2500 ?m. One or more horizontally disposed screws is preferably used to fluidize a bed of hot particles.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: September 2, 2008
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Peter S. Maa, Craig Y. Sabottke
  • Patent number: 7118715
    Abstract: A baffle-style stripper for an FCC process comprising sloped baffles in which a greater volumetric flow rate of stripping medium permeates openings in a bottom section of the baffle than through a top section of the baffle for low catalyst flux stripping operations. When low catalyst flux is used, the catalyst runs from baffle to baffle closer to the bottom edge of the baffle. Hence, more fluidization from stripping medium is concentrated near the lower edge of the baffle. The greater fluidization at the bottom section of the baffle is accomplished by providing greater opening area per baffle area in the lower section of the baffle than in the top section of the baffle.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: October 10, 2006
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Thuy Khanh T. Nguyen
  • Patent number: 7112311
    Abstract: A cooling method of a hydrotreating plant having a desulfurization section (1) including a furnace (12) for heating liquid to be processed, reactors (14, 15) for hydrotreating sulfur to generate hydrogen sulfide, a hydrogen sulfide absorber (19) for absorbing the hydrogen sulfide generated in the reactors (14, 15), and a compressor (21) for compressing and transferring fluid from the hydrogen sulfide absorber (19) toward the reactors (14, 15), the cooling method comprising the steps of gradually depressurizing the hydrotreating plant at the desulfurization section (1) to a pressure level at which reactor material does not embrittle and gas does not leak due to difference of mechanical thermal expansion in the plant after stopping supply of the liquid to be processed, operating the compressor (21) approximately at the maximum rotation number, and completely extinguishing burners (12A, 12B) in the furnace (12) during plant shutdown operation.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: September 26, 2006
    Assignees: Nippon Petroleum Refining Co., Ltd., Softard Industries Co., Ltd.
    Inventors: Yuji Yoshizumi, Hidekatsu Honda, Masayuki Shoji, Toshihiko Nasu, Katsuhiko Kawakami, Junichi Takano
  • Patent number: 7101474
    Abstract: A shelf is incorporated into a typical FCC riser that permits the tips of the nozzles to extend past the wall of the riser while preventing the tips from promoting coke build-up and protecting the tips from erosion. The shelf can be part of an angled section that often appears in a transition zone for increasing the internal diameter of the riser to accommodate the volumetric expansion of the feed. The shelf section reduces the non-uniformity in the mixing of the catalyst and feed and minimizes backmixing of the feed injection. The shelf of this invention accomplishes these objectives without recessing the feed injectors into the riser wall which can interfere with the spray pattern.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: September 5, 2006
    Assignee: UOP LLC
    Inventor: Aziz A. Sattar
  • Patent number: 6984311
    Abstract: An apparatus and method for contacting fluids in a fluid-solids contacting chamber is disclosed. The fluid-solid contacting chamber has a plurality of beds, and the chamber comprises a plurality of conduits and outlet ports that are capable of providing improved fluid distribution of fluids that are introduced above or between the beds. One or more conduits are arranged within a single conduit, which provides a compact and inexpensive assembly for conveying the fluids to each conduit's outlet port. In operation, the fluid flow to the outlet port of each conduit is regulated within that outlet port's most efficient operating range, and since the flows can regulated simply by hand, the method of this invention can be practiced readily. Catalytic condensation and other hydrocarbon process units that employ this invention will have increased on-stream efficiencies and realize significant economic benefits.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: January 10, 2006
    Assignee: UOP LLC
    Inventor: James W. Kilroy
  • Patent number: 6780308
