With Group Viii Metal Or Compound Patents (Class 208/244)
  • Patent number: 11713424
    Abstract: A process for operating a reforming system by operating a reforming section containing a plurality of reactors, wherein each of the plurality of reactors containing a reforming catalyst capable of catalyzing the conversion of at least a portion of the hydrocarbons in a treated hydrocarbon stream into a reactor effluent comprising aromatic hydrocarbons, and operating a sulfur guard bed (SGB) to remove sulfur and sulfur-containing hydrocarbons from a hydrocarbon feed to provide the treated hydrocarbon stream, where the SGB contains at least a layer of a SGB catalyst comprising the same catalyst as the reforming catalyst, and where each reactor of the plurality of reactors within the reforming section may be operated at a higher operating temperature than an operating temperature of the SGB. A system for carrying out the process is also provided.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 1, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ryan W. Snell, Scott G. Morrison, Vincent D. McGahee, Xianghong Hao, Gabriela Alvez-Manoli
  • Patent number: 11325105
    Abstract: This invention relates to a supported catalyst for synthesizing ammonia (NH3) from nitrogen gas (N2) and hydrogen gas (H2), method of making the support, and methods of decorating the support with the catalyst.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: May 10, 2022
    Assignee: STARFIRE ENERGY
    Inventors: Joseph D. Beach, Jonathan D. Kintner, Adam W. Welch
  • Patent number: 11168275
    Abstract: Methods for separation of oxygenates or other chemical components from fuels using chemical processes and separations including, but not limited to, onboard applications in vehicles. These separations may take place using a variety of materials and substances whereby a target material of interest is captured, held, and then released at a desired location and under desired conditions. In one set of experiments we demonstrated an enhancement in the separation of diaromatics by >38 times over gasoline and aromatics by >3.5 times over gasoline. This would give an advantage to reducing cold-start emissions, or emissions during transient conditions, in either gasoline or diesel.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 9, 2021
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: John T. Bays, Katarzyna Grubel, David J. Heldebrant, John C. Linehan
  • Patent number: 10626020
    Abstract: A process for the extraction of lithium from a brine, wherein a solution of the brine is contacted with a titanate adsorbent such that lithium ions are adsorbed thereon whilst rejecting substantially all other cations. The adsorbent is provided in the form of either a hydrated titanium dioxide or a sodium titanate. The process in turn produces a substantially pure lithium chloride solution.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: April 21, 2020
    Assignee: Inneovation Pty Ltd
    Inventor: Christopher John Reed
  • Patent number: 10329211
    Abstract: Methods for the oligomerization of ethylene, and more specifically, methods for the preparation of mainly ethylene oligomers of C10 or higher are described. A method can include performing a first oligomerization of an ethylene gas using a Ni-containing mesoporous catalyst, followed by a second oligomerization using an ion exchange resin, etc. to produce ethylene oligomers of C10 or higher. The method for the preparation of ethylene oligomers can produce C8-16 ethylene oligomers in high yield without inducing deactivation of the catalyst, compared to the conventional technology of ethylene oligomerization by a one-step process.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: June 25, 2019
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Dong Won Hwang, Ho Jeong Chae, MaEum Lee, Ji Sun Yoon
  • Patent number: 10286379
    Abstract: The invention pertains to desiccants within improved adsorption. The desiccants of the invention include silica, aluminum, bicarbonate and calcium. The addition of calcium increases the porosity of the resulting precipitated solid, which increases the adsorption properties. The invention also pertains to methods of preventing moisture damage to a chattel placed in an enclosed environment by placing the desiccant of the invention into the enclosed environment.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 14, 2019
