With Temperature Regulation Patents (Class 208/159)
  • Patent number: 11845901
    Abstract: A method of converting a liquid hydrocarbon stream to lower boiling point hydrocarbons may include converting the liquid hydrocarbon stream to an aerosolized hydrocarbon particle stream, and subjecting the aerosolized hydrocarbon particle stream to reaction conditions. Reaction conditions may include a temperature from 25° C. to 1,000° C. and a pressure from 1 bar to 15 bar. The method may further include forming the lower boiling point hydrocarbons in the aerosolized hydrocarbon particle stream and separating the lower boiling point hydrocarbons from the aerosolized hydrocarbon particle stream. The lower boiling point hydrocarbons may comprise at least C2—C4 olefins.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: December 19, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Brian Hanna, Michele Louisa Ostraat, Sergio Fernandez
  • Patent number: 11781074
    Abstract: A method of converting a liquid hydrocarbon stream to lower boiling point hydrocarbons includes converting the liquid hydrocarbon stream to an aerosolized hydrocarbon particle stream, introducing a charge to the aerosolized hydrocarbon particle stream to produce a charged aerosolized hydrocarbon particle stream including positively charged aerosolized hydrocarbon particles or negatively charged aerosolized hydrocarbon particles, contacting the aerosolized hydrocarbon particle stream with an aerosolized reaction catalyst, subjecting the aerosolized hydrocarbon particle stream to reaction conditions, thereby forming the lower boiling point hydrocarbons, and separating the lower boiling point hydrocarbons from the charged aerosolized hydrocarbon particle stream. The reaction conditions include a temperature of from 25° C. to 1,000° C. and a pressure of from 0 bar to 15 bar. The lower boiling point hydrocarbons includes at least C2-C4 olefins.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: October 10, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Brian Hanna, Michele Louisa Ostraat, Sergio Fernandez
  • Patent number: 11692140
    Abstract: A method of converting a liquid hydrocarbon stream to lower boiling point hydrocarbons may include converting the liquid hydrocarbon stream to an aerosolized hydrocarbon particle stream, and subjecting the aerosolized hydrocarbon particle stream to reaction conditions. Reaction conditions may include a temperature from 25° C. to 1,000° C. and a pressure from 1 bar to 15 bar. The method may further include forming the lower boiling point hydrocarbons in the aerosolized hydrocarbon particle stream and separating the lower boiling point hydrocarbons from the aerosolized hydrocarbon particle stream. The lower boiling point hydrocarbons may comprise at least C2-C4 olefins.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: July 4, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Brian Hanna, Michele Louisa Ostraat, Sergio Fernandez, Timothy Kucharski
  • Patent number: 11478769
    Abstract: A method for processing a chemical stream includes contacting a feed stream with a catalyst in an upstream reactor section of a reactor having the upstream reactor section and a downstream reactor section, passing an intermediate product stream to the downstream reactor section, and introducing a riser quench fluid into the downstream reactor section, upstream reactor section, or transition section and into contact with the intermediate product stream and the catalyst to slow or stop the reaction. The method includes separating at least a portion of the catalyst from the product stream, passing the product stream to a product processing section, cooling the product stream, and separating a portion of the riser quench fluid from the product stream. The riser quench fluid separated from the product stream may be recycled back to the downstream reactor section, upstream reactor section, or transition section as the riser quench fluid.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: October 25, 2022
    Assignee: Dow Global Technologies LLC
    Inventor: Matthew T. Pretz
  • Patent number: 11118117
    Abstract: An advanced regulatory controller for a converter of a catalytic olefins unit is disclosed. A Fluid Catalytic Cracking (FCC) type converter (i.e., reactor-regenerator) is combined with an ethylene style cold-end for product recovery. The regulatory controller operates using an Advanced Regulatory Control (ARC) application using variables, such as a controlled variable, four disturbance variables, associated variable, and a manipulated variable. The ARC application manipulates fuel oil or tail gas flow to a regenerator in response to an expected future steady state value of a regenerator bed temperature resulting from changes in the values of a selected set of the variables.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: September 14, 2021
    Assignee: Kellogg Brown & Root LLC
    Inventors: Jorge Javier Vazquez, Surajit Dasgupta, Michael Tallman, Priyesh Harilal Thakker
  • Patent number: 9963400
    Abstract: A system for preventing a catalyst from overheating is provided. The system includes: a first reactor filled with a catalyst at least in part and configured to receive reaction gas and produce product gas; and a second reactor configured to cool a catalyst discharged from the first reactor. The catalyst is circulated between the first reactor and the second reactor by injecting the catalyst cooled in the second reactor into the first rector.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: May 8, 2018
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Dong-ho Lee, Gyoung-tae Jin, Do-won Shun, Chang-keun Yi, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Ji-bong Joo
  • Patent number: 9725374
