With Group Viii Metal Or Compound Patents (Class 208/217)
  • Publication number: 20030221993
    Abstract: A method for increasing the operational life-time of a pyrolysis gasoline hydrotreating process using a supported Group VIII metal catalyst by employing a catalyst having a significantly increased total surface area.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 4, 2003
    Inventor: Mark P. Kaminsky
  • Publication number: 20030221994
    Abstract: Naphtha hydrodesulfurization selectivity is increased by reducing the amount of COX (CO plus ½ CO2) in the hydrodesulfurization reaction zone to less than 100 vppm. While this is useful for non-selective hydrodesulfurization, it is particularly useful for selectively desulfurizing an olefin-containing naphtha without octane loss due to olefin saturation by hydrogenation. The COX reduction is achieved by removing COX from the treat gas before it is passed into the reaction zone.
    Type: Application
    Filed: May 1, 2003
    Publication date: December 4, 2003
    Inventors: Edward S. Ellis, Thomas R. Halbert, Garland B. Brignac, John P. Greeley, Richard A. Demmin, Theresa A. Lalain
  • Patent number: 6656349
    Abstract: The invention relates to a spherical catalyst composition comprising a Group VI metal component and optionally a Group VIII metal component on a carrier, which catalyst has a particle size of 0.5-7 mm, a total pore volume of 0.5-1.3 ml/g, an average pore diameter of 15-30 nm, and a % PV(>100 nm) of 2-30%, there being substantially no difference in density between the core region of the carrier particles and their surface regions. The catalyst is particularly suitable for use in non-fixed bed processes for the hydroprocessing of heavy hydrocarbon feeds. It has high hydrodesulfurization and hydrodemetallization activity in combination with a high abrasion resistance.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: December 2, 2003
    Assignees: Nippon Ketjen Co., Ltd., Akzo Nobel N.V.
    Inventors: Katsuhisa Fujita, Masafumi Shimowake, Tetsuro Kamo
  • Publication number: 20030217952
    Abstract: Naphtha is selectively hydrodesulfurized in the presence of a sulfided, treated catalyst comprising at least a Group VIB metal catalytic component, to produce sulfur-reduced naphtha with reduced olefin loss due to saturation. The catalyst is treated with hydrogen, a selectively deactivating agent which deactivates its hydrogenation activity, and a protective agent which preserves its hydrodesulfurization activity during the treatment.
    Type: Application
    Filed: February 27, 2003
    Publication date: November 27, 2003
    Inventors: Garland B. Brignac, Michele S. Touvelle, Randolph J. Smiley
  • Publication number: 20030217951
    Abstract: Process for desulfurization of a cut containing hydrocarbons comprising sulfur compounds and olefinic compounds comprising at least the following successive steps: a first desulfurization in the presence of hydrogen and a hydrodesulfurization catalyst under conditions leading to a desulfurization rate of said cut strictly higher than 90%; separation of most of the hydrogen sulfide from the effluents resulting from the first desulfurization; a second desulfurization of the effluents, with the hydrogen sulfide removed, resulting from the separation step, in the presence of hydrogen and a hydrodesulfurization catalyst, and under conditions leading to a desulfurization rate of said effluents less than that of the first desulfurization.