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventor: Yelena Katsenovich
  • Patent number: 9034174
    Abstract: The present invention provides a method of preparing an iron oxide magnetic nanoparticle, comprising the steps of: i) reacting a water-soluble ferrous salt with a water-soluble ferric salt in a mole ratio of 1:2 in the presence of a base and a citrate to give an iron oxide particle surface-coated with the citrate (c-MNP); ii) reacting the c-MNP obtained in step (i) with a thiophilic compound to give a thiophilic compound-bounded iron oxide particle surface-coated with the citrate (thiophilic-c-MNP); and iii) modifying the thiophilic-c-MNP obtained in step (ii) using a surfactant for phase transfer of the thiophilic-c-MNP from aqueous phase to organic phase. The present invention also relates to the iron oxide magnetic nanoparticle prepared by the above-mentioned method and the use of the nanoparticle in desulfurization. The iron oxide magnetic nanoparticle of the present invention is capable of effective deep desulfurization.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: May 19, 2015
    Assignee: NANOPETRO COMPANY LIMITED
    Inventor: Man Chung Daniel Cheng
  • Patent number: 8975208
    Abstract: The present invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel. The adsorbent has excellent abrasion-resistance and desulfurization activity. The adsorbent comprises from about 5 to about 35 wt % of alumina, from about 3 to about 30 wt % of silica, from about 10 to about 80 wt % of at least one oxide of metal selected from Groups IIB and VB, from about 3 to about 30 wt % of at least one metal accelerant selected from Groups VIIB and VIII, and from about 0.5 to about 10 wt % of at least one oxide of metal selected from Groups IA and IIA, based on the total weight of the adsorbent.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 10, 2015
    Assignees: China Petroleum Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Publication number: 20150027927
    Abstract: Catalysts for oxidative sulfur removal and methods of making and using thereof are described herein. The catalysts contain one or more reactive metal salts dispersed on one or more substrates. Suitable reactive metal salts include those salts containing multivariable metals having variable valence or oxidation states and having catalytic activity with sulfur compounds present in gaseous fuel streams. In some embodiments, the catalyst contains one or more compounds that function as an oxygen sponge under the reaction conditions for oxidative sulfur removal. The catalysts can be used to oxidatively remove sulfur-containing compounds from fuel streams, particularly gaseous fuel streams having high sulfur content.
    Type: Application
    Filed: January 17, 2013
    Publication date: January 29, 2015
    Applicant: INTRAMICRON, INC.
    Inventors: Hongyun Yang, Paul S. Dimick
  • Publication number: 20140374654
    Abstract: The invention involves the formation of a stable iron (II) oxide and/or hydroxide. Preferably these oxides and/or hydroxides are present as nanoparticles in the 5-10 nanometer range. It has been discovered that such particles can be formed at lower cost and with fewer impurities by using ferrous carbonate (FeCO3) from siderite as compared to known processes from various iron salts such as sulfates and chlorides. The novel nanoparticles are particularly adapted to removing sulfur compounds such as H2S from liquid and/or gaseous streams, such as hydrocarbon streams.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Applicant: New Technology Ventures, Inc.
    Inventors: Floyd E. Farha, Veronica M. Irurzun
  • Patent number: 8900349
    Abstract: The present invention relates to an absorbent composition composed of an iron oxide and/or hydroxide, activated carbon, promoters and binders, in the form of extruded tablets or granules, capable of absorbing impurities from fluid streams in order to eliminate the impurities, mainly sulfur compounds, contained in these streams. The present invention also relates to the methods for obtaining the absorbents, and to the use thereof for eliminating impurities contained in liquid and gaseous streams.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 2, 2014
    Assignee: Clariant S.A.