    Abstract: A baffle-style stripper for an FCC process comprising sloped baffles in which a greater volumetric flow rate of stripping medium permeates openings in a bottom section of the baffle than through a top section of the baffle for low catalyst flux stripping operations. When low catalyst flux is used, the catalyst runs from baffle to baffle closer to the bottom edge of the baffle. Hence, more fluidization from stripping medium is concentrated near the lower edge of the baffle. The greater fluidization at the bottom section of the baffle is accomplished by providing greater opening area per baffle area in the lower section of the baffle than in the top section of the baffle.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: August 24, 2004
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Thuy Khanh T. Nguyen
  • Patent number: 6723227
    Abstract: Fluidized catalytic cracking process which process comprises: (a) separating the hydrocarbon product from the spent catalyst by means of one or more gas-solid separation steps; (b) stripping the spent catalyst in a dense phase fluidized stripping zone by introducing a stripping medium in the lower portion of the stripping zone; (c) introducing part of the spent catalyst obtained in step (b) to a regeneration zone wherein the coke is removed from the catalyst by means of combustion; (d) introducing the remaining part of the spent catalyst and part of the hot regenerated catalyst into a lower portion of an elongated dilute phase stripping zone; (e) introducing a stream of a stripping medium into the lower portion of the dilute phase stripping zone to contact the resulting mixture of spent catalyst and regenerated catalyst therein; (f) passing a stream of the spent catalyst mixed with the hot regenerated catalyst and stripping medium in the dilute phase stripping zone; (g) introducing the separated catalyst of s
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: April 20, 2004
    Assignee: Shell Oil Company
    Inventor: Rene Samson
  • Patent number: 6616900
    Abstract: An FCC process provides ultrashort catalyst and feed contacting in an FCC riser by recovering a short contact product stream in an intermediate section of the riser. The remainder of the catalyst and gas mixture continues through the riser along a continuous flow path for further controlled cracking of the heavier adsorbed hydrocarbons and entrained hydrocarbons. Residual catalyst separated from the recovery of the short contact product stream returns to the upstream end of the riser for recycle. The section of the riser downstream of the short contact product recovery may receive additional feed to perform secondary cracking reactions. The riser arrangement greatly simplifies methods for performing ultrashort FCC feed and catalyst contacting.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: September 9, 2003
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 6287522
    Abstract: A process for the dual riser contacting of a primary feed and a secondary recycle feed fraction uses independent recovery of the separate streams from the riser cracking zone to improve the product yields and properties. Separate recovery segregates the upgraded recracked components from the rest of the primary cracked products. The benefits of selective of recracking are lost if the upgraded products from the recycle stream become recombined with the primary cracked product. The selectively recovered recycle feed may undergo hydroprocessing to hydrogenate, hydrocrack and/or hydrotreatment before recracking. The process can also make highly efficient use of the high residual activity in the catalyst that has contacted the secondary feed.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: September 11, 2001
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 6187176
    Abstract: A three stage process for producing high quality white oils, particularly food grade mineral oils from mineral oil distillates. The first reaction stage preferably employs a sulfur resistant hydrotreating catalyst and produces a product suitable for use as a high quality lubricating oil base stock. The second reaction stage preferably employs a hydrogenation/hydrodesulfurization catalyst combined with a sulfur sorbent and produces a product stream which is low in aromatics and which has substantially “nil” sulfur. The final reaction stage employs a selective hydrogenation catalyst that produces a product suitable as a food grade white oil.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: February 13, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Sylvain Hantzer, Alberto Ravella, Ian A. Cody, Darryl P. Klein
  • Patent number: 6139720