    Type: Application
    Filed: March 31, 2003
    Publication date: November 27, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Nathalie Marchal-George, Florent Picard, Denis Uzio
  • Patent number: 6652738
    Abstract: The invention pertains to a process for the hydroprocessing of a hydrocarbon feedstock wherein said feedstock is contacted at hydroprocessing conditions with a catalyst composition which comprises bulk catalyst particles which comprise at least one Group VIII non-noble metal and at least two Group VIB metals. The Group VIII and Group VIB metals comprise from about 50 wt. % to about 100 wt. %, calculated as oxides, of the total weight of the bulk catalyst particles. The metals are present in the catalyst composition in their oxidic and/or sulfidic state. The catalyst composition has an X-ray diffraction pattern in which the characteristic full width at half maximum does not exceed 2.5° when the Group VIB metals are molybdenum, tungsten, and, optionally, chromium, or does not exceed 4.0° when the Group VIB metals are molybdenum and chromium or tungsten and chromium.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: November 25, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Harmannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6649043
    Abstract: A process to regenerate metal oxide desulfurization sorbents using an oxidizing and reducing atmosphere. The sorbents may be mono- or multi-metallic in nature, and preferably comprise Cu, Ni and/or Co. If desired, secondary metals may be incorporated to increase regeneration efficiency and/or capacity. Other additives may be used to suppress hydrocarbon cracking. A sorbent containing Zn may be combined with an Fe, Co, Ni, Mo, or W catalyst or a noble metal catalyst and combinations thereof.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: November 18, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jingguang G. Chen, Leo D. Brown, William C. Baird, Jr., Gary B. McVicker, Edward S. Ellis, Michele S. Touvelle, Darryl P. Klein, David E. W. Vaughan
  • Patent number: 6645371
    Abstract: A process is described that can limit pressure drops during a catalytic hydrotreatment process carried out in a fixed bed reactor. The liquid feed and gaseous reactant are injected into the reactor either side of the bed and flow as a counter-current. Pressure drops are limited by homogeneously mixing solid catalytic and/or inert particles of different diameters in the bed.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: November 11, 2003
    Assignee: Institut Francais Du Petrole
    Inventors: Daniel Vuillemot, Laurence Carpot, Thierry Chapus, Philippe Rocher, Frédéric Morel
  • Publication number: 20030205504
    Abstract: A method for processing a gasoline range hydrocarbon stream wherein a single reactor/distillation tower stream is fractionated into a light fraction and a heavy fraction, the light fraction is hydrodesulfurized, the heavy fraction is optionally hydrocracked and then hydrodesulfurized, and the light and heavy fractions are separately recovered.
    Type: Application
    Filed: May 2, 2002
    Publication date: November 6, 2003
    Inventors: Mark P. Kaminsky, Kenneth M. Webber
  • Publication number: 20030205505
    Abstract: A hydroconversion catalyst for hydrodesulfurizing feedstock while preserving octane number of the feedstock includes a support having a mixture of zeolite and alumina, the zeolite having an Si/Al ratio of between about 1 and about 20, and an active phase on the support and including a first metal selected from group 6 of the periodic table of elements, a second metal selected from the group consisting of group 8, group 9 and group 10 of the period table of elements and a third element selected from group 15 of the periodic table of elements. A hydroconversion process is also disclosed.
    Type: Application
    Filed: April 30, 2003
    Publication date: November 6, 2003
    Inventors: Jorge Tejada, Nelson P. Martinez, Jose Antonio Perez, Leonardo Escalante, Jose M. Larrauri, Jose A. Salazar
  • Publication number: 20030188991
    Abstract: A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2&thgr;.
    Type: Application
    Filed: December 6, 2002
    Publication date: October 9, 2003
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Publication number: 20030183556
    Abstract: A process for the selective hydrodesulfurization of naphtha streams containing sulfur and olefins. A substantially olefins-free naphtha stream is blended with an olefins/sulfur-containing naphtha stream and hydrodesulfurized resulting in the substantial removal of sulfur without excessive olefin saturation.
    Type: Application
    Filed: February 24, 2003
    Publication date: October 2, 2003
    Inventors: Thomas R. Halbert, John P. Greeley, Brij N. Gupta, Garland B. Brignac, Chu Siang Loo
  • Publication number: 20030178343
    Abstract: A process to regenerate a spent hydrogen sulfide sorbent comprised of a sorbent metal selected from Fe, Ni, Co, and Cu on a refractory oxide support using hydrogen gas. The sorbent metal component may be mono- or multi-metallic in nature, and preferably comprise Ni and/or Co. If desired, secondary metals may be incorporated to increase regeneration efficiency and/or capacity. Other additives suppress hydrocarbon cracking.