    Inventors: Marco Antonio Logli, Valeria Perfoito Vicentini, Marcelo Brito de Azevedo Amaral
  • Patent number: 8877153
    Abstract: Novel adsorbents and their use in a process for the removal of sulfur compounds from distillate fuels are described herein. The novel adsorbents are comprised of nanocrystals of Ni having adsorbed on their surface phosphorus and/or phosphine species, which nanocrystals can be distributed in a micro-/meso-porous support material.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: November 4, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mordechay Herskowitz, Miron Landau, Iehudit Reizer, Alberto Ravella, James E. Kegerreis
  • Publication number: 20140311949
    Abstract: A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Inventor: John Howard Gordon
  • Patent number: 8821716
    Abstract: The present invention relates to an improved desulfurization process using an ionic liquid compound of general formula C+A?, where C+ represents an organic cation such as alkyl-pyridinium, di-alkyl imidazolium and tri-alkyl imidazolium; and A? is an anion of halides of iron (III), such as, for example, FeCl4?. The desulfurization process is also improved when producing the ionic liquid compound by heating the reactants using microwave energy. The ionic liquids can be used to desulfurize hydrocarbon mixtures by a liquid-liquid extraction.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: September 2, 2014
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Natalya Victorovna Likhanova, Rafael Martinez Palou, Jorge Froylan Palomeque Santiago
  • Patent number: 8702974
    Abstract: A process for desulphurizing hydrocarbons includes passing a mixture of hydrocarbon and hydrogen over a hydrodesulphurization catalyst to convert organosulphur compounds present in the hydrocarbon to hydrogen sulphide, passing the resulting mixture over a hydrogen sulphide sorbent including zinc oxide to reduce the hydrogen sulphide content of the mixture, and passing the hydrogen sulphide-depleted mixture over a further desulphurization material. The further desulphurization material includes one or more nickel compounds, a zinc oxide support material, and optionally one or more promoter metal compounds of iron, cobalt, copper and precious metals. The desulphurization material has a nickel content in the range 0.3 to 20% by weight and a promoter metal compound content in the range 0 to 10% by weight.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 22, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Gordon Edward Wilson, Norman Macleod, Elaine Margaret Vass, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Patent number: 8663459
    Abstract: Sulfur-containing compounds, including specifically thiophenic compounds, in a liquid hydrocarbon feedstream are catalytically oxidized by combining the hydrocarbon feedstream with a catalytic reaction mixture that includes a peroxide that is soluble in water or in a polar organic acid, at least one carboxylic acid, and a catalyst that is a transition metal salt selected from the group consisting of (NH4)2WO4, (NH4)6W12O40.H2O, Na2WO4, Li2WO4, K2WO4, MgWO4, (NH4)2MoO4, (NH4)6Mo7O24.4H2O, MnO0 and NaVO3; the mixture is vigorously agitated for a time that is sufficient to oxidize the sulfur-containing compounds to form sulfoxides and sulfones; the reaction mixture is allowed to stand and separate into a lower aqueous layer containing the catalyst and an upper hydrocarbon layer that is recovered and from which the oxidized sulfur compounds are removed, as by solvent extraction, distillation or selective adsorption.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: March 4, 2014
    Assignees: Saudi Arabian Oil Company, The Chancellor, Masters and Scholars of the University of Oxford
    Inventors: Farhan M. Al-Shahrani, Tiancun Xiao, Gary Dean Martinie, Malcolm L. H. Green
  • Patent number: 8658030
    Abstract: Provided herein are processes for deasphalting and extracting a hydrocarbon oil. The processes comprise providing an oil comprising asphaltenes and/or other impurities, combining the oil with a polar solvent an extracting agent to provide a mixture, and applying a stimulus to the mixture so that at least a portion of any asphaltenes and/or impurities in the oil precipitate out of the oil.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: John Aibangbee Osaheni, Thomas Joseph Fyvie
  • Publication number: 20140021100
    Abstract: This invention relates to a visible-light-responsive photocatalyst for photocatalyticly oxidation desulphurization and method for preparation and application thereof. The catalyst is comprised of one type of metal MI, one type of metal oxide MIIOx and BiVO4 as the supporter, wherein the mass ratio of the sum of the two types of metal (MI+MII) to BiVO4 is from 1:5000 to 1:50; the mass ratio of the type of metal MI to the type of metal MII is from 1:50 to 50:1. The catalyst is used in the photocatalytic oxidation desulphurization. Under mild condition (room temperature, 1 atm), using O2 as the oxidant and xenon lamp (wavelength 420 nm<?<700 nm) as the light source, avoid the oil's absorption of light (mainly in the violet area which is below 420 nm), the desulphurization ratio of thiophene can be above 90%, meanwhile the oil won't be excited. The sulfur in thiophene can be oxidized to SO3 and absorbed by the absorbent after escaped from the reaction system.
