With Heavy Metal Sulfide Patents (Class 208/215)
  • Patent number: 8940157
    Abstract: Hydrodesulphurization of a gasoline cut containing hydrocarbons containing at least 2 carbon atoms per molecule and having an end point of 250° C. or less, by contacting the gasoline cut with at least one catalyst having an active phase of at least one metal from group VIII and at least one metal from group VIB deposited on a support, said catalyst being prepared using a process of: i) contacting support with precursors of group VIII and group VIB metals; ii) contacting support with at least one organic compound formed from at least one cyclic oligosaccharide composed of at least 6?-(1,4)-bonded glucopyranose subunits; iii) drying to obtain at least said metal from group VIII and at least said metal from group VIB in the oxide form; then iv) sulphurization such that said active phase is in the sulphide form; i) and ii) being carried out separately, in any order, or simultaneously.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 27, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Fabrice Diehl, Elodie Devers
  • Publication number: 20140374319
    Abstract: The precursor of a hydroprocessing catalyst is made by impregnating a metal oxide component comprising at least one metal from Group 6 of the Periodic Table and at least one metal from Groups 8-10 of the Periodic Table with an amide formed from a first organic compound containing at least one amine group, and a second organic compound containing at least one carboxylic acid group. Following impregnation heat treatment follows to form in situ generated unsaturation additional to that in the two organic compounds. The catalyst precursor is sulfided to form an active, sulfide hydroprocessing catalyst.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 25, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Iulian Nistor, Partha Nandi, Javier Guzman, Doron Levin, Keith Wilson, Jacob Arie Bergweff, Ronald Jan Huiberts, Arnold Van Loevezijn
  • Patent number: 8864980
    Abstract: A process for hydrotreating a first aromatics- and sulfur-containing hydrocarbon feed using a fresh supported CoMo catalyst, includes treating the fresh catalyst under first hydrotreating conditions with a second hydrocarbon feed having a lower aromatics content than the first feed.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Iulian Nistor, John Zengel, Sabato Miseo, Roman Krycak, Teh C. Ho
  • Patent number: 8846564
    Abstract: A process for the sulfidation of a sour gas shift catalyst, wherein the temperature of the sulfidation feed stream is coordinated with the sulfur/hydrogen molar ratio in that feed stream to obtain enhanced performance of the sour gas shift catalyst. In the sulfidation process to produce a sour gas shift catalyst, the lower the sulfur to hydrogen molar ratio of the sulfidation feed stream, the lower the required temperature of the sulfidation feed stream. The sulfidation reaction can be further enhanced by increasing the pressure on the sulfidation feed stream.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 30, 2014
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Yeping Cai
  • Publication number: 20140251870
    Abstract: The invention describes a process for start-up of a hydrotreatment or hydroconversion unit carried out in the presence of hydrogen, in at least 2 catalytic beds, process in which At least one bed contains at least one presulfurized and preactivated catalyst and at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, A so-called starting feedstock, which is a hydrocarbon fraction that contains at least 0.5% by weight of sulfur, lacking olefinic compounds and not containing an added sulfur-containing compound, passes through a first catalytic bed that contains said presulfurized and preactivated catalyst and then passes through at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, And the first presulfurized and preactivated catalyst bed reaches a temperature of at least 220° C.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 11, 2014
    Inventor: EURECAT S.A.
  • Patent number: 8691083
    Abstract: A process for converting heavy sulfur-containing crude oil into lighter crude oil with lower sulfur content and lower molecular weight is provided. The process is a low-temperature process using controlled cavitation.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: April 8, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: M. Rashid Khan
  • Publication number: 20140027350
    Abstract: The invention relates to a method for hydroprocessing hydrocarbon feedstocks, said process comprising contacting a hydrocarbon feedstock under hydroprocessing conditions with a bulk catalyst composition comprising bulk metal particles that comprise at least one Group VIII non-noble metal, at least one Group VIB metal and nanoparticles. The bulk metal catalyst composition comprises bulk metal particles that may be prepared by a manufacturing process comprising the steps of combining in a reaction mixture (i) dispersible nanoparticles having a dimension of less than about 1 ?m upon being dispersed in a liquid, (ii) at least one Group VIII non-noble metal compound, (iii) at least one Group VIB metal compound, and (iv) a protic liquid; and reacting the at least one Group VIII non-noble metal compound and the at least one Group VIB metal in the presence of the nanoparticles.