    Abstract: The production of carbon monoxide as a combustion off-gas is maximized by the use of a hot stripping zone arrangement that provides catalyst mixing to establish a uniform catalyst temperature and thorough contacting of the well-mixed hot catalyst in a confined portion of the hot stripping zone. The hot stripping zone delivers the hot stripped catalyst to a bubbling-bed regeneration zone by an oxygen-starved lift stream that distributes the catalyst to the top of the bubbling-bed in the regeneration zone. The process delivers spent catalyst with about 1 wt % of coke to the reaction zone and a spent combustion gas or flue gas stream having a CO.sub.2 to CO ratio of at least 1. The operation reduces the heat evolution in the regeneration step and allows relatively low temperature operation of the regeneration zone without use of catalyst coolers.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: October 31, 2000
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 6010618
    Abstract: An FCC process provides ultrashort catalyst and feed contacting in an FCC riser by recovering a short contact product stream in an intermediate section of the riser. The remainder of the catalyst and gas mixture continues through the riser along a continuous flow path for further for controlled cracking of the heavier adsorbed hydrocarbons and entrained hydrocarbons. Residual catalyst separated from the recovery of the short contact product stream returns to the upstream end of the riser for recycle. The section of the riser downstream of the short contact product recovery may receive additional feed to perform secondary cracking reactions. The riser arrangement greatly simplifies methods for performing ultra short FCC feed and catalyst contacting.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: January 4, 2000
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 5910240
    Abstract: An improved stripper section design is provided for use in fluid catalytic cracking (FCC) units. The stripper section contains means for imparting rotational movement to the FCC cracking catalyst as it traverses the stripping section. In one embodiment the stripper section contains at least one rotation vane that is preferably disposed on the surface of a stripper section tray. The rotation vane provides angular, rotational movement to the cracking catalyst as it traverses the stripper section. Vertical movement is imparted to the cracking catalyst due to gravity and radial movement is imparted to the catalyst due to the slanted nature of the tray. Through the use of the rotation vanes the contact between the catalyst particles and the stripping steam is increased, thereby improving the overall efficiency of the FCC operation.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: June 8, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Richard C. Senior, Christopher G. Smalley, Timothy P. Holtan
  • Patent number: 5820747
    Abstract: A steam cracking process and facility is described which comprises injection of erosive powder to effect at least partial decoking of transfer line exchangers without interrupting the steam cracking stream. The powder, preferably injected just upstream of the transfer line exchangers (TLE) (4), is separated from the cracked gases in primary gas/solid separators (5), temporarily stored in receiving drums at a controlled temperature and evacuated to a common powder storage and/or treatment module by pneumatic transfer by means of a relatively low flow of uncondensable gas. The process and facility can be used to collect solid fragments generated by injection of chemical compounds which are catalysts for the gasification of coke by steam.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: October 13, 1998
    Assignees: Institut Francais du Petrole, Procedes Petroliers et Petrochimiques, Eric Lenglet
    Inventors: Eric Lenglet, Paul Broutin, Jean-Pierre Burzynski, Herve Cazor, Roland Huin
  • Patent number: 5723040
    Abstract: The present invention provides a method for improving the contacting of feedstock and regenerated catalytic particulates in certain fluid catalytic cracking processes and apparatus.
    Type: Grant
    Filed: November 2, 1994
    Date of Patent: March 3, 1998
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Warren S. Letzsch, Gerald Earl
  • Patent number: 5662868
    Abstract: A novel apparatus and process for the cracking of hydrocarbons is disclosed which is particularly useful in revamping an existing FCC unit to a short residence time FCC unit.
