Solids Moving Processes Patents (Class 208/176)
  • Patent number: 4769127
    Abstract: An improved catalyst handling process and system is provided to safely, effectively, and automatically transport catalyst by remote control to and from resid hydrotreating units. The process and equipment feature computerized monorail equipment for efficiently transporting special fresh catalyst containers and spent catalyst containers. Various electronic equipment is provided to electronically detect the type of catalyst stored in the catalyst containers. Lift elevators, four-prong liftfork trucks, remote control tilting mechanisms, catalyst transfer lines, deoiler units, bridge cranes, and other transport vehicles, as described, can also be used.
    Type: Grant
    Filed: September 30, 1985
    Date of Patent: September 6, 1988
    Assignee: Amoco Corporation
    Inventors: Michael E. Erickson, Roman T. Plichta
  • Patent number: 4744887
    Abstract: A system for adding and withdrawing solids to a high pressure reactor wherein there is provided improved control of flow and concentrations of a slurry of solids in a transport oil for introducing and withdrawing solids from the reactor. In addition, there is provided for improved heating and cooling of the solids.
    Type: Grant
    Filed: December 20, 1985
    Date of Patent: May 17, 1988
    Assignee: Lummus Crest Inc.
    Inventors: Roger P. Van Driesen, William R. Adams, Mario Baldasarri, John Caspers, Harold Trimble
  • Patent number: 4738769
    Abstract: A process for converting liquid or semi-liquid hydrocarbon charges to lighter fractions comprises a first step (a) heating droplets jets of the charge introduced into a pyrolysis chamber by surrounding them with parallel jets of hot solid particles, of relatively large size, of a heat carrier material, not substantially in contact with the droplet jets, so as to maintain a temperature of 700.degree.-1600.degree. C., and introducing a gas so as to obtain a pressure from 1 to 150 bars. A second step involves (b) separating the gaseous fraction from the solid particles. Thereafter (c) at least a portion of the solid particles are heated and fed back to step (a). The gaseous fraction is (d) cooled by means of a cold gas so as to recover light hydrocarbons therefrom.
    Type: Grant
    Filed: March 24, 1983
    Date of Patent: April 19, 1988
    Assignee: Institut Francais du Petrole
    Inventors: Christian Busson, Jacques Alagy, Jean-Paul Euzen, Pierre Galtier
  • Patent number: 4621069
    Abstract: Used catalyst containing carbon and sulfur deposits is continuously regenerated by staged burnoff of the carbon and sulfur using a multiple zone treatment vessel containing thin beds of catalyst. The catalyst is exposed to successively increased temperatures and oxygen concentrations to effectively remove substantially all the carbon and sulfur deposits. The used catalyst can be that removed from hydroconversion processes, such as from H-Oil, H-Coal and fluid catalystic cracking processes, and processed in a multizone treatment vessel in combination with proper auxiliary heating equipment for continuous step-wise regeneration of the catalyst. Operating conditions of catalyst temperature, oxygen concentration of gas, and catalyst residence time in each stage of the catalyst regeneration process are carefully controlled to provide staged burnoff of carbon and sulfur deposits for superior regenerated catalyst results.
    Type: Grant
    Filed: October 3, 1983
    Date of Patent: November 4, 1986
    Assignee: HRI, Inc.
    Inventor: Partha S. Ganguli
  • Patent number: 4532026
    Abstract: A method for improving fluidization of a particulate material flowing through a fluid conductor is provided by controlling the rate of addition of fluid, such as aerating gas or steam at a plurality of spaced apart locations along the conduit. The composition and rate of flow of the fluidized particles, is controlled by positioning a source of penetrative radiation such as neutrons, gamma rays, or X-rays at any location along the conduit so that the radiation traverses the fluidized particulate material flowing therein. A radiation detector is positioned opposite the source so that radiation absorbed in the conduit by the fluidized mixture may be measured as an electrical quantity. This electrical quantity may represent the total number of gamma rays of a preselected energy interacting with a detector in a given time interval or the average number of all gamma rays generating electrical pulses by interaction with the radiation detector.
    Type: Grant
    Filed: July 6, 1982
    Date of Patent: July 30, 1985
    Assignee: Chevron Research Company
    Inventor: Bernard A. Fries
  • Patent number: 4334959
    Abstract: Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired.Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.
    Type: Grant
    Filed: April 18, 1980
    Date of Patent: June 15, 1982
    Assignee: Occidental Petroleum Corporation
    Inventor: Norman W. Green
  • Patent number: 4180455
    Abstract: There is provided an apparatus comprising rotating inner and outer concentric tubes. The inner tube provides a vapor zone and the annular space between the tubes provides a combustion zone. Hot particulate solids, such as sand, are advanced along an endless path through the vapor zone, back through the combustion zone and back into the vapor zone. In the vapor zone, oil is sprayed on the hot solids. The mixture is mixed and cascaded to obtain heat transfer from the solids to the oil, thereby generating hydrocarbon vapors and coke deposition on the solids. The vapors are removed by suction from the vapor zone. The coked solids are transferred into the combustion zone and cascaded and lifted and dropped therein to mix with added oxygen. Coke is burned to heat the solids which are then returned to the vapor zone. The vapors generated in the combustion zone are removed by suction.
    Type: Grant
    Filed: December 23, 1977
    Date of Patent: December 25, 1979
    Assignee: Alberta Oil Sands Technology and Research Authority
    Inventor: William Taciuk