    Type: Application
    Filed: December 2, 2008
    Publication date: January 30, 2014
    Inventors: Stuart L. Soled, Sabato Miseo, Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Paul Joseph Maria Lebens, Frans Lodewijk Plantenga, Bob Gerardus Oogjen, Hank JAn Tromp
  • Publication number: 20130186806
    Abstract: Preparation of a catalyst having at least one metal from group VIII, at least one metal from group VIB and at least one support; in succession: i) one of i1) contacting a pre-catalyst with metal from group VIII, metal from group VIB and support with a cyclic oligosaccharide naming at least 6 ?-(1,4)-bonded glucopyranose subunits; i2) contacting support with a solution containing a precursor of metal from group VIII, a precursor of said metal from group VIB and a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; or i3) contacting support with a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits followed by contacting solid derived therefrom with a precursor of metal from group VIII and a precursor of metal from group VIB.
    Type: Application
    Filed: June 24, 2011
    Publication date: July 25, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabrice Diehl, Elodie Devers, Karin Marchand, Bertrand Guichard
  • Publication number: 20130168292
    Abstract: Hydrodesulphurization of a gasoline cut containing hydrocarbons containing at least 2 carbon atoms per molecule and having an end point of 250° C. or less, by contacting the gasoline cut with at least one catalyst having an active phase of at least one metal from group VIII and at least one metal from group VIB deposited on a support, said catalyst being prepared using a process of: i) contacting support with precursors of group VIII and group VIB metals; ii) contacting support with at least one organic compound formed from at least one cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; iii) drying to obtain at least said metal from group VIII and at least said metal from group VIB in the oxide form; then iv) sulphurization such that said active phase is in the sulphide form; i) and ii) being carried out separately, in any order, or simultaneously.
    Type: Application
    Filed: June 24, 2011
    Publication date: July 4, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabrice Diehl, Elodie Devers
  • Publication number: 20130153467
    Abstract: A hydrodesulfurization catalyst is produced by pre-sulfurizing a hydrodesulfurization catalyst Y including a support containing silica, alumina and titania and at least one metal component supported thereon and selected from VIA and VIII groups of the periodic table (comprising at least Mo), in which the total area of the diffraction peak area indicating the crystal structure of anatase titania (101) planes and the diffraction peak area indicating the crystal structure of rutile titania (110) planes in the support, measured by X-ray diffraction analysis being ¼ or less of the alumina diffraction peak area assigned to ?-alumina (400) planes. The molybdenum is formed into molybdenum disulfide crystal disposed in layers on the support by the pre-sulfurization, and having an average length of longer than 3.5 nm and 7 nm or shorter in the plane direction and an average number of laminated layers of more than 1.0 and 1.9 or fewer.
    Type: Application
    Filed: June 21, 2011
    Publication date: June 20, 2013
    Applicants: JGC CATALYSTS AND CHEMICALS LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hiroyuki Seki, Masanori Yoshida, Shogo Tagawa, Tomoyasu Kagawa
  • Patent number: 8323479
    Abstract: A process for converting heavy sulfur-containing crude oil into lighter crude oil with lower sulfur content and lower molecular weight is provided. The process is a low-temperature process using controlled cavitation.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: December 4, 2012
    Assignee: Saudi Arabian Oil Company
    Inventor: M. Rashid Khan
  • Publication number: 20120152806
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is introduced to the ebullated bed system with the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from at least a water-soluble metal precursor and pre-sulfided prior to being introduced with the heavy oil feedstock to the reactor system, or sulfided in-situ in the ebullated bed reactor in another embodiment.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Bruce E. Reynolds, Julie Chabot, Erin Maris, Sean Solberg, Kaidong Chen
  • Publication number: 20120145600
    Abstract: This invention provides a process for forming a solution composition, which process comprises forming a primary solution by bringing together, in an aqueous medium, i) at least one phosphorus compound, ii) at least one Group VI metal compound, iii) at least one Group VIII metal compound, and iv) an additive which is a) tetraethylene glycol, b) polyethylene glycol having an average molecular weight in the range of about 200 to about 400, c) a mixture of tetraethylene glycol and polyethylene glycol having an average molecular weight in the range of about 200 to about 400, or d) a mixture of (1) tetraethylene glycol and/or polyethylene glycol having an average molecular weight in the range of about 200 to about 400 and (2) one or more of monoethylene glycol, diethylene glycol, and triethylene glycol. The molar ratio of additive to the total moles of Group VI metal and Group VIII metal is above 0.30:1, and the atomic ratio of phosphorus to Group VI metal is at least about 0.33:1.
