With Hydrogen Patents (Class 208/209)
  • Patent number: 10377956
    Abstract: A process for the treatment of a gasoline containing sulphur-containing compounds, olefins and diolefins: a) fractionating the gasoline into at least: a light gasoline cut LCN; a primary intermediate gasoline cut, MCN; and a primary heavy gasoline cut HHCN; b) desulphurizing the primary intermediate gasoline cut MCN alone producing an at least partially desulphurized primary intermediate gasoline cut MCN; c) desulphurizing the primary heavy gasoline cut HHCN alone producing an at least partially desulphurized primary heavy gasoline cut HHCN; d) sending, as a mixture, the partially desulphurized primary intermediate gasoline cut MCN and the partially desulphurized primary heavy gasoline cut HHCN to a separation column separating a gaseous stream containing hydrogen and H2S, a secondary intermediate gasoline cut MCN with low sulphur and mercaptans contents and a secondary heavy gasoline cut HHCN containing sulphur-containing compounds including recombinant mercaptans; e) desulphurizing the secondary heavy g
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: August 13, 2019
    Assignee: IFP Energies nouvelles
    Inventors: Adrien Gomez, Philibert Leflaive, Clementina Lopez Garcia, Annick Pucci, Marie Godard-Pithon, Jean-Luc Nocca, Guobing Zhang
  • Patent number: 10377957
    Abstract: A process for the treatment of a gasoline containing sulphur-containing compounds, olefins and diolefins, comprising the following steps: a) fractionating the gasoline in a manner such as to recover at least one intermediate gasoline cut, MCN, comprising hydrocarbons and wherein the temperature difference (?T) between the 5% and 95% by weight distillation points is less than 60° C.; b) desulphurizing the intermediate gasoline cut MCN alone and in the presence of a hydrodesulphurization catalyst and hydrogen in a manner such as to produce a partially desulphurized intermediate gasoline cut MCN; and c) fractionating, in a splitter, the at least partially desulphurized intermediate gasoline cut MCN which has not undergone catalytic treatment subsequent to step b), in a manner such as to recover an intermediate gasoline with low sulphur and mercaptans contents from the column head and a cut of hydrocarbons containing sulphur-containing compounds including mercaptans from the column bottom.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 13, 2019
    Assignee: IFP Energies nouvelles
    Inventors: Clementina Lopez Garcia, Philibert Leflaive, Annick Pucci, Jean-Luc Nocca
  • Patent number: 10253271
    Abstract: Systems and methods for refining conventional crude and heavy, corrosive, contaminant-laden carbonaceous crude (Opportunity Crude) in partially or totally separated streams or trains.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: April 9, 2019
    Assignee: Bechtel Hydrocarbon Technology Solutions, Inc.
    Inventors: Benjamin Klein, Odette Eng
  • Patent number: 9982204
    Abstract: One exemplary embodiment can be a process for producing a chemical feedstock. The process can include passing a feed to a hydrotreatment zone, passing an effluent from the hydrotreatment zone to a fractionation zone, passing a stream including one or more C5-C25 hydrocarbons from the fractionation zone to a fluid catalytic cracking zone to obtain an another stream including one or more C6-C10 hydrocarbons, and passing the another stream to an adsorption zone for removing at least one heteroatom compound having a sulfur or a nitrogen atom.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: May 29, 2018
    Assignee: UOP LLC
    Inventors: Christopher D. Gosling, Gavin P. Towler
  • Patent number: 9914891
    Abstract: Methods of maximizing diesel production are describes. The methods include providing a stream of heavy heavy naphtha; and blending the stream of heavy heavy naphtha with a diesel stream from the crude distillation zone to increase diesel production while maintaining the blended diesel stream within a specification for diesel. Various apparatus for maximizing diesel production are also described.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: March 13, 2018
    Assignee: UOP LLC
    Inventors: Jeffrey M. Bray, James P. Glavin, Daniel J. Pintar, Xin X. Zhu
  • Patent number: 9909075
    Abstract: Systems and methods for refining conventional crude and heavy, corrosive, contaminant-laden carbonaceous crude (Opportunity Crude) in partially or totally separated streams or trains.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: March 6, 2018
    Assignee: Bechtel Hydrocarbon Technology Solutions, Inc.