    Abstract: A system for preventing a catalyst from overheating is provided. The system includes: a first reactor filled with a catalyst at least in part and configured to receive reaction gas and produce product gas; and a second reactor configured to cool a catalyst discharged from the first reactor. The catalyst is circulated between the first reactor and the second reactor by injecting the catalyst cooled in the second reactor into the first rector.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: August 8, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Dong-ho Lee, Gyoung-tae Jin, Do-won Shun, Chang-keun Yi, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Ji-bong Joo
  • Patent number: 9597652
    Abstract: A catalyst regenerator for combusting carbonaceous deposits from a catalyst comprising a first chamber which comprises a catalyst inlet for feeding spent catalyst with carbonaceous deposits to the first chamber, a supplemental fuel gas distributor, and a distributor for distributing oxygen containing gas into the first chamber; a riser section extending from the first chamber for transporting the spent catalyst and the flue gas, the riser section comprising an outer wall, at least one slot in the outer wall, and a riser termination device which comprises a substantially internally flat cover plate, at least one arm extending from the cover plate, wherein the arm extends about the slot from the outer wall, the arm comprising an outer shell that encloses the arm and wherein no internal portion of the cover plate extends above an upper surface of the outer shell of the at least one arm is provided.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: March 21, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Don F. Shaw, Richard E. Walter, Madhusudhan Kodam
  • Patent number: 9108892
    Abstract: Process for the preparation of olefins comprising reacting an oxygenate and/or olefinic feed in a reactor in the presence of a molecular sieve catalyst to form a mixture which comprises olefins and at least partially coked catalyst; separating olefins and at least partially coked catalyst as obtained; passing the at least partially coked catalyst to a regenerator; introducing into the regenerator an oxygen-containing gas to regenerate the at least partially coked catalyst, thereby producing a gaseous mixture and at least partially regenerated catalyst; analyzing the at least partially regenerated catalyst to control the burning rate of the coke present on the at least partially coked catalyst in the regenerator by adjusting one or more conditions of the regeneration of the at least partially coked catalyst on the basis of the analysis of the at least partially regenerated catalyst; and passing the at least partially regenerated catalyst to the reactor.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: August 18, 2015
    Assignee: Shell Oil Company
    Inventor: Jose Atilio Quevedo Enriquez
  • Patent number: 8999146
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Patent number: 7744827
    Abstract: A fuel delivery system for a gas turbine engine includes a catalytic device for treating fuel to increase the usable cooling capability of an endothermic fuel. The catalytic device operates to treat and decompose components within in the fuel to render the fuel non-coking beyond 250° F. The catalytic device includes material that initiates reactions, and decomposition of coke forming components within the fuel to non-coke forming components within the fuel.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: June 29, 2010
    Assignee: United Technologies Corporation
    Inventors: Thomas Vanderspurt, Harry Cordatos
  • Patent number: 7491315
    Abstract: A dual riser FCC process is disclosed wherein first and second hydrocarbon feeds (5, 6) are supplied to the respective first and second risers (2, 4) to make an effluent rich in ethylene, propylene and/or aromatics. Where the hydrocarbon feeds are different, the respective risers can have different conditions to favor conversion to ethylene and/or propylene. A minor amount of a coke precursor (80, 82) can be added to one or both of the hydrocarbon feeds (5, 6) to reduce or eliminate the amount of supplemental fuel needed to heat balance the system. The different feeds, including the coke precursor and any recycle streams (36, 44) can be segregated by type to improve olefin yields, including an embodiment where the paraffinic feeds are supplied to one riser and the olefinic feeds to the other.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: February 17, 2009
    Assignee: Kellogg Brown & Root LLC
    Inventors: Curtis N. Eng, Rik B. Miller
  • Patent number: 7404891
    Abstract: A technique for recovering heat from a high temperature effluent stream from catalyst regeneration or the like, comprising processes and means for: (a) passing the effluent stream in heat exchange relationship in a steam generator with boiler feed water to produce high pressure steam and partially cool the effluent stream; (b) passing the partially cooled effluent stream from the steam regenerator in heat exchange relationship to preheat high pressure boiler feed water and further cool the effluent stream; and (c) passing the preheated boiler feed water to the steam generator. The apparatus and processes for thermal energy recovery may be used to treat hot regenerator effluent from FCC or OTO-type processes, thereby producing a cooled flue gas stream to discharge to ambient atmosphere.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: July 29, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. van Egmond, James H. Beech, Jr., Hans A. Klemm, Kyle Castaldy
  • Patent number: 7273543
    Abstract: A process and an apparatus for catalytic cracking a hydrocarbon feed to lighter hydrocarbon employing a catalyst cooler in flow communication with a catalyst stripper is disclosed.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: September 25, 2007
    Assignee: Stone & Webster Process Technology, Inc.