    Type: Application
    Filed: August 24, 2010
    Publication date: June 14, 2012
    Applicant: ALBEMARLE EUROPE SPRL
    Inventors: Sona Eijsbouts-Spickova, Marcel Adriaan Jansen
  • Patent number: 8197673
    Abstract: A process for converting heavy sulfur-containing crude oil into lighter crude oil with lower sulfur content and lower molecular weight is provided. The process is a low-temperature process using controlled cavitation.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: June 12, 2012
    Assignee: Saudi Arabian Oil Company
    Inventor: M. Rashid Khan
  • Publication number: 20120111767
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
  • Patent number: 8133384
    Abstract: A method for heating materials by application of radio frequency (“RF”) energy is disclosed. For example, the disclosure concerns a method and apparatus for RF heating of petroleum ore, such as bitumen, oil sands, oil shale, tar sands, or heavy oil. Petroleum ore is mixed with a substance comprising mini-dipole susceptors such as carbon strands. A source is provided which applies RF energy to the mixture of a power and frequency sufficient to heat the mini-dipole susceptors. The RF energy is applied for a sufficient time to allow the mini-dipole susceptors to heat the mixture to an average temperature greater than about 212° F. (100° C.). Optionally, the mini-dipole susceptors can be removed after the desired average temperature has been achieved. The susceptors may provide advantages for the RF heating of hydrocarbons, such as higher temperatures (sufficient for distillation or pyrolysis), anhydrous processing, and greater speed or efficiency.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: March 13, 2012
    Assignee: Harris Corporation
    Inventor: Francis Eugene Parsche
  • Patent number: 7993513
    Abstract: The invention concerns a fixed bed process for capturing arsenic and for desulphurizing a hydrocarbon fraction comprising olefins, sulphur and arsenic, said process comprising a step a) for bringing a capture mass into contact with said hydrocarbon fraction in the presence of hydrogen, the ratio between the flow rate of hydrogen and the flow rate of the hydrocarbon fraction being in the range 50 to 800 Nm3/m3, the operating temperature being in the range 200° C. to 400° C., the operating pressure being in the range 0.2 to 5 MPa. The capture mass comprises molybdenum in a sulphurized form, nickel in a sulphurized form and at least one porous support selected from the group constituted by aluminas, silica, silica-aluminas, titanium oxide and magnesium oxide. The nickel content is in the range 10% to 28% by weight and the molybdenum content is in the range 0.3% to 2.1% by weight.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: August 9, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Florent Picard, Vincent Coupard, Elodie Devers
  • Patent number: 7988848
    Abstract: This invention relates to a process for activating a hydroprocessing catalyst and the use of activated catalyst for hydroprocessing. More particularly, hydroprocessing catalysts are activated in the presence of carbon monoxide. The catalysts that have been activated by CO treatment have improved activity.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: August 2, 2011
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Garland B. Brignac, Andrew C. Moreland, Thomas R. Halbert
  • Publication number: 20110017641
    Abstract: A hydroconversion process is disclosed, including contacting of hydrogen and a residuum hydrocarbon with a pre-conditioned and at least partially sulfided hydroconversion catalyst for converting at least a portion of the residuum hydrocarbon into at least one of a hydrotreated product and a hydrocracked product.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 27, 2011
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Avinash Gupta, Mario C. Baldassari, Ujjal K. Mukherjee
  • Publication number: 20100294699
    Abstract: Herein disclosed is a method for hydrodesulfurization, hydrodenitrogenation, hydrofinishing, amine production or a combination thereof. The method comprises forming a dispersion comprising hydrogen-containing gas bubbles dispersed in a liquid feedstock, wherein the bubbles have a mean diameter of less than about 5 ?m and wherein the feedstock comprises a mixture of petroleum-derived hydrocarbons and a naturally derived renewable oil. The feedstock comprises hydrocarbons selected from the group consisting of liquid natural gas, crude oil, crude oil fractions, gasoline, diesel, naphtha, kerosene, jet fuel, fuel oils, and combinations thereof. The method further comprises contacting the dispersion with a catalyst that is active for hydrodesulfurization, hydrodenitrogenation, hydrofinishing, amine production, or a combination thereof. The catalyst comprises homogeneous catalysts and heterogeneous catalysts. The catalyst may be utilized in fixed-bed or slurry applications.