    Type: Application
    Filed: November 21, 2011
    Publication date: January 23, 2014
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Can Li, Zongxuan Jiang, Feng Lin, Donge Wang, Yongna Zhang
  • Patent number: 8628656
    Abstract: Processes for the desulfurization of a cracked naphtha by the reaction of hydrogen with the organic sulfur compounds present in the feed are disclosed. In particular, processes disclosed herein may use one or more catalytic distillation steps followed by further hydrodesulfurization of the naphtha in a fixed bed reactor. It has been found that the formation of recombinant mercaptans in the fixed bed reactor effluent may be reduced or eliminated by reducing the concentration of hydrogen sulfide and/or olefins at the exit of the fixed bed reactor. The reduction or elimination in the formation of recombinant mercaptans may be accomplished by recycling a select portion of the fixed bed reactor effluent to the fixed bed reactor, where the select portion has a relatively low or nil concentration of olefins. Processes disclosed herein may thus facilitate the production of hydrodesulfurized cracked naphthas having a total sulfur content of less than 10 ppm, by weight.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: January 14, 2014
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Mahesh Subramanyam
  • Publication number: 20130313165
    Abstract: Disclosed herein is a method of simultaneously removing sulfur and mercury from a hydrocarbon material, including: hydrotreating the hydrocarbon material containing sulfur and mercury in the presence of a catalyst including a metal supported with a carrier to convert sulfur into hydrogen sulfide, and adsorb mercury on a metal active site or a carrier of the catalyst in the form of mercury sulfide.
    Type: Application
    Filed: February 8, 2012
    Publication date: November 28, 2013
    Applicant: SK Innovation Co., Ltd.
    Inventors: Do Kyoung Kim, Do Woan Kim, Sang Il Lee, Seung Hoon Oh, Woo Kyung Kim, Han Seung Pan, Woo Young Kim, Kyung Soo Jun, Sun Choi
  • Publication number: 20130261351
    Abstract: The present invention describes a process for pre-treating a steam reforming feed containing sulphur-containing compounds, using two desulphurization reactors: a temporary desulphurization reactor (1010) containing an active adsorbent solid; a permanent desulphurization reactor (1003) placed upstream of the steam reforming unit, which contains an adsorbent solid in the passivated state, necessitating a depassivation phase in order to be rendered active; the temporary desulphurization reactor (1010) being disconnected as soon as the adsorbent solid of the permanent desulphurization reactor (1003) has been activated, and the volume of the temporary desulphurization reactor being in the range 1/20 to 1/200 times the volume of the permanent desulphurization reactor.
    Type: Application
    Filed: March 22, 2013
    Publication date: October 3, 2013
    Applicant: IFP Energies nouvelles
    Inventors: Fabrice GIROUDIERE, Michel THOMAS, Cedric NEBOIS
  • Patent number: 8524071
    Abstract: The present invention provides a high capacity adsorbent for removing sulfur from hydrocarbon streams. The adsorbent comprises a composite material containing particles of a nickel phosphide complex NixP. The adsorbent is utilized in a sulfur removal process that does not require added hydrogen, and run at relatively low temperatures ranging from about 150° C. to about 400° C. The process of this invention enables “ultra-deep” desulfurization down to levels of about 1 ppm and less.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Miron V. Landau, Mordechay Herskowitz, Iehudit Reizner, Yaron Konra, Himanshu Gupta, Rajeev Agnihotri, Paul J. Berlowitz, James E. Kegerreis
  • Publication number: 20130216833
    Abstract: The present invention relates to an absorbent composition composed of an iron oxide and/or hydroxide, activated carbon, promoters and binders, in the form of extruded tablets or granules, capable of absorbing impurities from fluid streams in order to eliminate the impurities, mainly sulfur compounds, contained in these streams. The present invention also relates to the methods for obtaining the absorbents, and to the use thereof for eliminating impurities contained in liquid and gaseous streams.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 22, 2013
    Applicant: CLARIANT S.A.