    Type: Grant
    Filed: September 22, 1994
    Date of Patent: September 2, 1997
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Warren S. Letzsch, Gerald Earl
  • Patent number: 5584985
    Abstract: In this invention a cyclonic separation method and apparatus discharges particulate solids and gaseous fluids into a separation vessel from a discharge opening of a central conduit and withdraws separated gaseous fluids from the separation vessel that contacts the catalyst in the separation vessel with redistributed gases from outside the separation vessel. The invention increases the effective utilization of available stripping medium in an FCC process.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: December 17, 1996
    Assignee: UOP
    Inventor: David A. Lomas
  • Patent number: 5584986
    Abstract: A fluidized process which comprises contacting a hydrocarbon feedstock with a fluidized particulate solid in a contacting zone wherein carbonaceous deposits accumulate on the solid and the solid becomes spent and wherein the carbonaceous deposits are burned from the spent solid to produce a regenerated solid; removing a stream of the fluidized spent solid and entrained hydrocarbons from the contacting zone; introducing the fluidized spent solid/entrained hydrocarbon stream and a stream of hot regenerated solid into a lower portion of a zone; introducing a stream of a fluid stripping medium, e.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: December 17, 1996
    Assignee: Bar-Co Processes Joint Venture
    Inventor: David B. Bartholic
  • Patent number: 5565177
    Abstract: A side-by-side reactor vessel and stripping vessel arrangement uses a rejection vessel to collect the catalyst from the bottom of a reactor vessel and eliminate stagnant layers of catalyst within the reactor vessel while increasing the efficiency of a stripper vessel located to the side of the reactor. Catalyst containing entrained and sorbed hydrocarbons pass from the bottom of a reactor vessel into the small diameter rejection vessel that provides a hydrocarbon rejection zone and uses a fresh stripping medium to maintain a dense fluidized bed from which entrained hydrocarbons are quickly disengaged from the catalyst and travel upward into the reactor vessel. Partially stripped catalyst flows through a passageway that extends horizontally to a stripping vessel that contains a conventional stripping zone. In the stripping vessel, catalyst counter-currently contacts additional stripping medium which removes sorbed hydrocarbons from the catalyst surface.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: October 15, 1996
    Assignee: UOP
    Inventor: Ismail B. Cetinkaya
  • Patent number: 5549814
    Abstract: An FCC stripper uses a grid arrangement that provides increased contacting of stripping fluid and catalyst through multiple levels of stripping grids while using a configuration that permits access through the stripper vessel for maintenance and inspection. The invention is particularly suited for large diameter stripping vessels where the typical frusto-conical configuration of baffles greatly increases the length of the stripper. The stripper grids also have orifice openings to redistribute stripping fluid at each level of stripping grid and increase contact between catalyst and stripping fluid.
    Type: Grant
    Filed: December 8, 1994
    Date of Patent: August 27, 1996
    Assignee: UOP
    Inventor: Randy J. Zinke
  • Patent number: 5531884
    Abstract: A fluidized catalytic cracking (FCC) process and apparatus uses a catalyst stripper with slant trays or shed trays having "downcomers". Downcomers, vertical catalyst/gas contacting elements, provide a vertical, countercurrent region for catalyst/stripping vapor contact. The downcomers improve stripping effectiveness.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: July 2, 1996
    Assignee: Mobil Oil Corporation
    Inventors: David L. Johnson, Richard C. Senior
  • Patent number: 5474669
    Abstract: A side-by-side reactor vessel and stripping vessel arrangement uses a rejection vessel to collect the catalyst from the bottom of a reactor vessel and eliminate stagnant layers of catalyst within the reactor vessel while increasing the efficiency of a stripper vessel located to the side of the reactor. Catalyst containing entrained and sorbed hydrocarbons pass from the bottom of a reactor vessel into the small diameter rejection vessel that provides a hydrocarbon rejection zone and uses a fresh stripping medium to maintain a dense fluidized bed from which entrained hydrocarbons are quickly disengaged from the catalyst and travel upward into the reactor vessel. Partially stripped catalyst flows through a passageway that extends horizontally to a stripping vessel that contains a conventional stripping zone. In the stripping vessel, catalyst counter-currently contacts additional stripping medium which removes sorbed hydrocarbons from the catalyst surface.
    Type: Grant
    Filed: February 19, 1992
    Date of Patent: December 12, 1995
    Assignee: UOP
    Inventor: Ismail B. Cetinkaya
  • Patent number: 5430222
    Abstract: An apparatus for the catalytic cracking in the fluid state of hydrocarbon feedstocks which comprises a riser-type column (2); at the top of the riser (2) and concentric therewith, a chamber (1) for separation of the hydrocarbon vapors and the coke-laden catalyst particles; directly above the upper opening of the riser (2) and in the interior of said chamber (1), a ballistic separator (3); at least one unit for regeneration of the spent catalyst, fed by stripped particles received from said chamber. The chamber (1) for separation of the coke-laden catalyst particles and the stripping thereof comprises, at a level intermediate between the bed (6) of particles being stripped and the opening of the riser (2), a means (11) adapted to form a baffle for locally reducing the diameter of said chamber (1) and the free passage at the periphery of the riser (2), thereby reducing recirculating streams of hydrocarbon vapors in separation chamber (1) of the FCC unit thus avoiding overcracking.