    Type: Application
    Filed: January 18, 2010
    Publication date: November 25, 2010
    Applicant: H R D CORPORATION
    Inventors: Abbas HASSAN, Rayford G. ANTHONY, Gregory G. BORSINGER, Aziz HASSAN
  • Patent number: 7799207
    Abstract: The instant invention is directed to a process wherein a heavy oil feedstock upgrader alters its mode of operation of its full conversion hydroprocessing unit to create a custom tailored synthetic crude feedstock based upon data communicated from a target refinery and data communicated from the heavy oil feedstock upgrader. The data from the target refinery is data that represents refining process data and linear program modeling along with analysis by a refining planner to calculate the optimum “synthetic trim crude” that will optimize the effective use of the target refinery's capacity and equipment.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 21, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Paul A. Allinson, Curtis Munson
  • Patent number: 7790018
    Abstract: A process for upgrading, or refining, high sulfur containing heavy hydrocarbon crude oil to a lighter oil having a lower sulfur concentration and, hence a higher value product, is disclosed. The process includes reacting the high sulfur heavy hydrocarbon crude oil in the presence of a catalyst and low pressure hydrogen to produce a reaction product stream from which the light oil is recovered. Part of the reaction product is separated and subjected to further upgrading to produce a lower sulfur oil product for application as distillate fuels. The upgrading process also produces residual oil that is suitable for making olefins, carbon fiber or road asphalt. Catalysts utilized in the processes of the invention can include a transition metal containing compound, the metal being selected from Group V, Group VI, and Group VIII of the Periodic Table, and mixtures of these metals.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: September 7, 2010
    Assignee: Saudia Arabian Oil Company
    Inventor: Rashid M. Khan
  • Publication number: 20100219103
    Abstract: The invention is directed to a process for the purification of benzene feedstock containing contaminating sulfur compounds, more in particular thiophenic sulfur compounds, said process comprising contacting the benzene feedstock in the presence of hydrogen with a sulfided nickel adsorbent, wherein in said adsorbent part of the nickel is present in the metallic form, and subsequently contacting the said feedstock with a supported metallic copper adsorbent.
    Type: Application
    Filed: March 7, 2006
    Publication date: September 2, 2010
    Applicant: BASF CATALYSTS LLC
    Inventor: Bernard Hendrik Reesink
  • Patent number: 7771584
    Abstract: A process for slurry hydroprocessing, which involves preconditioning a slurry catalyst for activity improvement in vacuum residuum hydroprocessing units Preconditioning the slurry catalyst raises its temperature, thereby reducing shock on the catalyst slurry as it enters the hydroprocessing reactor.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: August 10, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Patent number: 7713407
    Abstract: A hydrocracking process for converting a petroleum feedstock to higher gravity, lower sulfur products, especially ultra low sulfur road diesel fuel. The process may be operated as a single-stage or two-stage hydrocracking. In each case, a hydrocracking step is followed directly by a post-treat hydrodesulfurization zone using a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals with a ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10. In the two-stage option with interstage ammonia removal, the initial hydrocracking step may be followed by hydrodesulfurization using the bulk multimetallic catalyst prior to the ammonia removal which is followed by the second hydrocracking step. A final hydrodesulfurization over the bulk multimetallic catalyst may follow. The hydrodesulfurization over the bulk multimetallic catalyst is carried out at a pressure of at least 25 barg and preferably at least 40 barg.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 11, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: William J. Tracy, III, Chuansheng Bai, Robert A. Bradway, William E. Lewis, Randolph J. Smiley
  • Patent number: 7691257
    Abstract: A process is provided for producing low sulfur diesel by hydrotreatment of suitable feed in the presence of a bulk metal catalyst. The feed is exposed under effective hydrotreating conditions to a catalyst including at least one Group VI metal, at least one Group VIII metal, and Niobium. Treatment of the feed results in production of a liquid diesel product, which is separated from a gas phase product that is also produced during the hydrotreatment.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: April 6, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, Stuart L. Soled, Sabato Miseo
  • Patent number: 7686947