    Inventors: Marco Antonio Logli, Valeria Perfoito Vicentini, Marcelo Brito de Azevedo Amaral
  • Publication number: 20130126394
    Abstract: The present invention provides a method of preparing an iron oxide magnetic nanoparticle, comprising the steps of: i) reacting a water-soluble ferrous salt with a water-soluble ferric salt in a mole ratio of 1:2 in the presence of a base and a citrate to give an iron oxide particle surface-coated with the citrate (c-MNP); ii) reacting the c-MNP obtained in step (i) with a thiophilic compound to give a thiophilic compound-bounded iron oxide particle surface-coated with the citrate (thiophilic-c-MNP); and iii) modifying the thiophilic-c-MNP obtained in step (ii) using a surfactant for phase transfer of the thiophilic-c-MNP from aqueous phase to organic phase. The present invention also relates to the iron oxide magnetic nanoparticle prepared by the above-mentioned method and the use of the nanoparticle in desulfurization. The iron oxide magnetic nanoparticle of the present invention is capable of effective deep desulfurization.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 23, 2013
    Applicant: NANOPETRO COMPANY LIMITED
    Inventor: NANOPETRO COMPANY LIMITED
  • Publication number: 20130092597
    Abstract: Hydrogen sulfide evolution from asphalt or heavy fuel oil may be reduced or eliminated using an additive to act as a scavenger. Zinc, in conjunction with an additional metal selected from Fe, Mn, Co, Ni, Cr, Zr, when present in the form of nano-particles of an oxide, borate or carboxylate is an effective component is preventing or mitigating the evolution of hydrogen sulfide. The nano-particles may be used neat or as a dispersion. These metals may also be complexed and used in the form of a solution. Molybdenum, when used with one or both of Fe and Zn is also a useful in any of these forms for the same purpose.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 18, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Baker Hughes Incorporated
  • Patent number: 8409426
    Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: April 2, 2013
    Assignee: Petrosonics, LLC
    Inventor: Mark Cullen
  • Patent number: 8394263
    Abstract: The invention relates to a bulk catalyst having improved activity in hydrodesulphurization, in particular in relatively low Group VIII over Group VIB metal molar ratios. The bulk catalyst comprises metal oxidic particles comprising one or more Group VIB metals and one or more-Group VIII metals which metal oxidic particles are obtainable by a process comprising the steps of reacting the compounds comprising one or more Group VIB metals and compounds comprising one or more Group VIII metals in hydrothermal conditions at a reaction temperature above the boiling temperature of the protic liquid, preferably in an autoclave at a reaction pressure above atmospheric pressure and. The invention also relates to the corresponding sulphided catalyst, to a process for the manufacture of said bulk catalyst and to the use of said catalyst for the hydrotreatment, in particular the hydrodesulphurization and hydrodenitrogenation of hydrocarbon feedstock.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: March 12, 2013
    Assignee: Albemarle Netherlands B.V.
    Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Stuart Leon Soled, Sabato Miseo
  • Patent number: 8377290
    Abstract: Provided are methods of reducing a sulfur concentration in a liquid fuel and methods of forming a thiophene/metal complex in a liquid fuel. The method can involve combining a liquid fuel and at least one metal acetate to form a thiophene/metal complex and substantially removing the thiophene/metal complexes from the liquid fuel. A thiophene concentration in a liquid fuel is reduced by the formation of an insoluble complex salt, which can be removed by, for example, centrifuge, filtration, decantation, and/or distillation.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: February 19, 2013
    Assignee: James K. and Mary A. Sanders Family L.L.C.