    Inventor: Warren Letzsch
  • Patent number: 6780308
    Abstract: A baffle-style stripper for an FCC process comprising sloped baffles in which a greater volumetric flow rate of stripping medium permeates openings in a bottom section of the baffle than through a top section of the baffle for low catalyst flux stripping operations. When low catalyst flux is used, the catalyst runs from baffle to baffle closer to the bottom edge of the baffle. Hence, more fluidization from stripping medium is concentrated near the lower edge of the baffle. The greater fluidization at the bottom section of the baffle is accomplished by providing greater opening area per baffle area in the lower section of the baffle than in the top section of the baffle.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: August 24, 2004
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Thuy Khanh T. Nguyen
  • Patent number: 6723227
    Abstract: Fluidized catalytic cracking process which process comprises: (a) separating the hydrocarbon product from the spent catalyst by means of one or more gas-solid separation steps; (b) stripping the spent catalyst in a dense phase fluidized stripping zone by introducing a stripping medium in the lower portion of the stripping zone; (c) introducing part of the spent catalyst obtained in step (b) to a regeneration zone wherein the coke is removed from the catalyst by means of combustion; (d) introducing the remaining part of the spent catalyst and part of the hot regenerated catalyst into a lower portion of an elongated dilute phase stripping zone; (e) introducing a stream of a stripping medium into the lower portion of the dilute phase stripping zone to contact the resulting mixture of spent catalyst and regenerated catalyst therein; (f) passing a stream of the spent catalyst mixed with the hot regenerated catalyst and stripping medium in the dilute phase stripping zone; (g) introducing the separated catalyst of s
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: April 20, 2004
    Assignee: Shell Oil Company
    Inventor: Rene Samson
  • Patent number: 6602476
    Abstract: Apparatus and process for heat exchange with fluid beds comprises heat-exchange tubes located longitudinally with respect to the axis of a fluidization zone with a rectangular pitch, one side of which having a length at least one and a half times the length of the other side and/or with a triangular pitch, having two sides each at least one and a half times the length of the shortest side reduces the impact of the heat-exchange tubes on the fluidization characteristics of the fluid bed. The invention is particularly suitable for oxidation reactions using molecular oxygen-containing gas in the presence of a fluid bed of fluidizable catalyst, such as (a) the acetoxylation of olefins, (b) the oxidation of ethylene to acetic acid and/or the oxidation of ethane to ethylene and/or acetic acid, (c) the ammoxidation of propylene and/or propane to acrylonitrile and (d) the oxidation of C4's to maleic anhydride.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 5, 2003
    Assignee: BP Chemicals Limited
    Inventors: Stanley John Becker, Timothy Crispin Bristow, Michele Fiorentino, David Newton, Bruce Leo Williams
  • Patent number: 6558531
    Abstract: The invention relates to a process for maintaining heat balance in a fluidized bed catalytic cracking unit. More specifically, the invention relates to a combustion control method capable of maintaining or restoring heat balance by conducting, under appropriate conditions, fuel and an oxygen-containing gas to a transfer line. The transfer line conducts effluent including spent catalyst and combustion products to the unit's catalyst regeneration zone.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: May 6, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Todd R. Steffens, Paul K. Ladwig, George Melfi, John E. Asplin
  • Patent number: 6059958
    Abstract: A process for the fluid catalytic cracking of heavy feeds under a heat balance regime is described, where one or more catalyst coolers external to the regenerator cool a stream of regenerated catalyst. A portion of said stream returns to the regenerator and a portion of the cooled regenerated catalyst is admixed to the non-cooled regenerated catalyst at a temperature substantially lower than the regenerator temperature, said admixture being brought into contact with the hydrocarbon feed to be cracked. As a result, the control of the catalyst circulation is rendered independent from the heat balance of the unit, with minimization of the thermal cracking, and therefore lower coke and fuel gas products.