    Inventors: Benjamin Klein, Odette Eng
  • Patent number: 9478817
    Abstract: A fuel cell system includes: a reformer operative to generate a reformed gas by using a raw material gas; a fuel cell operative to generate electric power by using the reformed gas from the reformer and air; a desulfurizer operative to perform hydrodesulfurization of the raw material gas; a recycled gas passage through which a part of the reformed gas is supplied as a recycled gas to a raw material gas passage provided upstream of the desulfurizer; and a heat exchanger operative to cause the recycled gas flowing through the recycled gas passage to perform heat exchange with one of the raw material gas and the air.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: October 25, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Toru Sukawa, Noboru Taniguchi
  • Patent number: 9453168
    Abstract: A method and a product made by treating a sulfur-containing hydrocarbon heavy feed, e.g., heavy crude asphaltene reduction is disposed herein. The method comprises the steps of: mixing the sulfur-containing hydrocarbon heavy feed with a hydrogen donor solvent and an addled silica to form a mixture and oxidizing the sulfur in the mixture at a temperature between 50° C. and 210° C. wherein the oxidation lowers the amount sulfur in the sulfur-containing hydrocarbon heavy feed by at least 90%.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: September 27, 2016
    Assignee: Board of Regents, The University of Texas System
    Inventors: Karina Castillo, Jason Parsons, Russell R. Chianelli
  • Patent number: 9359917
    Abstract: A cost-effective solution for the disposal of heavy residue bottoms recovered from a slurry hydrocracking process that include solid heterogeneous catalyst particles is provided by their introduction into a membrane wall gasification reactor in the form of a flowable slurry to produce a synthesis gas and, optionally, subjecting the synthesis gas to a water-gas shift reaction to produce a more hydrogen-rich product stream. Process steam and electricity are produced by recovering the sensible heat values from the hot synthesis gas.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: June 7, 2016
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Jean-Pierre Ballaguet
  • Patent number: 9017547
    Abstract: The recycle gas stream containing hydrogen that is part of the feedstream to a hydroprocessing reactor is mixed with the low purity make-up hydrogen and the sour flash gases upstream of the recycle gas compressor and compressed by the recycle gas compressor. The compressed gases pass through a methane and higher (C1+) absorber to produce a sweet hydrogen recycle gas stream that is delivered to the hydroprocessing reactor at 96-98 mol % hydrogen. The process can be used to advantage in existing process facilities to increase the hydrogen partial pressure in the feedstream to the hydroprocessor where the existing recycle gas compressor is not designed for compressing the high purity hydrogen.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: April 28, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Yuv R. Mehra, Ali H. Al-Abdulai
  • Patent number: 9005430
    Abstract: The invention relates to the integration of a process for hydrotreatment of distillates (light and/or middle), that operates under a hydrogen partial pressure of 0.5 to 6.0 MPa, with a process for hydrotreatment/hydroconversion of middle and/or heavy distillates that operates at a hydrogen partial pressure that is at least 4.0 MPa higher than the hydrogen partial pressure of the process for hydrotreatment of distillates (light and/or middle). The integration resides in the use of the hydrogen-rich gas, obtained from the hydrotreatment/hydroconversion effluents, in the process for hydrotreatment of distillates (light and/or middle) and in the adjustment of the pressure level of this hydrogen-rich gas removed from the hydrotreatment/hydroconversion. This invention makes it possible to considerably reduce the net consumption of make-up hydrogen in the process for hydrotreatment of distillates (light and/or middle).