    Type: Application
    Filed: January 6, 2003
    Publication date: September 25, 2003
    Inventors: Jingguang G. Chen, Leo D. Brown, William C. Baird, Gary B. McVicker, Edward S. Ellis, Michele S. Touvelle, Darryl P. Klein, David E. W. Vaughan
  • Publication number: 20030178344
    Abstract: The present invention pertains to a process for the hydroprocessing of hydrocarbon feedstocks wherein said hydrocarbon feedstocks are contacted, at hydroprocessing conditions, with a catalyst composition comprising at least one Group VIII non-noble metal component and at least two Group VIB metal components. The catalyst composition further comprises at least about 0.01 mole of an organic oxygen-containing additive per mole of the total of Group VIB metals and Group VIII non-noble metals present in the catalyst composition. The total of the Group VIII and Group VIB metal components, calculated as oxides, make up at least about 50 wt. % of the catalyst composition, calculated on dry weight.
    Type: Application
    Filed: April 15, 2003
    Publication date: September 25, 2003
    Inventors: Frans Lodewijk Plantenga, Sonja Eijsbouts, Marinus Bruce Cerfontain
  • Patent number: 6623628
    Abstract: A process for hydrotreating a hydrocarbon feed includes passing the feed into a hydrodesulphurization zone along with hydrogen, where a partially desulphurized effluent is sent to a stripping zone in which it is purified by at least one hydrogen-containing gas under conditions in which a gaseous stripping effluent containing hydrogen and hydrogen sulphide is formed along with a liquid effluent containing substantially no hydrogen sulphide.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: September 23, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Charles Bronner, Gérald Heinrich, Cécile Plain, Laurence Carpot
  • Publication number: 20030173256
    Abstract: A catalyst for hydrotreating gas oil, which comprises an inorganic oxide support having provided thereon: at least one selected from metals in the Group 6 of the periodic table at from 10 to 30% by weight, at least one selected from metals in the Group 8 of the periodic table at from 1 to 15% by weight, phosphorus at from 1.5 to 6% by weight, and carbon at from 2 to 14% by weight, each in terms of a respective oxide amount based on the catalyst, wherein the catalyst has a specific surface area of from 220 to 300 m2/g, a pore volume of from 0.35 to 0.6 ml/g, and an average pore diameter of about from 65 to 95 Å; a process for producing the catalyst; and a method for hydrotreating gas oil, which comprises subjecting a gas oil fraction to a catalytic reaction in the presence of the catalyst under conditions at a hydrogen partial pressure of from 3 to 8 MPa, a temperature of from 300 to 420° C., and a liquid hourly space velocity of from 0.3 to 5 hr−1.
    Type: Application
    Filed: February 11, 2003
    Publication date: September 18, 2003
    Inventors: Takashi Fujikawa, Takayuki Osaki, Hiroshi Kimura, Hirofumi Mizuguchi, Minoru Hashimoto, Hiroyasu Tagami, Masahiro Kato
  • Publication number: 20030173252
    Abstract: The invention concerns a catalyst for the hydrogenation, hydroisomerisation, hydrocracking and/or hydrodesulfurisation, of hydrocarbon feedstocks, said catalyst consisting of a substantially binder free bead type support material obtained through a sol-gel method, and a catalytically active component selected from precious metals, the support comprising 5 to 50 wt. % of at least one molecular sieve material and 50 to 95 wt. % of silica-alumina.