    Type: Grant
    Filed: September 18, 1997
    Date of Patent: May 9, 2000
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Jose Geraldo Furtado Ramos, Jose Mozart Fusco, Moacir Jose Bampi, Emanuel Freire Sandes, Francisco Carlos Da Costa Barros, Jorivaldo Medeiros, Claudio Fonseca Machado Dos Santos, Aurelio Medina Dubois, Ingrid Alexandra Zech, Monica Einsfeldt, Maria Celia Dos Santos Da Rocha
  • Patent number: 6010618
    Abstract: An FCC process provides ultrashort catalyst and feed contacting in an FCC riser by recovering a short contact product stream in an intermediate section of the riser. The remainder of the catalyst and gas mixture continues through the riser along a continuous flow path for further for controlled cracking of the heavier adsorbed hydrocarbons and entrained hydrocarbons. Residual catalyst separated from the recovery of the short contact product stream returns to the upstream end of the riser for recycle. The section of the riser downstream of the short contact product recovery may receive additional feed to perform secondary cracking reactions. The riser arrangement greatly simplifies methods for performing ultra short FCC feed and catalyst contacting.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: January 4, 2000
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 5904837
    Abstract: A process for the fluid catalytic cracking of oils, wherein an oil is brought into contact with catalyst particles using a fluid catalytic cracking reactor under the following conditions: a) a reaction zone outlet temperature of 580 to 630.degree. C., catalyst/oil ratio of 15 to 50 wt./wt., contact time of 0.1 to 3.0 sec.; b) a catalyst-concentrated phase temperature in the regenerating zone of 670 to 800.degree. C.; and c) a temperature of regenerated catalyst to be forwarded into the reaction zone of 610 to 665.degree. C.; thereby producing light fraction olefins. The process increases the cracking rate of heavy fractions of oils while producing a lessened amount of dry gases generated by the overcracking of light fractions to obtain light fraction olefins in a high yield.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: May 18, 1999
    Assignees: Nippon Oil Co., Ltd., Petroleum Energy Center
    Inventor: Yuichiro Fujiyama
  • Patent number: 5853568
    Abstract: A fluid cat cracking process for catalytically cracking a feed containing vanadium into lower boiling products, includes a cat cracker and a regenerator, with the feed entering the catalytic cracking zone preheated by indirect heat exchange with spent, stripped catalyst particles being recycled from the cracking reactor to the regenerator. Operating the regenerator at a temperature no higher than about 1150.degree. F. permits the amount of vanadium in the feed to be substantially increased with no loss of catalytic activity due to vanadium poisoning of the catalyst, when compared to a higher regenerator temperature of 1365.degree. F. Using the stripped, spent catalyst for heating the feed reduces feed coking and heat exchanger fouling, compared to using the hotter regenerated catalyst for feed preheat.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: December 29, 1998
    Assignee: Exxon Research and Engineering Company
    Inventor: John F. R. Brander
  • Patent number: 5800697
    Abstract: An FCC reactor and regenerator arrangement provides substantially independent control of temperature on the reactor side and regenerator side of the process. The arrangement withdraws cooled regenerated catalyst for transfer to a reactor riser and cooled regenerator catalyst for return to the regeneration zone. The process may operate with a single cooler that supplies catalyst to both the reaction side of the process and the regeneration side of the process.