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: April 14, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Antoine Fournier, Jean Luc Nocca
  • Patent number: 8974660
    Abstract: There is provided a method for upgrading hydrocarbon compounds, in which hydrocarbon compounds synthesized in a Fisher-Tropsch synthesis reaction are fractionally distillated, and the fractionally distillated hydrocarbon compounds are hydrotreated to produce liquid fuel products. The method includes fractionally distilling heavy hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a liquid into a first middle distillate and a wax fraction, and fractionally distilling light hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a gas into a second middle distillate and a light gas fraction.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: March 10, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Yasumasa Morita, Kenichi Kawazuishi
  • Patent number: 8968552
    Abstract: An intermediate hydrogen separation and purification system is integrated with a hydrotreating and an aromatic saturation process for the production of relatively lower molecular weight products from a relatively heavy feedstock including sulfur-containing and aromatic-containing hydrocarbon compounds. The integrated process allows the processing of heavy hydrocarbon feedstock having high aromatic and high sulfur contents in a single-stage configuration and the using of noble metal catalyst in the aromatic saturation zone. The integrated process increases the overall catalytic activity and hydrogenation capability to produce superior distillate products.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Vinod Ramaseshan, Ali Hasan Al-Abdulal, Yuv Raj Mehra
  • Patent number: 8936716
    Abstract: A process is disclosed for recovering hydroprocessing effluent from a hydroprocessing unit utilizing a hot stripper and a cold stripper. A net overhead stream from the hot stripper is forwarded to the cold stripper for further stripping. The invention is particularly suitable for hydrotreating residue feed streams. The hot stripped stream may be subjected to fluid catalytic cracking. The apparatus and process eliminates the need for a fired heater in the product recovery unit.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Vedula K. Murty
  • Patent number: 8936714
    Abstract: A process is disclosed for hydrocracking a primary hydrocarbon feed and a diesel co-feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The diesel stream fed through the hydrocracking unit is pretreated to reduce sulfur and ammonia and can be upgraded with noble metal catalyst.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Paul R. Zimmerman
  • Patent number: 8932453
    Abstract: This invention relates to a hydroprocessing process with improved catalyst activity when hydroprocessing petroleum based feedstock or an oxygen containing feedstock. This invention also relates to a hydrotreating process with improved hydrodesulfurization (HDS) activity of a hydrotreating catalyst such as Co/Mo by co-feeding carbon monoxide or its precursors. Such inventive process confirms that adding a small amount of CO to H2 in a hydrotreater for a few days leads to an increase in product sulfur due to the inhibition of CO on the hydrotreating catalyst such as Co/Mo. However, it has been unexpectedly found that after the CO was removed from the hydrogen stream, product sulfur levels decreased to values below they were before CO addition which means the activity of the hydrotreating catalyst increased after the CO treatment.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 13, 2015
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Dhananjay B. Ghonasgi, Xiaochun Xu, Larry D. Swinney
  • Patent number: 8926825
    Abstract: Methods for removing sulfur from hydrocarbon streams using the sequential application of hydrodesulfurization, fractionation and oxidation. The hydrodesulfurization step is operative to remove easily-hydrogenated sulfur species, such as sulfides, disulfides and mercaptans. The resultant stream is then fractionated at a select temperature range to generate a sub-stream that is sulfur-rich with the sulfur species resistant to removal by hydrodesulfurization. The sub-stream is then isolated and subjected to an oxidative process operative to oxidize the sulfur species to sulfones or sulfoxides, which may then be removed by a variety of conventional methods, such as absorption. Alternatively, the methods may comprise using the sequential application of fractionation to generate a sulfur-rich sub-stream followed by oxidation and subsequent removal of the sulfur species present in the sub-fraction. The latter methods are ideally suited for transmix applications.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 6, 2015
    Inventor: Mark Cullen
  • Patent number: 8920631
    Abstract: The invention relates to a method for removing sulfur from crude oils using a catalytic hydrotreating process operating at moderate temperature and pressure and reduced hydrogen consumption. The process produces sweet crude oil having a sulfur content of between about 0.1 and 1.0 wt % in addition to reduced crude density. The method employs least two reactors in series, wherein the first reactor includes a hydroconversion catalyst and the second reactor includes a desulfurization catalyst.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 30, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Stephane Cyrille Kressmann, Raheel Shafi, Ali Hussain Alzaid, Esam Z. Hamad
  • Patent number: 8894844