    Type: Application
    Filed: February 5, 2003
    Publication date: September 18, 2003
    Inventor: Marius Vaarkamp
  • Patent number: 6620313
    Abstract: Hydroconversion process of petroleum and chemical feedstocks using bulk Group VIII/Group VIB catalysts. Preferred catalysts include those comprised of Ni—Mo—W.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: September 16, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Richard Alan Demmin, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Publication number: 20030168380
    Abstract: Process for the production of gasoline with a low sulfur content that comprises at least the following two stages:
    Type: Application
    Filed: February 23, 2000
    Publication date: September 11, 2003
    Inventors: Blaise Didillon, Denis Uzio, Nathalie Marchal
  • Patent number: 6596157
    Abstract: The invention relates to a method and dual reactor system for hydrotreating a wide cut cat naphtha stream comprising heavy cat naphtha (HCN) and intermediate cat naphtha (ICN). Accordingly, a HCN fraction is hydrotreated under non-selective hydrotreating conditions and an ICN fraction is hydrotreated under selective hydrotreating conditions. The hydrotreated HCN and ICN effluents may be conducted to heat exchangers to pre-heat the ICN feed, obviating the need for a furnace.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: July 22, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Brij Gupta, John P. Greeley, Thomas R. Halbert
  • Patent number: 6589418
    Abstract: An improved catalyst activation process for olefinic naphtha hydrodesulfurization. This process maintains the sulfur removal activity of the catalyst while reducing the olefin saturation activity.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: July 8, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Joseph J. Kociscin, Craig A. McKnight
  • Publication number: 20030125198
    Abstract: Alumina having a pore structure characterized by the absence of macropores, no more than 5% of the total pore volume in pores greater than 350 Å, a high pore volume (greater than 0.8 cc/g measured by mercury intrusion) and a bi-modal pore volume distribution character, where the two modes are separated by 10 to 200 Å, and the primary pore mode is larger than the median pore diameter (MPD), calculated either by volume or by surface area, the MPD by volume being itself larger than the MPD by surface area. Also provided are catalysts made from and processes using such alumina.
    Type: Application
    Filed: December 17, 2002
    Publication date: July 3, 2003
    Inventors: Josiane M. Ginestra, Russell C. Ackerman, Christain G. Michel
  • Publication number: 20030116473
    Abstract: A method for hydrodesulfurization which comprises introducing partially desulfurized oil, which is a light oil fraction containing sulfur, and hydrogen to a reactor packed with a hydrodesulfurization catalyst, wherein the partially desulfurized oil has a sulfur content of 2000 ppm or less and preferably a polycyclic aromatic compound content of 3 wt % or more, wherein the amount of hydrogen sulfide contained in the partially desulfurized oil and hydrogen introduced to the reactor is 1.5 mol % or less with respect to that of the hydrogen introduced, and wherein the hydrodesulfurization catalyst comprises a carrier comprising a porous inorganic oxide and also comprises tungsten and one of nickel and cobalt as a metal component supported on the carrier. The method allows the production of a desulfurized light oil having a sulfur content of 50 ppm or less without the use of a special crude oil, and under operation conditions providing high productivity.
    Type: Application
    Filed: September 30, 2002
    Publication date: June 26, 2003
    Inventors: Ryutaro Koide, Hideo Tanaka, Yasuhito Goto
  • Patent number: 6582590
    Abstract: Sulfur content of distillate feedstock, which is greater than 3,000 wppm, is reduced using multi-stage hydrodesulfurization by reacting the feestream in stages with reaction zone(s) containing bulk multimetallic catalyst comprised of Group VIII non-noble metal(s) and at least two group VIB metals. The ratio of Group VIB to Group VIII non-noble metals is 10:1 to 1:10.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: June 24, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, Darryl Patrick Klein, Zhiguo Hou, Stuart Leon Soled, Michael Charles Kerby, Gary Brice McVicker, Edward Stanley Ellis, Michele Sue Touvelle, Sabato Miseo
  • Publication number: 20030106839
    Abstract: A process for the selective hydrodesulfurization of olefinic naphtha streams containing a substantial amount of organically bound sulfur and olefins. The olefinic naphtha stream is selectively hydrodesulfurized in a first sulfur removal stage and resulting product stream, which contains hydrogen sulfide and organosulfur is fractionated at a temperature to produce a light fraction containing less than about 100 wppm organically bound sulfur and a heavy fraction containing greater than about 100 wppm organically bound sulfur. The light fraction is stripped of at least a portion ofits hydrogen sulfide and can be collected or passed to gasoline blending. The heavy fraction is passed to a second sulfur removal stage wherein at least a portion of any remaining organically bound sulfur is removed.