    Type: Grant
    Filed: June 19, 1995
    Date of Patent: September 1, 1998
    Assignee: UOP LLC
    Inventor: Robert A. Lengemann
  • Patent number: 5660716
    Abstract: A fluidized-bed process for catalytic cracking of a hydrocarbon feedstock where the hydrocarbon feedstock, particularly a feedstock with a high content of basic nitrogen compounds, and a catalyst circulate in the tubular zone co-currently from the top to the bottom, where the catalyst, which is under equilibrium conditions at 150.degree. C., and a pressure of 5 mbar, adsorbs less than 250 micromols, and preferably less than 50 micromols, of pyridine/g, and whose pyridine retention, after heating at 350.degree. C. under vacuum, does not exceed 20%, and preferably not 10%, of the amount adsorbed at 150.degree. C.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: August 26, 1997
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Michel Bourgogne, Thierry Patureaux, Nathalie Boisdron
  • Patent number: 5584986
    Abstract: A fluidized process which comprises contacting a hydrocarbon feedstock with a fluidized particulate solid in a contacting zone wherein carbonaceous deposits accumulate on the solid and the solid becomes spent and wherein the carbonaceous deposits are burned from the spent solid to produce a regenerated solid; removing a stream of the fluidized spent solid and entrained hydrocarbons from the contacting zone; introducing the fluidized spent solid/entrained hydrocarbon stream and a stream of hot regenerated solid into a lower portion of a zone; introducing a stream of a fluid stripping medium, e.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: December 17, 1996
    Assignee: Bar-Co Processes Joint Venture
    Inventor: David B. Bartholic
  • Patent number: 5492617
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed which substantially fills the entire volume of a reactor vessel. Catalyst are selected to be essentially the same density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed catalyst bed at the design feed rates. The liquid and gas components of the hydrocarbon feed stream flow into the bed of catalyst and a quenching medium, which is preferably a liquid, is injected into the bed of catalyst. Injection of a liquid quench reduces the gas component of the hydrocarbon feed stream while simultaneously increasing the residence time and reducing the liquid velocity of the liquid component of the hydrocarbon feed stream within the substantially packed bed of catalyst.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: February 20, 1996
    Inventors: Harold J. Trimble, Bruce E. Reynolds, Robert W. Bachtel, Robert J. Klett, David N. Brossard, David E. Earls
  • Patent number: 5451313
    Abstract: An FCC process mixes spent and regenerated catalyst to obtain thermal equilibrium of a blended catalyst stream before contacting feed with the blended catalyst stream. The spent and regenerated catalyst from the reactor and regenerator catalyst may be mixed in a blending vessel located at the bottom of an FCC riser that can also serve as a hot catalyst stripper.
    Type: Grant
    Filed: March 23, 1994
    Date of Patent: September 19, 1995
    Assignee: UOP
    Inventors: David A. Wegerer, David A. Lomas
  • Patent number: 5389231
    Abstract: A catalytic cracking process and apparatus wherein hot regenerated catalyst particles from the dense phase of the regenerator are passed through a heat exchanger in indirect heat exchange with stripped catalyst particles whereby the former are cooled and the latter are heated. The regenerated catalyst which contacts the feed is thus cooler than it would otherwise be, and there is a reduction in thermal cracking. The stripped catalyst entering the regenerator is hotter than it would otherwise be thereby improving the efficacy of the regeneration step.
    Type: Grant
    Filed: September 14, 1992
    Date of Patent: February 14, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: John F. R. Brander, Todd R. Steffens
  • Patent number: 5324418
    Abstract: A process for fluidized catalytic cracking of heavy feed to minimize yields of heavy fuel oil is disclosed. Operating a reactor with a 15:1 to 30:1 cat:oil ratio, at a reactor temperature of 1000.degree. to 1100.degree. F., and 1.5 to 5.0 seconds of catalyst residence time produces large volumes of gasoline and less than 5.0 wt % heavy fuel oil. A catalyst cooler is essential, to provide cool catalyst to the riser while permitting the regenerator to operate at 1200.degree. F. or higher. FCC catalyst with over 25 wt % large pore zeolite is preferred.
    Type: Grant
    Filed: January 7, 1993
    Date of Patent: June 28, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Gregory P. Muldowney
  • Patent number: 5324421
    Abstract: In a steam generator for recovering heat in a hot fluidized bed of solid particles, wherein coils of the steam generator make a 180.degree. U-bend, the U-bend portion of the coils are protected from overheating by installing an open top insulating box around the U-bend portion of the coil. In use solid particles from the circulating fluidized bed accumulate in the insulating box thus providing a non-moving layer of solid particles surrounding the U-bend which thermally insulates the U-bend portion of the coil from the higher temperature encountered in the moving fluidized bed.