    Abstract: The invention includes a hydrotreating method for increased CO content comprising: contacting an olefinic naphtha feedstream with a hydrogen-containing treat gas stream and a hydrotreating catalyst in a reactor under hydrotreating conditions sufficient to at least partially hydrodesulfurize and/or hydrodenitrogenate the feedstream, wherein the feedstream and the hydrogen-containing treat gas stream collectively have greater than 10 vppm CO content and/or wherein the reactor inlet sees an average CO concentration of greater than 10 vppm, wherein the hydrotreating catalyst comprises a catalyst having cobalt and molybdenum disposed on a silica-based support, and wherein the hydrotreating conditions are selected such that the catalyst has a relative HDS activity at least 10% greater than an identical catalyst under identical conditions except for a collective CO content of the feedstream and/or hydrogen-containing treat gas being <10 vppm and/or a reactor inlet CO content <10 vppm.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: April D. Ross, Thomas R. Halbert, William J. Novak, John P. Greeley
  • Patent number: 8888990
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. The second hydrocarbon stream may be a diesel stream from the hydrotreating unit. The diesel stream may be a diesel and heavier stream from a bottom of a hydrotreating fractionation column.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: November 18, 2014
    Assignee: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Patent number: 8877039
    Abstract: One exemplary embodiment can be a process for hydrocarbon conversion. The process can include providing a feed to a slurry hydrocracking zone, obtaining a hydrocarbon stream including one or more C16-C45 hydrocarbons from the at least one separator, providing another feed to a hydrocracking zone, and providing hydrogen from a three-stage compressor to the slurry hydrocracking zone and the hydrocracking zone. Moreover, the slurry hydrocracking zone may include a slurry hydrocracking reactor and at least one separator.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Mark Van Wees, Robert Haizmann
  • Patent number: 8871082
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A hydrocracking separator separates recycle gas and hydrocarbons from the hydrocracking unit to be processed with effluent from the hydrotreating unit.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 28, 2014
    Assignee: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Patent number: 8864980
    Abstract: A process for hydrotreating a first aromatics- and sulfur-containing hydrocarbon feed using a fresh supported CoMo catalyst, includes treating the fresh catalyst under first hydrotreating conditions with a second hydrocarbon feed having a lower aromatics content than the first feed.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Iulian Nistor, John Zengel, Sabato Miseo, Roman Krycak, Teh C. Ho
  • Patent number: 8846564
    Abstract: A process for the sulfidation of a sour gas shift catalyst, wherein the temperature of the sulfidation feed stream is coordinated with the sulfur/hydrogen molar ratio in that feed stream to obtain enhanced performance of the sour gas shift catalyst. In the sulfidation process to produce a sour gas shift catalyst, the lower the sulfur to hydrogen molar ratio of the sulfidation feed stream, the lower the required temperature of the sulfidation feed stream. The sulfidation reaction can be further enhanced by increasing the pressure on the sulfidation feed stream.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 30, 2014
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Yeping Cai
  • Patent number: 8828218
    Abstract: This invention provides methods for multi-stage hydroprocessing treatment of FCC naphthas for improving the overall production quantity of naphtha boiling-range materials during naphtha production for low sulfur gasolines. Of particular benefit of the present processes is the selective treating of cat naphthas to remove gums instead of undercutting the overall naphtha pool by lowering the end cutpoints of the cat naphtha fraction. This maximizes the amount of refinery cat naphtha that can be directed to the gasoline blending pool while eliminating existing processing problems in hydrodesulfurization units. The processes disclosed herein have the additional benefit of minimizing octane losses in the increased naphtha pool volume.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 9, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Peter Greeley, Timothy Lee Hilbert, William Joseph Novak, Rohit Garg
  • Patent number: 8822742
    Abstract: This invention relates to process for increasing color quality and thermal stability of fuel. Fuel that is provided as a feedstock is contacted or treated with an acidic, ion-exchange resin to increase the color quality and stability of the fuel. The process provides the benefit of substantially increasing the long term quality of both color and oxidation (JFTOT) stability.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: September 2, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Marc-Andre Poirier, Ashok Uppal
  • Patent number: 8821715
    Abstract: An electrochemical catalytic method for the hydrodesulfurization of a petroleum-based hydrocarbon stream is described involving a hydrogen-containing gas in an electrochemical cell employing Non Faradic Electrochemical Modification of Electrochemical Activity.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 2, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Ahmad D. Hammad, Esam Zaki Hamad, Mohamed Saber Mohamed Elanany