    Abstract: The invention relates to a process for hydrotreatment of a hydrocarbon feedstock, comprising the step of carrying out in situ or ex situ sulfurization of a catalyst and hydrotreating the hydrocarbon feedstock in the presence of the catalyst wherein at least one sulfur compound may be present in the feedstock; and a process for the purification of a hydrocarbon feedstock, comprising hydrotreating the hydrocarbon feedstock in the presence of a catalyst after sulfurization of the catalyst and oxidizing desulfurization of the hydrotreated feedstock; wherein the catalyst comprises a refractory oxide support, at least one metal of the Group VIII and at least one metal of the Group VI, both in an oxidized form, and at least one sulphone or sulphoxide compound derived from a benzothiophene compound.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: March 30, 2010
    Assignee: Totalfinaelf France
    Inventors: Thierry Cholley, Jean-Pierre Dath
  • Patent number: 7588681
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The one or more catalyst may include an uncalcined catalyst. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 15, 2009
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 7585404
    Abstract: This application discloses a process for decomposition of ammonium sulfates found in a stream comprising ammonium sulfate and slurry catalyst in oil. The ammonium sulfate is broken down into ammonia and hydrogen sulfide gas. These gases have many uses throughout the refinery, including the preparation of slurry hydroprocessing catalyst.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 8, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Patent number: 7445702
    Abstract: Propane and/or butanes are separated from a hydrocarbon feedstock contaminated with alkyl mercaptans by fractional distillation at such a pressure that the separated overheads stream containing said propane and/or butanes is at a temperature in the range 50 to 100° C. Sufficient oxygen is introduced into the hydrocarbon feedstock to oxidise the mercaptans therein and the resultant mixture is subjected to the fractional distillation in a column including at least one bed of a catalyst capable, under the prevailing conditions, of oxidising the mercaptans to higher boiling point sulphur compounds. These higher boiling point sulphur compounds are separated as part of the liquid phase from the distillation.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: November 4, 2008
    Assignee: Johnson Matthey PLC
    Inventor: Peter Edward James Abbott
  • Publication number: 20080116113
    Abstract: A system which circulates fluidizable solid particles through a fluidized bed reactor, a fluidized bed regenerator, and a fluidized bed reducer to thereby provide for substantially continuous desulfurization of a hydrocarbon-containing fluid stream and substantially continuous regeneration of the solid particles is disclosed.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Inventors: Victor G. Hoover, Daniel T. Fernald, Gwen J. DeBrower
  • Patent number: 7238273
    Abstract: The instant invention is directed to a process for upgrading heavy oils using a slurry composition. The slurry composition is prepared by a series of steps, involving mixing a Group VIB metal oxide and aqueous ammonia to form an aqueous mixture, and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil and combining the resulting mixture with hydrogen gas and a second hydrocarbon oil having a lower viscosity than the first oil. An active catalyst composition is thereby formed.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: July 3, 2007
    Assignee: Chevron U.S.A. Inc
    Inventors: Kaidong Chen, Pak C. Leung, Bruce E. Reynolds
  • Patent number: 7005059
    Abstract: The invention relates to a catalyst for the transformation of hydrocarbon-containing feedstocks, in particular hydrotreatment, comprising at least one metal of group VIIB and at least one hydro-dehydrogenating metal (of the non-noble metals of group VIII and/or the metals of group VIB, preferably molybdenum or tungsten) and at least one porous matrix, generally of the amorphous oxide or poorly crystallized type. The catalyst also contains silicon, boron, or phosphorus. It can also optionally contain at least one halogen.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: February 28, 2006
    Assignee: Institut Francais du Petrole
    Inventors: Juliette Quartararo, Samuel Mignard, Slavie Kasztelan
  • Patent number: 6863803
    Abstract: A two stage hydrodesulfurizing process for producing low sulfur distillates. A distillate boiling range feedstock containing in excess of about 3,000 wppm sulfur is hydrodesulfurized in a first hydrodesulfurizing stage containing one or more reaction zones in the presence of hydrogen and a hydrodesulfurizing catalyst. The liquid product stream thereof is passed to a first separation stage wherein a vapor phase product stream and a liquid product stream are produced. The liquid product stream, which has a substantially lower sulfur and nitrogen content than the original feedstream is passed to a second hydrodesulfurizing stage also containing one or more reaction zones where it is reacted in the presence of hydrogen and a second hydrodesulfurizing catalyst at hydrodesulfurizing conditions. The catalyst in any one or more reaction zones is a bulk multimetallic catalyst comprised of at lease one Group VIII non-noble metal and at least two Group VIB metals.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: March 8, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, Darlene Schuette, Stuart Leon Soled, Sabato Miseo, William Lee Schuette
  • Patent number: 6783663