    Type: Grant
    Filed: October 4, 1990
    Date of Patent: June 28, 1994
    Assignee: Phillips Petroleum Company
    Inventor: William C. Rahlwes
  • Patent number: 5324419
    Abstract: A process for fluidized catalytic cracking of heavy feed to make more catalytically cracked products and less thermally cracked products such as butadiene is disclosed. Operating an upflow riser reactor with a riser top temperature of 1050 to 1150 .degree.F., and a short catalyst residence time, yields large volumes of gasoline and light olefins, but reduced yields of butadiene. Preferably cooled catalyst in large amounts contacts severely preheated feed. FCC catalyst with over 30 wt % Y zeolite is preferred.
    Type: Grant
    Filed: January 7, 1993
    Date of Patent: June 28, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Gregory P. Muldowney
  • Patent number: 5298155
    Abstract: The invention is directed to a process for controlling product yields in a fluid catalytic cracker unit. In particular, the invention is directed to a process wherein the introduction of feed into a catalytic cracking zone is effected by feed injectors which optimize the atomization of the feed in order to achieve yield and/or quality objectives.
    Type: Grant
    Filed: July 2, 1992
    Date of Patent: March 29, 1994
    Assignee: Exxon Research & Engineering Co.
    Inventor: Craig Y. Sabottke
  • Patent number: 5298151
    Abstract: In ebullated bed hydroprocessing of a distillate hydrocarbon feedstock, it has been found that high pressure and low pressure heat exchange can be separated. Both the high pressure heat exchange and the fired heater fuel consumption are reduced. A control system provides for a constant distillate feedstock temperature in cooperation with heat integration.
    Type: Grant
    Filed: November 19, 1992
    Date of Patent: March 29, 1994
    Assignee: Texaco Inc.
    Inventors: Robert M. Steinberg, Jacquelyn G. Niccum, John C. Strickland
  • Patent number: 5271826
    Abstract: A process for thermally and catalytically upgrading a heavy feed in a single riser reactor FCC unit is disclosed. A heavy feed is added to a blast zone in the base of the riser, and sufficient hot regenerated FCC catalyst is added to induce both thermal and catalytic cracking of the heavy feed. A reactive quench material, which cools the material discharged from the blast zone is added to a quench zone downstream of the blast zone, to reduce temperature at least in part by undergoing endothermic reactions in the riser. Quench liquids can be distillable FCC feeds such as gas oil, slack wax, or alcohols or ethers. The quench material is added in an amount equal to 100 to 1000 wt % of the non-distillable material in the heavy feed. A preferred catalyst, with a high zeolite content, is used which retains activity in the quench despite initial contact with the heavy feed, which tends to overwhelm conventional FCC catalysts.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: December 21, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Frederick J. Krambeck, Donald M. Nace, Paul H. Schipper, Ajit V. Sapre
  • Patent number: 5176814
    Abstract: A heat source, may be on a high speed vehicle, may be cooled by transferring thermal energy from the heat source to an endothermic fuel decomposition catalyst in order to heat the catalyst to a temperature sufficient to crack or dissociate at least a portion of an endothermic fuel stream. The endothermic fuel is selected from the group consisting of normal paraffinic hydrocarbons and methanol. The heated endothermic fuel decomposition catalyst is contacted with the endothermic fuel stream at a liquid hourly space velocity of at least about 10 hr.sup.-1 to cause the endothermic fuel stream to crack or dissociate into a reaction product stream.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: January 5, 1993
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Pierre J. Marteney, Meredith B. Colket, III, Alvin B. Stiles
  • Patent number: 5160426
    Abstract: A process and apparatus for achieving hot catalyst stripping of spent FCC catalyst in a stripper mounted over a bubbling bed regenerator. Hot catalyst stripping is achieved by indirect transfer of heat from the regenerator to the stripper. Heat pipes, surface modifications such as fins on the stripper vessel, or use of a stripper in, or connective with, a heat exchange tube bundle may be used to heat spent catalyst with heat from the regenerator dilute phase, without transferring catalyst from the regenerator. The benefits of hotter catalyst stripping are achieved, without increasing catalyst traffic in the regenerator.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: November 3, 1992
    Assignee: Mobil Oil Corporation
    Inventor: Amos A. Avidan
  • Patent number: 5139649
    Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A coke combustor vessel, which may be partially or totally open to the dilute phase above the bubbling bed, is added to the existing regenerator vessel. Spent catalyst is discharged into the coke combustor, regenerated in a turbulent or fast fluidized bed, then discharged into the dilute phase region above the bubbling bed, either via a deflector or by simply overflowing the combustor. Regeneration of catalyst is completed in the bubbling dense bed, and/or an annular fast fluidized bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor either by a flow line, or by adjusting relative heights of bubbling to fast fluidized bed.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: August 18, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5087349
    Abstract: An improved process for controlling desired product distribution in fluidized catalytic cracking of olefins is provided wherein riser reactor temperature profiles are controlled by means of atomized quench streams provided downstream of the hydrocarbon feedstock charge level.