    Type: Application
    Filed: October 18, 2002
    Publication date: June 12, 2003
    Inventors: John C. Coker, Garland B. Brignac, Thomas R. Halbert, John G. Matragrano, Brij Gupta, Robert C. Welch, William E. Winter
  • Patent number: 6576121
    Abstract: Process for the catalytic hydrotreating of a hydrocarbon feed stock containing silicon compounds by contacting the feed stock in presence of hydrogen with a hydrotreating catalyst at conditions to be effective in the hydrotreating of the feed stock, the improvement of which comprises the step of moisturising the hydrotreating catalyst with an amount of water added to the feed stock between 0.01 and 10 vol %.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: June 10, 2003
    Assignee: Haldor Topsoe A/S
    Inventors: Per Zeuthen, Lars Pleth Nielsen, Steffen Vissing Christensen, Joachim Jacobsen
  • Publication number: 20030102254
    Abstract: The invention pertains to a process for the hydroprocessing of a hydrocarbon feedstock wherein said feedstock is contacted at hydroprocessing conditions with a catalyst composition which comprises bulk catalyst particles which comprise at least one Group VIII non-noble metal and at least two Group VIB metals. The Group VIII and Group VIB metals comprise from about 50 wt. % to about 100 wt. %, calculated as oxides, of the total weight of the bulk catalyst particles. The metals are present in the catalyst composition in their oxidic and/or sulfidic state. The catalyst composition has an X-ray diffraction pattern in which the characteristic full width at half maximum does not exceed 2.5° when the Group VIB metals are molybdenum, tungsten, and, optionally, chromium, or does not exceed 4.0° when the Group VIB metals are molybdenum and chromium or tungsten and chromium.
    Type: Application
    Filed: January 16, 2003
    Publication date: June 5, 2003
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Harmannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6569318
    Abstract: The invention relates to a process for conversion of hydrocarbons in the presence of at least one catalyst with controlled acidity, characterized in that the level of activity of said catalyst in isomerization of the cyclohexane is less than 0.10 and/or in that the ratio of toluene hydrogenation activity to the cyclohexane isomerization activity is greater than 10.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: May 27, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Stéphane Kressmann, Isabelle Guibard, Slavik Kasztelan, Frédéric Morel
  • Publication number: 20030094399
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification and fractionation to remove the mercaptans the light fraction and then to simultaneous hydrodesulfurization and splitting of the remainder into an intermediate boiling range naphtha and a heavy boiling range naphtha. The three boiling range naphthas are treated separately according to the amount of sulfur in each cut and the end use of each fraction.
    Type: Application
    Filed: July 10, 2002
    Publication date: May 22, 2003
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: Gary G. Podrebarac
  • Publication number: 20030070965
    Abstract: A process for the deep desulfurization of diesel range feedstock to produce low sulfur diesel fuels by contacting a sulfur containing diesel range feedstock with a cobalt molybdenum (CoMo) catalyst followed by a nickel containing catalyst, such as nickel molybdenum (NiMo), nickel tungsten (NiW), nickel tungsten molybdenum (NiWMo) and nickel cobalt molybdenum (NiCoMo), under a combination of elevated temperature and superatmospheric hydrogen pressure to convert the sulfur in the sulfur-containing feedstock to inorganic sulfur compounds and produce a desulfurized product having a sulfur content below SO ppm by weight. The process can include a dual catalyst system, wherein the sulfur containing diesel range feedstock is desulfurized with a cobalt molybdenum (CoMo) catalyst and then the sulfur compounds can optionally be stripped from the stream prior to contacting with the nickel containing catalyst. The preferred desulfurized product contains less than 11 wt.