    Type: Grant
    Filed: October 5, 1992
    Date of Patent: July 4, 1995
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Marc Fersing, Denis Pontvianne
  • Patent number: 5380426
    Abstract: A fluidized catalytic cracking process and apparatus with an active bed annular spent catalyst stripper is disclosed. An annular catalyst stripper disposed about a riser reactor is separated, by a baffle or fluid flow, into a secondary stripper nearer the catalyst regenerator and a primary stripper on the far side of the annular stripper from the regenerator. Catalyst flows through the primary stripper as a dense bed, to a transport means which lifts catalyst to the inlet of the secondary stripper. The "dead" region on side of annular strippers far from the regenerator is eliminated. Preferably catalyst is added to the primary stripper via cyclone diplegs, and a cyclone is used on the transport outlet.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: January 10, 1995
    Assignee: Mobil Oil Corporation
    Inventors: David L. Johnson, David H. Parsons, Gerald J. Teitman
  • Patent number: 5310477
    Abstract: FCC process uses an open reactor vessel to house cyclones or other separation devices that reduce the carry through of product gases with the catalyst into the reactor vessel to less than 10 wt. % so that the catalyst in the reactor vessel provides a secondary dealkylation zone. By using a highly efficient separation device to remove product from the catalyst, the environment in the reactor vessel receives a low volume of cracked hydrocarbons from the riser conversion zone and provides a convenient secondary reaction zone that receives a recycled heavy gasoline fraction separated from the riser product stream. Dealkylation in the secondary reaction zone provides additional light gasoline to satisfy T90 requirements.
    Type: Grant
    Filed: April 22, 1992
    Date of Patent: May 10, 1994
    Assignee: UOP
    Inventor: David A. Lomas
  • Patent number: 5308474
    Abstract: An FCC reactor achieves greater utilization of the space within the reactor vessel by using a vented riser arrangement having an inlet opening at the bottom of a vented riser collector. The inlet opening at the bottom of the vented riser collector allows plug flow of the catalyst and hydrocarbon vapors through the upper and lower section of the reactor vessel without any substantial degradation and separation efficiency between the catalyst and the hydrocarbon vapors. This permits almost the entire tangent length of the reactor vessel to be used for the purpose of catalyst and hydrocarbon contact.