    Type: Grant
    Filed: October 22, 1990
    Date of Patent: February 11, 1992
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Alan R. Goelzer, Francis A. Demers
  • Patent number: 5071539
    Abstract: A catalytic composition for use in fluid catalytic cracking has an effective heat capacity of at least about 0.29 BTU/lb. .degree.F. over the range from 950.degree. F. to 1300.degree. F. The composition may include microspheres containing in situ crystallized Y-faujasite and fluidizable particles consisting essentially of dimagnesium borate. The catalytic composition may include a heat retention component selected from the group consisting of dimagnesium borate, aluminum borate, magnesium tetraborate, magnesium orthoborate, lithim aluminum borate, lithium magnesium borate, lithium aluminum silicate, and lithium aluminate.
    Type: Grant
    Filed: August 30, 1990
    Date of Patent: December 10, 1991
    Assignee: Engelhard Corporation
    Inventors: Chi-Mi T. Hayward, Barry K. Speronello, William R. Gustafson, Gerald S. Koermer
  • Patent number: 5059305
    Abstract: Operational flexibility of a fluid catalytic cracking process is improved by directly cooling regenerated catalyst in an external catalyst cooler/stripper (ECCS). Regenerated catalyst withdrawn from the catalytic cracking unit regenerator is mixed with spent catalyst from the reactor stripper to effect desorption of cracked products from the spent catalyst at elevated temperature. The catalyst mixture is then contacted with an alkane-containing feedstream in a fluid bed maintained within a central section of the external catalyst cooler/stripper (ECCS). The mixture of spent and regenerated catalyst, cooled by the endothermic dehydrogenation of the alkanes, then flows downward through the ECCS to a lower section of the ECCS where the catalyst is countercurrently stripped with steam to remove remaining entrained hydrocarbons. Steam is withdrawn from an upper section of the steam stripping zone and bypassed around the dehydrogenation/stripping and mixing stages to avoid steam deactivation of the catalyst.
    Type: Grant
    Filed: January 30, 1991
    Date of Patent: October 22, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Ajit V. Sapre
  • Patent number: 5047140
    Abstract: A process and apparatus are disclosed for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added alongside an existing regenerator vessel, and spent catalyst is discharged into a transfer pot beneath the existing dense bed, then into the coke combustor. Catalyst is regenerated in a turbulent or fast fluidized bed, and discharged into the dilute phase region above the existing bubbling dense bed. The discharge line preferably encompasses, and is in a heat exchange relationship with, the spent catalyst standpipe. Discharge catalyst is collected in the bubbling dense bed surrounding the coke combustor, and may be given an additional stage of regeneration. Catalyst may be recycled from the dense bed to the transfer pot.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: September 10, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5043055
    Abstract: A process and apparatus for achieving multistage, hot catalyst stripping of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. Hot catalyst stripping is achieved by lifting regenerated catalyst into the conventional stripper or to a secondary catalyst stripper under the primary stripper. Spent catalyst is heated by direct contact heat exchange with hot regenerated catalyst. Three different types of lift gas may be used to transport catalyst from the regenerator to the hot stripper, a light reactive hydrocarbon, an inert, or steam.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: August 27, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5034115
    Abstract: A process and apparatus are disclosed for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A coke combustor vessel is immersed in, and in open fluid communication with, the bubbling dense bed of the existing regenerator vessel. Spent catalyst is discharged into the coke combustor, mixes with hot regenerated catalyst which flows into the coke combustor, and regenerated with combustion air in a turbulent or fast fluidized bed. Catalyst and flue gas are discharged up into a dilute phase transport riser, preferably into cyclone which separate hot regenerated catalyst from flue gas. Regenerated catalyst is collected in the bubbling dense bed surrounding the coke combustor, and some is recycled by flowing into the coke combustor for direct contact heat exchange.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: July 23, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Amos A. Avidan