    Abstract: A hydroprocessing process, comprising: contacting a feedstock, at hydrotreating conditions, with a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals and wherein the ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10 to form a hydrotreated product.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: August 31, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, Darryl Patrick Klein, Zhiguo Hou, Stuart Leon Soled, Michael Charles Kerby, Gary Brice McVicker, Edward Stanley Ellis, Michele Sue Touvelle, Sabato Miseo
  • Patent number: 6758963
    Abstract: A process for preparing a lubricating oil basestock containing at least about 90% saturates. The process employs a bulk catalyst comprising at least one non-noble Group VIII metal and two Group VIB metals and wherein said metal catalyst further comprises a non-noble Group VIII molybdate in which at least a portion but less than all of molybdenum is replaced by tungsten.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: July 6, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Slyvain S. Hantzer, Kenneth Lloyd Riley
  • Patent number: 6712955
    Abstract: A slurry hydroprocessing process for upgrading a hydrocarbon feedstock containing nitrogen and sulfur using bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals wherein the ratio of Group VIB metal to Group VIII metal is about 10:1 to about 1:10.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: March 30, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Zhiguo Hou, Roby Bearden, Jr., Ferrughelli Thomas David, Sabato Miseo, Martin Leo Gorbaty, Stuart Leon Soled
  • Patent number: 6692635
    Abstract: Process for the production of gasoline with a low sulfur content that comprises at least the following two stages: a) a hydrogenation stage of the unsaturated sulfur containing compounds, b) a decomposition stage of saturated sulfur containing compounds, and optionally a preliminary stage for pretreatment of the feedstock such as selective hydrogenation of dienes.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: February 17, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Denis Uzio, Nathalie Marchal
  • Publication number: 20030168380
    Abstract: Process for the production of gasoline with a low sulfur content that comprises at least the following two stages:
    Type: Application
    Filed: February 23, 2000
    Publication date: September 11, 2003
    Inventors: Blaise Didillon, Denis Uzio, Nathalie Marchal
  • Publication number: 20020139716
    Abstract: An improved catalyst activation process for olefinic naphtha hydrodesulfurization. This process maintains the sulfur removal activity of the catalyst while reducing the olefin saturation activity.
    Type: Application
    Filed: January 10, 2002
    Publication date: October 3, 2002
    Inventors: Garland B. Brignac, Joseph J. Kociscin, Craig A. McKnight
  • Publication number: 20020043483
    Abstract: Catalyst particles are presulfided in a treatment zone separate from a hydroconversion reaction zone. The presulfided catalyst is then added to a substantially packed bed of catalyst in the hydroconversion reaction zone at reaction pressure, so that the reactor is not shut down to replace catalyst. The presulfiding process is particularly beneficial for use in moving bed reactors for heavy oil conversion.
    Type: Application
    Filed: April 20, 2001
    Publication date: April 18, 2002
    Inventors: Pak C. Leung, David E. Earls, Bruce E. Reynolds, David R. Johnson, Robert W. Bachtel, Harold J. Trimble
  • Publication number: 20020013223
    Abstract: The present invention pertains to a process for sulfiding a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an organic additive wherein the catalyst composition is first contacted with an organic liquid, followed by the catalyst being contacted with hydrogen and a sulfur-containing compound in the gaseous phase, wherein less than about 40%, preferably less than about 35%, more preferably less than about 25%, most preferably less than about 15%, of the sulfur present in the sulfided catalyst is added with the organic liquid. The process of the present invention makes it possible to use additive-containing catalysts without loss of activity in units which cannot effect gas phase start-up or are required to carry out a pressure test. The organic liquid may be a hydrocarbon with a boiling range of about 150-500° C., preferably gasoline, white spirit, diesel, gas oil, mineral lube oil, or white oil.
    Type: Application
    Filed: April 10, 2001
    Publication date: January 31, 2002
    Inventors: Sonja Eijsbouts, Frans Lodewijk Plantenga, Pierre Dufresne, Franck Labruyere
  • Publication number: 20010046939
    Abstract: The present invention pertains to a process for sulfiding a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an S-containing organic additive wherein the catalyst composition is contacted in two steps with hydrogen and a sulfur-containing compound in the gaseous phase, with the first step being performed at a temperature which is lower than that of the second step. Catalysts sulfided by the process according to the invention show a higher activity than the same catalysts which have been sulfided in a one-step process. It is preferred to carry out the process according to the invention ex situ, where it solves the problem of difficult start-up and the formation of undesirable side products in the hydrotreating unit.