  • Patent number: 8815081
    Abstract: A continuous process to upgrade heavy crude oil for producing more valuable crude feedstock having high API gravity, low asphaltene content, and high middle distillate yield, low sulfur content, low nitrogen content, and low metal co teat without external supply of hydrogen and/or catalyst. Heavy crude oil having substantial amount of asphaltene and heavy components is mixed with highly waxy crude oil having large amount of paraffinic components and water to decompose asphaltene compounds and remove sulfur, nitrogen, and metal containing substances under supercritical conditions. Product has higher API gravity, lower asphaltene content, high middle distillate yield, lower sulfur content, lower nitrogen content, and lower metal content to be suitable for conventional petroleum refining process.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: August 26, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Patent number: 8807214
    Abstract: Heavy crude oils having high sulfur content and viscosities are upgraded by a hydrodesulfurization (HDS) process that includes microwave irradiation of a mixture of the sour heavy crude oil with at least one catalyst and optionally, one or more sensitizers, and irradiation in the presence of hydrogen. The process is also adapted to microwave treatment of hard to break emulsions, either above ground or below ground where water-in-oil emulsions are initially formed, followed by the catalytic hydrodesulfurization promoted by application of further microwave energy to the demulsified crude oil stream.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: August 19, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: M. Rashid Khan, Emad Naji Al-Shafei
  • Patent number: 8795514
    Abstract: The present invention relates to a regenerated hydrotreatment catalyst regenerated from a hydrotreatment catalyst for treating a petroleum fraction, the hydrotreatment catalyst being prepared by supporting molybdenum and at least one species selected from metals of Groups 8 to 10 of the Periodic Table on an inorganic carrier containing an aluminum oxide, wherein a residual carbon content is in the range of 0.15 mass % to 3.0 mass %, a peak intensity of a molybdenum composite metal oxide with respect to an intensity of a base peak is in the range of 0.60 to 1.10 in an X-Ray diffraction spectrum, and a peak intensity of a Mo—S bond derived from a residual sulfur peak with respect to an intensity of a base peak is in the range of 0.10 to 0.60 in a radial distribution curve obtained from an extended X-ray absorption fine structure spectrum of an X-ray absorption fine structure analysis.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: August 5, 2014
    Assignees: JX Nippon Oil & Energy Corporation, Japan Petroleum Energy Center
    Inventors: Nobuharu Kimura, Yoshimu Iwanami, Wataru Sahara, Souichirou Konno
  • Publication number: 20140209509
    Abstract: Herein disclosed is a method for hydrogenation comprising: supersaturating a hydrocarbonaceous liquid or slurry stream in a high shear device with a gas stream comprising hydrogen and optionally one or more C1-C6 hydrocarbons to form a supersaturated dispersion; and introducing the supersaturated dispersion into a reactor in the presence of a hydrogenation catalyst to generate a product stream. In some embodiments, the catalyst is present as a slurry or a fluidized or fixed bed of catalyst. In some embodiments, the hydrogenation catalyst is mixed with the hydrocarbonaceous liquid or slurry stream and the gas stream in the high shear device. In some embodiments, the method further comprises recycling at least a portion of an off gas from the reactor, recycling at least a portion of the product stream from the reactor, or both. Also disclosed herein is a system for hydrogenation.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 31, 2014
    Applicant: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Rayford G. Anthony, Gregory G. Borsinger
  • Patent number: 8784646
    Abstract: For conversion of crude oil or a heavy hydrocarbon fraction having an initial boiling point of at least 300° C., conducting a catalytic hydroconversion in a three-phase reactor operating in a boiling bed with an upward flow of liquid and gas, separating resultant effluent into a light liquid fraction boiling at less than 300° C. and a heavy liquid fraction boiling above 300° C., deasphalting the heavy liquid fraction to obtain a deasphalted hydrocarbon fraction and residual asphalt, and recycling at least one portion of the deasphalted hydrocarbon fraction upstream of the hydroconversion stage.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 22, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Eric Sanchez, Jan Verstraete
  • Patent number: 8778169
    Abstract: Conversion of a heavy hydrocarbon fraction that is obtained either from a crude oil or from the distillation of a crude oil and that has an initial boiling point of at least 300° C. by hydroconversion of at least one portion of heavy hydrocarbon fraction in the presence of hydrogen in at least one three-phase reactor containing at least one hydroconversion catalyst, separation of the effluent to obtain a light liquid fraction that boils at a temperature that is less than 300° C. and a heavy liquid fraction that boils at a temperature that is greater than 300° C., and a deasphalting of at least one portion of the heavy liquid fraction that boils at a temperature that is greater than 300° C.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 15, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Eric Sanchez, Jan Verstraete