    Type: Grant
    Filed: September 28, 1992
    Date of Patent: May 3, 1994
    Assignee: UOP
    Inventor: Ismail B. Cetinkaya
  • Patent number: 5176815
    Abstract: An FCC process uses an open reactor vessel to house cyclones or other separation devices that reduce the carry though of product gases with the catalyst into the reactor vessel to less than 5 wt. % so that the catalyst in the reactor vessel can contact a secondary feedstock. By using a highly efficient separation device to remove product from the catalyst the environment in the reactor vessel receives a low volume of feed hydrocarbons and riser by-products. These by products comprise mainly C.sub.2 and lighter gases which are inert to a variety of other feedstreams. Possible secondary feedstreams include hydrotreated heavy naphtha, hydrotreated light cycle oil, light reformate and olefins. It is highly useful to use the secondary feedstream to heat the catalyst in the reactor vessel to facilitate hot stripping of the catalyst. Heat may be introduced in this manner by heating the secondary feedstream or using a feedstream that produces an exothermic reaction in the reactor vessel.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventor: David A. Lomas
  • Patent number: 5139649
    Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A coke combustor vessel, which may be partially or totally open to the dilute phase above the bubbling bed, is added to the existing regenerator vessel. Spent catalyst is discharged into the coke combustor, regenerated in a turbulent or fast fluidized bed, then discharged into the dilute phase region above the bubbling bed, either via a deflector or by simply overflowing the combustor. Regeneration of catalyst is completed in the bubbling dense bed, and/or an annular fast fluidized bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor either by a flow line, or by adjusting relative heights of bubbling to fast fluidized bed.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: August 18, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5059305
    Abstract: Operational flexibility of a fluid catalytic cracking process is improved by directly cooling regenerated catalyst in an external catalyst cooler/stripper (ECCS). Regenerated catalyst withdrawn from the catalytic cracking unit regenerator is mixed with spent catalyst from the reactor stripper to effect desorption of cracked products from the spent catalyst at elevated temperature. The catalyst mixture is then contacted with an alkane-containing feedstream in a fluid bed maintained within a central section of the external catalyst cooler/stripper (ECCS). The mixture of spent and regenerated catalyst, cooled by the endothermic dehydrogenation of the alkanes, then flows downward through the ECCS to a lower section of the ECCS where the catalyst is countercurrently stripped with steam to remove remaining entrained hydrocarbons. Steam is withdrawn from an upper section of the steam stripping zone and bypassed around the dehydrogenation/stripping and mixing stages to avoid steam deactivation of the catalyst.
    Type: Grant
    Filed: January 30, 1991
    Date of Patent: October 22, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Ajit V. Sapre
  • Patent number: 4921596
    Abstract: The present invention describes improved FCC and TCC stripper operations by incorporating a stripper operated at a reduced pressure. The improved strippers of the invention will increase total liquid hydrocarbon yield while reducing the coke load on the regenerator. Novel porous TCC bead catalysts are disclosed wherein at least 1/3 of the pore volume of catalyst pores having a pore diameter of at least 3000 Angstroms. These macropores facilitate flash vaporization of hydrocarbons in a stripping zone of the spent catalyst upstream of a regeneration zone.
    Type: Grant
    Filed: January 26, 1989
    Date of Patent: May 1, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Tai-Sheng Chou, Paul H. Schipper
  • Patent number: 4789458
    Abstract: A fluid catalytic cracking (FCC) process and apparatus is described which includes a high temperature stripper (hot stripper) to control the carbon level, hydrogen level, and sulfur level on spent catalyst, followed by single or multi-stage regeneration. The high temperature stripper may operate at a temperature between 100.degree. F. above the temperature of a catalyst hydrocarbon mixture exiting a riser and 1500.degree. F. The regenerator may operate at a temperature between 100.degree. F. above that of the catalyst in the hot stripper and 1600.degree. F. Hot regenerated catalyst recycles to the hot stripper to maintain the hot stripper temperature. The present invention has the advantage that it separates hydrogen from catalyst to eliminate hydrothermal degradation, and separates sulfur from catalyst as hydrogen sulfide and mercaptans which are easy to scrub. The present invention also provides a method and apparatus for converting a TCC unit to a FCC unit, with maximum use of the TCC unit.
    Type: Grant
    Filed: June 15, 1987
    Date of Patent: December 6, 1988
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4786402
    Abstract: Medicinal white oils and medicinal paraffins are prepared from petroleum fractions containing aromatics and nitrogen, oxygen and sulfur compounds, e.g. light and heavy atmospheric gas oils, vacuum gas oils and residues, which have been pretreated in a first stage by acid treatment or catalytic hydrogenation, by hydrogenation in a second stage over a nickel-containing catalyst under from 50 to 200 bar and at elevated temperatures, by a process in which the catalyst used in the second stage and present in the oxide form is reduced with a hydrogen-containing gas, passivated and then again activated with hydrogen, before the hydrogenation to medicinal white oils or paraffins is carried out.