    Inventors: Richard William Tock, James Kenneth Sanders, Duck Joo Yang
  • Patent number: 8377289
    Abstract: A complex metal oxide catalyst comprising a Group VIII metal MI and at least two Group VIB metals MII and MIII, wherein the molar ratio of Group VIII metal MI to Group VIB metals MII+MIII is 1:9-9:1 and the molar ratio of the Group VIB metals MII and MIII is 1:5 to 5:1. When applied to the hydrodesulfurization of diesel, the catalyst exhibits a super high HDS activity. The sulfur level in the diesel can be reduced from 1200 ppm to 27 ppm under a gentle operating condition.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 19, 2013
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Can Li, Zongxuan Jiang, Lu Wang
  • Patent number: 8323480
    Abstract: A composition and process for removing sulfur from middle distillate petroleum hydrocarbon fuels. The composition includes an alumina component and a carbon component. The composition is present in an amount effective to adsorb sulfur compounds from the fuel. The alumina component and the carbon component preferably collectively comprise a composite material. The composition can further include a sulfur component, preferably a metal sulfide or sulfur oxide. The composition can also further include at least one compound having a Group VI or Group VIII metal from the periodic table.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: December 4, 2012
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Publication number: 20120298555
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Patent number: 8318628
    Abstract: The invention relates to a catalyst for hydroconversion of hydrocarbons, comprising a support made from at least one refractory oxide, at least one group VIII metal and at least one group VIB metal, characterized in further comprising at least one organic compound with at least two thiol functions separated by at least one oxygenated group of formula (I): HS—CxHyOz—SH (I), where x=1 to 20, preferably 2 to 9 and for example x=6, y=2 to 60, preferably 4 to 12 and z=1 to 10, preferably 1 to 6. The invention further relates to a method for preparation, a method for activation of said catalyst and use of the catalyst for the hydrotreatment and/or hydrocracking of hydrocarbons.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: November 27, 2012
    Assignees: Total Raffinage Marketing, IFP Energies nouvelles
    Inventors: Claude Brun, Thierry Cholley, Carole Dupuy, Georges Fremy, Francis Humblot
  • Patent number: 8277638
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The iron oxide in the catalyst converts to catalytically active iron sulfide in the presence of hydrogen and sulfur.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 2, 2012
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza
  • Publication number: 20120232322
    Abstract: A process for desulphurising hydrocarbons includes the steps of (i) passing a mixture of hydrocarbon and hydrogen over a hydrodesulphurisation catalyst to convert organosulphur compounds present in the hydrocarbon to hydrogen sulphide, (ii) passing the resulting mixture over a hydrogen sulphide sorbent including zinc oxide to reduce the hydrogen sulphide content of the mixture and (iii) passing the hydrogen sulphide-depleted mixture over a further desulphurisation material, where the further desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and optionally one or more promoter metal compounds selected from one or more compounds of iron, cobalt, copper and precious metals, the desulphurisation material having a nickel content in the range 0.3 to 20% by weight and a promoter metal content in the range 0 to 10% by weight.