  • Patent number: 8764970
    Abstract: The present invention relates to quenching, during hydroprocessing of a hydrocarbon feed stream. More particularly, the present invention provides for quenching in hydroprocessing of a hydrocarbon feed stream through a hydroprocessing vessel. Liquid quenches (from high pressure hot separator) were installed to assist in cooling the reactor inter-bed, and to maintain good liquid irrigation of the catalyst. The soluble hydrogen in the stream, kinetically active and available for immediate reaction, is the final piece of the puzzle for why this unit runs so well.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 1, 2014
    Assignee: Marathon Petroleum Company LP
    Inventor: Howard F. Moore
  • Publication number: 20140174987
    Abstract: The present invention relates to a process for handling product fluid streams which are obtained in the catalytic hydrogenation of liquid feeds in laboratory catalysis apparatuses. The liquid feeds are preferably hydrocarbons comprising sulfur- and nitrogen-comprising compounds as impurities. The hydrogenation serves to convert the impurities into hydrogen sulfide and ammonia which in this form can be readily separated off from the other constituents of the liquid feed. The product fluid streams are contacted with an inert gas stream, with the flow rate of the inert gas being a multiple of the flow rate of the product fluid stream. The formation of deposits in lines of the region on the outlet side of the reaction space can be effectively prevented by means of the process of the invention.
    Type: Application
    Filed: July 30, 2012
    Publication date: June 26, 2014
    Applicant: hte Aktiengesellschaft the high throughput experimentation company
    Inventors: Josef Find, Alfred Haas, Armin Brenner
  • Publication number: 20140174983
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 26, 2014
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Patent number: 8753501
    Abstract: A process and apparatus are disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Paul R. Zimmerman, Andrew P. Wieber
  • Patent number: 8753504
    Abstract: A system and process are disclosed for removing elemental sulfur compounds from hydro-desulfurization (HDS) treated hydrocarbon products including liquid hydrocarbon fuels. Low (sub-ppm) concentrations of sulfur remain in the hydrocarbons, providing, e.g., fuel products suitable for use in various modalities including, e.g., jet fuels and fuel cell Auxiliary Power Units (APUs).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 17, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Gregory A. Whyatt, Liyu Li
  • Patent number: 8747656
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: June 10, 2014
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Stangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Dwayne Litt
  • Patent number: 8747653
    Abstract: A process is disclosed for hydroprocessing two hydrocarbon streams at two different pressures. A hydrogen stream is compressed and split. A first split compressed stream is further compressed to feed a first hydroprocessing unit that requires higher pressure for operation. A second split compressed stream is fed to a second hydroprocessing unit that requires lower pressure. Recycle hydrogen from the second hydroprocessing unit is recycled back to the compression section.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventor: Andrew P. Wieber
  • Publication number: 20140148628
    Abstract: A process is disclosed for treating a hydrocarbon stream including flowing the hydrocarbon stream through a hydrocarbon treating vessel, heating a portion of the hydrocarbon treating vessel to a predetermined temperature and for a predetermined amount of time and controlling sensitization of the portion of the interior surface of the hydrocarbon treating vessel.
    Type: Application
    Filed: September 30, 2011
    Publication date: May 29, 2014
    Inventors: Steven A. Bradley, Benjamin L. Tiemens, Mark W. Mucek, Shixue Wen
  • Patent number: 8709238
    Abstract: Crude tall oil is subjected to a distillation process that substantially removes impurities. The process produces a combined pitch and a distillate of free fatty acids and rosin acids from two vacuum columns. The distillate stream is amenable to further downstream hydroprocessing.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: April 29, 2014
    Assignee: UOP LLC
    Inventor: John A. Petri
  • Patent number: 8702973
    Abstract: One exemplary embodiment can be a process for upgrading one or more hydrocarbons boiling in a naphtha range including less than about 5%, by weight, one or more alkenes and about 2,000-about 5,000 wppm, S, comprised in one or more sulfur-containing compounds, based on the weight of the one or more hydrocarbons. The process can include contacting the one or more hydrocarbons with a catalyst. The catalyst may include about 0.1-about 10%, by weight, NiO, about 5-about 50%, by weight, MoO3, and about 0.1-about 10%, by weight, P, with the balance of the catalyst comprising Al2O3. The process can obtain an upgraded one or more hydrocarbons having a thiol concentration of no more than about 20 wppm, S, based on the sulfur comprised in one or more thiol compounds divided by the weight of the upgraded one or more hydrocarbons.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 22, 2014
    Assignee: UOP LLC
    Inventors: Colleen Costello, Suheil F. Abdo, Keith Adrian Holder, Ashley James Austin, Willie J. Morrissette, Jr.