    Type: Application
    Filed: September 4, 2002
    Publication date: April 17, 2003
    Inventors: Stuart S. Shih, Peter J. Owens, Jolie A. Rhinehart
  • Publication number: 20030070966
    Abstract: A sorbent composition comprising a support and a reduced-valence noble metal can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 17, 2003
    Inventor: Gyanesh P. Khare
  • Patent number: 6547957
    Abstract: A catalyst assisted upgrading process for treating a hydrocarbon oil feed to reduce total acid number (TAN) and increase API gravity is provided herein which employs a hydroprocessing catalyst based on a catalyst support, e.g., alumina. The process includes blending the supported hydroprocessing catalyst with the hydrocarbon oil feed to form a slurry which is then treated with hydrogen at moderate temperature and pressure in, for example, a tubular reactor. Deposit formation is thus minimized or avoided.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: April 15, 2003
    Assignee: Texaco, Inc.
    Inventors: Chakka Sudhakar, Mark Timothy Caspary, Stephen Jude DeCanio
  • Publication number: 20030062292
    Abstract: A four stage process for producing high quality white oils, particularly food or medicinal grade mineral oils from mineral oil distillates. The first reaction stage employs a sulfur resistant hydrotreating catalyst and produces a product suitable for use as a high quality lubricating oil base stock. The second reaction stage employs a hydrogenation/hydrodesulfurization catalyst. The third stage employs a reduced metal sulfur sorbent producing a product stream which is low in aromatics and which has substantially “nil” sulfur. The final reaction stage employs a selective hydrogenation catalyst that produces a product suitable as a food or medicinal grade white oil.
    Type: Application
    Filed: February 27, 2002
    Publication date: April 3, 2003
    Inventors: Sylvain S. Hantzer, Jean Willem Beeckman, Stephen J. McCarthy, Arthur Paul Werner
  • Patent number: 6540908
    Abstract: The invention pertains to a process for preparing a sulfided hydrotreating catalyst in which a hydrotreating catalyst is subjected to a sulfidation step, wherein the hydrotreating catalyst comprises a carrier comprising at least 50 wt % of alumina, the catalyst comprising at least one hydrogenation metal component and an organic compound comprising at least one covalently bonded nitrogen atom and at least one carbonyl moiety, the molar ratio between the organic compound and the total hydrogenation metal content being at least 0.01:1. The invention further pertains to the use of said hydrotreating catalyst in hydrotreating a hydrocarbon feed, in particular to achieve hydrodenitrogenation, (deep) hydrodesulfurization, or hydrodearomatization.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: April 1, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Sonja Eijsbouts, Marcel Adriaan Jansen
  • Patent number: 6537442
    Abstract: The invention pertains to a cogel comprising oxidic compounds of one or more trivalent metallic elements selected from the group of aluminum, borium, gallium, chromium, iron, cobalt, manganese, vanadium, molybdenum, tungsten, indium, rhodium, scandium, or mixtures thereof, oxidic compounds of one or more tetravalent metallic elements selected from the group of silicon, titanium, germanium, or mixtures thereof and oxidic compounds of one or more divalent metallic elements with at least one divalent metallic element not selected from Group VIII non-noble metallic elements, wherein a) the cogel is essentially X-ray amorphous apart from saponite, if present; b) the saponite content CA of the cogel is less than 60%; c) the cogel has a surface area of at least 400 m2/g; d) the cogel has a cation-exchange capacity of at least 0.5 wt %; and e) the total of sodium and potassium contained in the cogel amounts to less than 0.5 wt %, based on the total weight of the cogel.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: March 25, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Jan Nieman, Stephan Janbroers
  • Publication number: 20030047489
    Abstract: A sorbent composition comprising a support and reduced-valence iron can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.