  • Patent number: 5032251
    Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added to the existing regenerator vessel, and spent catalyst is discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor for direct contact heat exchange. Catalyst coolers may be used on catalyst recycle lines to the coke combustor, or on the line returning regenerated catalyst to the cracking reactor.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: July 16, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5032252
    Abstract: A process and apparatus for achieving multistage, hot catalyst stripping of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A secondary or hot catalyst stripper is placed under the primary stripper and within the existing regenerator vessel. Spent catalyst from the primary stripper is heated in the secondary stripper by at least one of immersion in the bubbling dense bed of hot regenerated catalyst, addition of hot regenerated catalyst recovered from the discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport riser which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: July 16, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5021147
    Abstract: A system for adding and withdrawing solids to a high pressure reactor wherein there is provided improved control of flow and concentrations of a slurry of solids in a transport oil for introducing and withdrawing solids from the reactor. In addition, there is provided for improved heating and cooling of the solids.
    Type: Grant
    Filed: June 7, 1989
    Date of Patent: June 4, 1991
    Assignee: Abb Lummus Crest, Inc.
    Inventors: Roger P. Van Driesen, William R. Adams, Mario Baldasarri, John Caspers, Harold Trimble
  • Patent number: 5011592
    Abstract: A process for controlled, multi-stage regeneration of FCC catalyst is disclosed. A modified high efficiency catalyst regenerator, with a fast fluidized bed coke combustor, dilute phase transport riser, and second fluidized bed regenerates the catalyst in at least two stages. The primary stage of regeneration is in the coke combustor, at full CO oxidation conditions. The second stage of catalyst regeneration occurs in the second fluidized bed, at partial CO combustion conditions. The process permits regeneration of spent FCC catalyst while minimizing NOx exmissions and achieving significant reduction of SOx.
    Type: Grant
    Filed: July 17, 1990
    Date of Patent: April 30, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5000841
    Abstract: A fluidized catalytic cracking process operates with a hot stripper to improve stripping of spent catalyst from the FCC process. The catalyst from the hot stripper is cooled by direct contact heat exchange with a source or cooled regenerated catalyst. Cooled catalyst may contact hot, stripped catalyst in the base of the stripper or downstream of the stripper. The cooled, stripped catalyst has reduced hydrogen, sulfur and coke content, improves regeneration efficiency, and reduces hydrothermal degradation of catalyst.
    Type: Grant
    Filed: April 10, 1989
    Date of Patent: March 19, 1991
    Assignee: Mobil Oil Corporation
    Inventor: Hartley Owen
  • Patent number: 5000924
    Abstract: An autoacceleration control for a catalytic hydrocracker wherein, by means of a model of the reactor, there is generated a signel predicting the reaction temperature and means under the control of the signal adjusting the rate of application of a corrective agent to thereby inhibit auto acceleration of the hydrocracker.
    Type: Grant
    Filed: January 31, 1989
    Date of Patent: March 19, 1991
    Assignee: Elsagainternational B.V.
    Inventors: Robert M. Cygnarowicz, Joseph G. Patella
  • Patent number: 4988431
    Abstract: A process for performing catalytic reactions with intensive heat of reaction, in which a reaction mixture is conducted through a catalyst bed, from which the reaction heat is removed or to which it is fed by indirect heat exchange with a heat exchange medium. The catalyst bed adjoins at least one bed of a catalytically inert material, which also is in indirect heat exchange with the heat exchange medium.
    Type: Grant
    Filed: September 16, 1987
    Date of Patent: January 29, 1991
    Assignee: Linde Aktiengesellschaft
    Inventors: Michael Heisel, Freimut Marold, Reiner Lohmueller