  • Patent number: 8696885
    Abstract: A process is disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit shares the same recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 15, 2014
    Assignee: UOP LLC
    Inventors: Andrew P. Wieber, Paul R. Zimmerman
  • Patent number: 8691078
    Abstract: An apparatus and process is disclosed for hydroprocessing hydrocarbon feed in a hydroprocessing unit and hydrotreating a second hydrocarbon. A warm separator sends vaporous hydrotreating effluent to be flashed with liquid hydroprocessing effluent to produce a vapor flash overhead that can be recycled to the hydrotreating unit to provide hydrogen requirements.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventors: Andrew P. Wieber, Joao J. da Silva Ferreira Alves
  • Patent number: 8691082
    Abstract: Two-stage hydroprocessing uses a common dividing wall fractionator. Hydroprocessed effluents from both stages of hydroprocessing are fed to opposite sides of the dividing wall.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventors: John A. Petri, Vedula K. Murty, Peter Kokayeff
  • Patent number: 8673132
    Abstract: The present invention relates to a process for regeneration of alkali metal salt reagent used in desulfurization of heavy oil feedstreams. In particular, the present invention relates to a process utilizing potassium hydroxide as an external supply reagent to a heavy oil conversion process and in-situ conversion of the spent reactants utilized in such process into a potassium sulfide reagent for reintroduction into the heavy oil conversion process.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, William C. Baird, Jr., Walter D. Vann, Jorge L. Soto
  • Patent number: 8663458
    Abstract: A single stage process for treating pyrolysis gasoline containing acetylene, diolefins, sulfur compounds and nitrogen compounds to react a sufficient amount of said acetylene and diolefins with hydrogen to produce saturated products and hydrogen sulfide to provide a pyrolysis gasoline product suitably for use as gasoline blending stock comprising: feeding pyrolysis gasoline and hydrogen at a mol ratio of hydrogen to pyrolysis gasoline of at least 0.5:1 and preferably in the range of 1:1 to 3:1 to a hydrodesulfurization zone containing a hydrodesulfurization catalyst such as cobalt/molybdenum under vapor phase conditions at a pressure in the range of 200 to 500 psig at a temperature in the range of 550° F. to 850° F. The operating temperature is at least above the dew point of the mixture of pyrolysis gasoline and hydrogen, preferably in a range 50 to 400° F. above said dew point.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: March 4, 2014
    Assignee: Chemical Process and Production, Inc
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 8658027
    Abstract: A system and process for desulfurizing a hydrocarbon feed stream containing organosulfur compounds is provided. In general, the system includes a conventional hydrotreating unit through the high pressure cold or hot separator. Aqueous oxidant and an oxidative catalyst are mixed with the hydrotreated hydrocarbon effluent from the high pressure cold or hot separator, and oxidative desulfurization reactions occur in the low pressure separation zone, thereby minimizing or eliminating the requirement of additional oxidative desulfurization reactors.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: February 25, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Abdennour Bourane
  • Publication number: 20140048448
    Abstract: Methods are provided for hydrotreating high nitrogen feeds with improved results for nitrogen removal, aromatic saturation, and/or sulfur removal. The method includes hydrotreating the feed with a supported hydrotreating catalyst followed by a bulk metal catalyst, the hydrotreated effluent of which can be suitable for use as a feed to an FCC reactor.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 20, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: William J. NOVAK, Kathryn Y. COLE, Patrick L. HANKS, Timothy L. HILBERT