    Type: Application
    Filed: April 10, 2001
    Publication date: November 29, 2001
    Inventor: Sonja Eijsbouts
  • Patent number: 6315890
    Abstract: The invention is related to a two step process wherein the first step comprises cracking an olefinic naphtha resulting in a cracked product having a diminished total concentration of olefinic species. The second step comprises hydroprocessing at least a portion of the cracked product, especially a naphtha fraction, to provide a hydroprocessed cracked product having a reduced concentration of contaminant species but without a substantial octane reduction.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: November 13, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, Gordon F. Stuntz, Garland B. Brignac, Thomas R. Halbert
  • Publication number: 20010027163
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promoters are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product. Such sorbents can also be utilized for the treatment of other sulfur-containing streams such as diesel fuels.
    Type: Application
    Filed: May 24, 2001
    Publication date: October 4, 2001
    Applicant: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6290841
    Abstract: A hydrotreating process using a catalyst prepared by a process wherein the volatile content of a metal-impregnated support is reduced in the presence of a sulfur containing compound without reaching calcining temperatures.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: September 18, 2001
    Assignee: Shell Oil Company
    Inventors: Alexei Grigorievich Gabrielov, Opinder Kishan Bhan
  • Patent number: 6231754
    Abstract: A high temperature naphtha desulfurization process with reduced olefin saturation employs a partially spent and low metals content hydrodesulfurization catalyst having from 2-40% the activity of a new catalyst. The catalytic metals preferably include Co and Mo in an atomic ratio of from 0.1 to 1. The catalyst is preferably at least partially regenerable, has less than 500 wppm of a total of one or more of nickel, iron and vanadium and preferably has no more than 12 wt. % catalytic metal calculated as the oxide. This permits selective deep desulfurization, with reduced olefin saturation, low product mercaptan levels and little or need for downstream mercaptan removal.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: May 15, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Garland B. Brignac, John P. Greeley, Thomas R. Halbert, Craig A. McKnight, Richard A. Demmin, Janet R. Clark
  • Patent number: 6071402
    Abstract: The present invention concerns a hydrorefining and/or hydrocracking catalyst for hydrocarbon feeds, comprising at least one mixed sulphide comprising sulphur, at least one group VB element, preferably niobium, and at least one group VIB element, preferably molybdenum or tungsten, more preferably molybdenum, optionally combined with a support and/or at least one group VIIA metal and/or at least one group VIII metal and/or an element selected from the group formed by S, P, B, Si.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: June 6, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Michel Danot, Nabil Allali, Valerie Gaborit, Christophe Geantet, Pavel Afanassiev, Samuel Mignard, Slavik Kasztelan
  • Patent number: 6059956
    Abstract: A process comprising incorporation of a sulphuration agent into a hydrocarbon treatment catalyst to a greater or lesser extent into the pores of the catalyst, the agent being selected from, for example, elemental sulphur and organic polysulphides, incorporation being effected in the presence of a solvent which is an olefinic or olefinic cut constituent, for example a vegetable oil, or a similar constituent, the process comprising hydrogen treatment of the catalyst at between 150.degree. C. and 700.degree. C., followed by a passivation step.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: May 9, 2000
    Assignee: Europeene de Retraitment de Catalyseurs Eurecat
    Inventor: Pierre Dufresne
  • Patent number: 5958220
    Abstract: A distributor assembly for hydroprocessing a hydrocarbon mixture of hydrogen-containing gas and liquid hydrocarbon is presented. The distributor assembly has a circular plate with a plurality of hollow risers bound thereto for distributing hydrogen-containing gas and liquid hydrocarbon through openings in the circular plate member. Each of the hollow risers has a tubular opening In its associated side. The distributor assembly is connected to an internal wall of a reactor. A method is also presented for hydroprocessing a hydrocarbon feed stream comprising flowing a mixture of hydrogen-containing gas and liquid hydrocarbon into a reactor zone to produce evolved hydrogen-containing gas; and flowing the mixture of hydrogen-containing gas and liquid hydrocarbon through a plurality of tubular zones while admixing simultaneously therewith the evolved hydrogen-containing gas.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: September 28, 1999
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Bruce E. Stangeland, Krishniah Parimi, Robert W. Bachtel