    Type: Application
    Filed: September 7, 2001
    Publication date: March 13, 2003
    Inventor: Gyanesh P. Khare
  • Patent number: 6531051
    Abstract: The invention relates to a catalyst that contains at least one matrix, at least one zeolite and at least one element that is deposited on the catalyst or contained in the matrix and selected from the group that is formed by the elements of groups VIB, VIII and VB, and at least one promoter element (phosphorus, boron, silicon), in which the zeolite contains in its porous network at least one element of group VB. The invention also relates to the use of this catalyst for the transformation of hydrocarbon fractions, in particular hydrorefining and hydrocracking.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: March 11, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Nathalie Marchal-George, Tivadar Cseri, Pierre Leyrit, Philippe Dascotte, Elisabeth Rosenberg
  • Patent number: 6531054
    Abstract: The invention pertains to a process for reducing the sulphur content of a hydrocarbon feedstock to a value of less than 500 ppm, which process comprises contacting a feedstock with a 95% boiling point of 450° C. or less and a sulphur content of 0.1 wt. % or more in the presence of hydrogen under conditions of elevated temperature and pressure with a first catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an oxidic carrier, after which at least part of the effluent from the first catalyst is led to a second catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an oxidic carrier which comprises 1 to 15 wt. % of silica, calculated on the weight of the catalyst.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: March 11, 2003
    Assignee: AKZO Nobel, N.V.
    Inventors: Leendert Arie Gerritsen, Seck Leong Lee
  • Publication number: 20030042172
    Abstract: A method of desulphurizing and cracking of hydrocarbons to produce fuel oil. The fuel oil is first admixed with a sensitizer and solid source of hydrogen and, preferably, with a catalyst and a desulphurizing agent. The admixture is then subjected to microwave energy. The method acts to reduce the sulphur content of the fuel oil and cracks the fuel oil into a useful source of clean, burnable energy.
    Type: Application
    Filed: April 3, 2002
    Publication date: March 6, 2003
    Inventors: Viktor Sharivker, Travis Honeycutt
  • Patent number: 6524994
    Abstract: A nickel catalyst comprising 0.1 to 12.5 wt. % of at least one structural promoter, selected from the group of oxides of metals and metalloids and combinations thereof, and 87.5 to 99.9 wt. % nickel, calculated on the weight of nickel and the structural promoter together, the catalyst having an nickel surface area, as defined herein, of at least 10 m2/g catalyst and an average pore diameter, as defined herein, of 10 to 60 nm. It has been found that already very small amounts of promoter improves the structure of the catalyst. High amounts still provide a stable, sinter resistant material, but result in a decrease in the pore size to lower levels. Furthermore, properties and sulfur uptake capacity.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: February 25, 2003
    Assignee: Engelhard Corporation
    Inventors: Bernard Hendrik Reesink, Nico van Gasteren
  • Publication number: 20030015457
    Abstract: Liquid hydrocarbons such as gas oil feedstocks are hydrotreated by passing feedstreams comprising a hydrogen-containing gas and the liquid hydrocarbons through a catalyst bed comprising honeycomb or similarly structured monolithic hydrotreating catalysts at controlled superficial liquid linear velocities and gas:liquid feedstream ratios; good hydrotreating selectivity and high one-pass conversion rates for sulfur and other heteroatoms are provided.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 23, 2003
    Inventors: Wei Liu, Charles M. Sorensen,
  • Publication number: 20030010679
    Abstract: A process for producing a solid acid catalyst, which comprises: adding a pseudoboehmite as a binder to a sulfated zirconium hydroxide, followed by kneading with an aqueous solution containing at least one metal of the Group VIII, or loading at least one metal of the Group VIII on a sulfated zirconium hydroxide, and then adding a pseudoboehmite as a binder thereto, followed by kneading with water, further followed by molding and calcining at a temperature of from 550 to 800° C.; a solid acid catalyst produced by the production process; and a method for hydrodesulfurizing and isomerizing a light hydrocarbon oil using the catalyst.