    Type: Grant
    Filed: August 6, 1987
    Date of Patent: November 22, 1988
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Anstock, Walter Himmel, Matthias Schwarzmann, Heinz Dreyer, Ulrich Lebert, Ansgar Eisenbeis
  • Patent number: 4738829
    Abstract: Apparatus for increasing the overall efficiency of fluidized catalytic cracking (FCC) with crystalline zeolitic catalysts is disclosed. Separated or spent cracking catalyst after reaction with hydrocarbonaceous material is first stripped and then subjected to an additional period of time in the presence of steam in the dense phase before the catalyst is returned to a regenerator. In a preferred form the spent catalyst after normal steam stripping is subjected to an additional period from 1/2 to 30 minutes at elevated temperature. This time is from 6 to 900 times the reaction time of the catalyst and hydrocarbonaceous mixture in an FCC reactor riser pipe. Such additional contact time for steam to react with the spent catalyst and/or coke produces significant beneficial results in FCC performance.
    Type: Grant
    Filed: January 30, 1986
    Date of Patent: April 19, 1988
    Assignee: Chevron Research Company
    Inventor: Russell R. Krug
  • Patent number: 4623446
    Abstract: Disclosed is a method and apparatus for fluid catalytic cracking (FCC). The output of a riser conversion zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separator, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone. Means are also provided to blend stripping gas with the cracked hydrocarbons as they travel from the riser conversion zone to said primary cyclone separator. The stripping gas blends with the cracked hydrocarbons to improve the separation of hydrocarbons from catalyst. Steam may also be directly injected into the riser cyclone separator to aid in separation of hydrocarbons from catalyst.
    Type: Grant
    Filed: May 21, 1984
    Date of Patent: November 18, 1986
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen
  • Patent number: 4574044
    Abstract: A method for increasing the overall efficiency of fluidized catalytic cracking (FCC) with crystalline zeolitic catalysts is disclosed. Separated or spend cracking catalyst after reaction with hydrocarbonaceous material is first stripped and then subjected to an additional period of time in the presence of steam in the dense phase before the catalyst is returned to a regenerator. In a preferred form the spent catalyst after normal steam stripping is subjected to an additional period from 1/2 to 30 minutes at elevated temperature. This time is from 6 to 900 times the reaction time of the catalyst and hydrocarbonaceous mixture in an FCC reactor riser pipe. Such additional steam exposure allows the stripped spent catalyst to react with the steam to produce one or more significant benefits in FCC operations.
    Type: Grant
    Filed: May 8, 1984
    Date of Patent: March 4, 1986
    Assignee: Chevron Research Company
    Inventor: Russell R. Krug
  • Patent number: 4464250
    Abstract: A process for economically converting carbo-metallic oils to lighter products. The carbo-metallic oils contain 650.degree. F. and material which is characterized by a carbon residue on pyrolysis of at least about 1 and a Nickel Equivalents of heavy metals content of at least about 4 parts per million. This process comprises flowing the carbo-metallic oil together with particulate cracking catalyst through a progressive flow type reactor having an elongated reaction chamber, which is at least in part vertical or inclined, for a predetermined vapor riser residence time in the range of about 0.5 to about 10 seconds, at a temperature of about 900.degree. to about 1400.degree. F., and under a pressure of about 10 to about 50 pounds per square inch absolute sufficient for causing a conversion per pass in the range of about 50% to 90% while producing coke in amounts in the range of about 6 to about 14% by weight based on fresh feed, and laying down coke on the catalyst in amounts in the range of about 0.
    Type: Grant
    Filed: July 30, 1981
    Date of Patent: August 7, 1984
    Assignee: Ashland Oil, Inc.
    Inventors: Virginia K. Myers, Bill E. McKay, Jr., Lloyd E. Busch
  • Patent number: 4424116
    Abstract: A process for economically converting carbo-metallic oils to lighter products. The carbo-metallic oils contain 650.degree. F.+ material which is characterized by a carbon residue on pyrolysis of at least about 1 and a Nickel Equivalents of heavy metals content of at least about 4 parts per million. This process comprises flowing the carbo-metallic oil together with particulate cracking catalyst through a progressive flow type reactor having an elongated reaction chamber, which is at least in part vertical or inclined, for a predetermined vapor riser residence time in the range of about 0.5 to about 10 seconds, at a temperature of about 900.degree. to about 1400.degree. F., and under a pressure of about 10 to about 50 pounds per square inch absolute sufficient for causing a conversion per pass in the range of about 40% to 90% while producing coke in amounts in the range of about 6 to about 14% by weight based on fresh feed, and laying down coke on the catalyst in amounts in the range of about 0.
    Type: Grant
    Filed: March 25, 1982
    Date of Patent: January 3, 1984
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger, Jr.
  • Patent number: 4331533
    Abstract: A hydrocarbon conversion-catalyst regeneration process and apparatus is described for converting residual oils and regeneration of catalyst in two separate low and higher temperature regeneration stages stacked one above the other on the same or different vertical axis to provide catalyst at a temperature above the residual feed pseudo-critical temperature. A CO rich flue gas is recovered from the low temperature regeneration stage and a CO.sub.2 rich flue gas is recovered from the higher temperature regeneration stage. The temperature of the catalyst mixed with the residual oil feed is sufficient to obtain substantially complete vaporization of the residual oil charge. A special arrangement of apparatus is provided in the lower portion of a riser conversion zone to obtain the intimate vaporization contact between residual oil feed and the high temperature catalyst charged to the riser.
    Type: Grant
    Filed: July 15, 1980
    Date of Patent: May 25, 1982
    Inventors: Robert R. Dean, Jean-Louis Mauleon, Robert W. Pfeiffer
  • Patent number: 4274942
    Abstract: Process and system are described for control of sulfur oxide in emissions to the atmosphere from regenerators of Fluid Catalytic Cracking Units (FCC) in a manner which improves the operation of the regenerator and/or the reactor. Spent FCC cracking catalyst containing sulfur-bearing inactivating carbonaceous deposit is partially oxidized, preferably in the presence of steam, thereby producing a mixture of CO and CO.sub.2 and releasing sulfur in the resulting reducing atmosphere as vaporous hydrogen sulfide before the catalyst is regenerated, whereby the amount of sulfur convertible to noxious SOx in the regenerator flue gas is reduced. By the disclosed process and system, the quantity of oxygen introduced is predetermined and controlled in response to hydrogen content of the coke on the partially oxidized catalyst or an SOx analyzer associated with the regenerator can be used as a control tool.
    Type: Grant
    Filed: April 4, 1979
    Date of Patent: June 23, 1981
    Assignee: Engelhard Minerals & Chemicals Corporation
    Inventors: David B. Bartholic, Don S. Chin
  • Patent number: 4220623
    Abstract: A fluidized catalytic cracking unit wherein cyclone diplegs extend from the reactor vessel into the stripping vessel, for reducing the overall height of the unit. Valve means are provided at the lower end of the diplegs to prevent blow by of gas through the diplegs. The diplegs pass through the vent lines.
    Type: Grant
    Filed: March 29, 1978
    Date of Patent: September 2, 1980
    Assignee: Texaco Inc.
    Inventors: Frederick C. Jahnke, John P. MacLean, Dale Williams, John D. Brown
  • Patent number: 4219407
    Abstract: A riser cracking-catalyst regeneration operation is described wherein a suspension discharged from a riser operation is separated by catalyst particle concentrating means which discharge a concentrated stream of catalyst separated from gasiform material into a downcomer zone and out of further contact with discharged gasiform material in the suspension. A stripping gas is used to particularly aid the separation of catalyst and hydrocarbon vapors.
    Type: Grant
    Filed: January 20, 1978
    Date of Patent: August 26, 1980
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Scott A. Heffley, Hartley Owen