    Type: Application
    Filed: January 30, 2002
    Publication date: January 16, 2003
    Applicant: PETROLEUM ENERGY CENTER
    Inventors: Katsuya Watanabe, Takahito Kawakami, Koji Baba, Takao Kimura
  • Publication number: 20020195375
    Abstract: A process for hydrotreating gas oils comprises:
    Type: Application
    Filed: April 9, 2002
    Publication date: December 26, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Thierry Chapus, Frederic Morel
  • Patent number: 6495029
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds present in petroleum and chemical streams. The stream is passed through at least one reaction zone countercurrent to the flow of a hydrogen-containing treat gas, and through at least one sorbent zone. The reaction zone contains a bed of Group VIII metal-containing hydrodesulfurization catalyst and the sorbent zone contains a bed of hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: December 17, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: James J. Schorfheide, Edward S. Ellis, Michele S. Touvelle, Ramesh Gupta
  • Patent number: 6475376
    Abstract: A two step sulfur removal for treatment of hydrocarbonaceous fuel intended for use in a fuel cell comprising a mild hydrotreating step followed by an extraction step reduces the sulfur content in fuel to 5 ppm total sulfur or less and a fuel processor suitable for carrying out the process.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: November 5, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lawrence W. Jossens, Curtis L. Munson, Gunther H. Dieckmann
  • Publication number: 20020157988
    Abstract: A two step sulfur removal for treatment of hydrocarbonaceous fuel intended for use in a fuel cell comprising a mild hydrotreating step followed by an extraction step reduces the sulfur content in fuel to 5 ppm total sulfur or less and a fuel processor suitable for carrying out the process.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 31, 2002
    Inventors: Lawrence W. Jossens, Curtis L. Munson, Gunther H. Dieckmann
  • Publication number: 20020148757
    Abstract: Economical processes are disclosed for the production of components for refinery blending of transportation fuels by selective hydrogenation of sulfur-containing and/or nitrogen-containing organic compounds contained in mixtures of hydrocarbons which are liquid at ambient conditions. Integrated hydrotreating processes of this invention advantageously provide their own source of high-boiling hydrogenation feedstock derived, for example, by fractionation of hydrotreated petroleum distillates. The high-boiling hydrogenation feedstock consisting essentially of material boiling between about 200° C. and about 425° C.
    Type: Application
    Filed: February 8, 2001
    Publication date: October 17, 2002
    Inventors: George A. Huff, Larry W. Kruse, Ozie S. Owen, Monica Cristina Regalbuto, William H. Gong
  • Publication number: 20020148758
    Abstract: Selective hydrodesulfurization of an olefinic gasoline fraction, e.g., cracked gasoline, is accomplished by use of a catalyst of a noble metal supported on an acidic support. Such a catalyst reduces the sulfur content to acceptable levels, while minimizing hydrogenation of olefins to retain octane quality of the treated gasoline fraction.
    Type: Application
    Filed: February 8, 2001
    Publication date: October 17, 2002
    Inventors: Yun-Feng Chang, Lawrence L. Murrell, Frits M. Dautzenberg, Luc Palmen
  • Patent number: 6455023
    Abstract: Carbon monolith-supported catalysts with high leach resistance used in catalytic applications involving strong acidic and basic conditions in a pH range of from 0 to 6.5 and from 7.5 to 14, are respectively described. The leach resistance of the catalyst system originates from strong interaction between the catalyst and the unsaturated valence of the carbon surface. In addition to surprisingly high resistance to leach out, the catalysts also have substantial differential advantages in catalyst performance: catalyst activity, selectivity, and stability.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: September 24, 2002
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, Tinghong Tao
  • Publication number: 20020130063
    Abstract: A process is described that can limit pressure drops during a catalytic hydrotreatment process carried out in a fixed bed reactor. The liquid feed and gaseous reactant are injected into the reactor either side of the bed and flow as a counter-current. Pressure drops are limited by homogeneously mixing solid catalytic and/or inert particles of different diameters in the bed.
    Type: Application
    Filed: December 20, 2001
    Publication date: September 19, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Daniel Vuillemot, Laurence Carpot, Thierry Chapus, Philippe Rocher, Frederic Morel