    Type: Application
    Filed: September 2, 2010
    Publication date: September 13, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Gordon Edward Wilson, Norman Macleod, Elaine Margaret Vass, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Patent number: 8236723
    Abstract: The invention relates to a catalyst for hydrodesulfurizing naphtha, to a method for preparing said catalyst and to a method for hydrodesulfurizing naphtha using said catalyst. More particularly, the catalyst comprises a Co/Mo metal hydrogenation component on a silica support having a defined pore size distribution and at least one organic additive. The catalyst has high dehydrosulphurisation activity and minimal olefin saturation when used to hydrodesulfurize FCC naphtha.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: August 7, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sven Johan Timmer, Jason Wu
  • Patent number: 8222181
    Abstract: The invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel, which adsorbent comprises: (1) a carrier consisting of a source of silica, an inorganic oxide binder, and at least one oxide of metal selected from Groups IIB, VB and VIB; (2) at least one accelerant metal which is capable of reducing the sulfur in oxidized state to hydrogen sulfide and has a ?<0.5, wherein ?=(the amount in percentage of accelerant metal in crystal phase)/(the amount in percentage of accelerant metal in the adsorbent). The active components in the adsorbent can be evenly dispersed on the carrier in a matter close to monolayer dispersion, and which greatly improves the activity of the adsorbent. The preparation method and the use of the above adsorbent are provided.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: July 17, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Patent number: 8202816
    Abstract: An adsorbent for desulfurizing cracking gasoline or diesel fuel comprising 1) pillared clay, (2) inorganic oxide binder, (3) an oxide of one or more metals selected from Groups IIB, VB and VIB, and (4) at least one metal accelerant selected from cobalt, nickel, iron and manganese. The adsorbent exhibits excellent abrasion-resistant strength and desulfurization performance.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 19, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Patent number: 8202414
    Abstract: The invention is directed to a process for the purification of benzene feedstock containing contaminating sulfur compounds, more in particular thiophenic sulfur compounds, said process comprising contacting the benzene feedstock in the presence of hydrogen with a sulfided nickel adsorbent, wherein in said adsorbent part of the nickel is present in the metallic form, and subsequently contacting the said feedstock with a supported metallic copper adsorbent.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: June 19, 2012
    Assignee: BASF Corporation
    Inventor: Bernard Hendrik Reesink
  • Patent number: 8158843
    Abstract: The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: April 17, 2012
    Assignee: The Penn State Research Foundation
    Inventors: Chunshan Song, Xiaoliang Ma, Michael J. Sprague, Velu Subramani
  • Patent number: 8137536
    Abstract: Methods and systems for contacting a crude feed that has a total acid number (TAN) of at least 0.3 with one or more catalysts produces a total product that includes a crude product are described. The one or more catalysts may include a first catalyst and a second catalyst. The crude product is a liquid mixture at 25° C. and 0.101 MPa and the crude product has a TAN of at most 90% of the TAN of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: March 20, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8128810
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The iron sulfide crystallites have diameters in the nanometer range.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza
  • Patent number: 8123933
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The iron oxide and alumina catalyst does not require as much iron content relative to non-gaseous material in the reactor to obtain useable products.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza
  • Publication number: 20120018350
    Abstract: The desulfurization of fossil fuels is provided by the combination of fossil fuels with an aqueous mixture of ozone or hydrogen peroxide and a Tetraoctylphosphonium salt phase transfer catalyst, and the mixture is then subjected to reactive mixing to form oxidize sulfur compounds in the fuel. The polar oxidized sulfones species are removed via another mixing step. The desulfurization device can be in the form of a portable device which provides for continuous mixing-assisted desulfurization for the removal of sulfur containing compounds from fossil fuels such as diesel fuel.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Inventors: Hsin Tung Lin, Meng-Wei Wan, Ming-Chun Lu
  • Publication number: 20120021305
    Abstract: A desulfurizing agent for a hydrocarbon comprises: 10 to 30 percent by mass of a porous inorganic oxide based on the total mass of the desulfurizing agent; 3 to 40 percent by mass of zinc oxide; and 45 to 75 percent by mass of a nickel atom in terms of nickel oxide, wherein the reduction degree of the nickel atom is 50 to 80 percent, and wherein the amount of hydrogen adsorption per unit desulfurizing agent mass is 3.5 to 4.6 ml/g.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Yoshiyuki Nagayasu, Yoshie Miyai, Takaya Matsumoto, Kimika Ishizuki
  • Patent number: 8097149
    Abstract: Oil soluble catalysts are used in a process to hydrodesulfurize petroleum feedstock having a high concentration of sulfur-containing compounds and convert the feedstock to a higher value product. The catalyst complex includes at least one attractor species and at least one catalytic metal that are bonded to a plurality of organic ligands that make the catalyst complex oil-soluble. The attractor species selectively attracts the catalyst to sulfur sites in sulfur-containing compounds in the feedstock where the catalytic metal can catalyze the removal of sulfur. Because the attractor species selectively attracts the catalysts to sulfur sites, non-productive, hydrogen consuming side reactions are reduced and greater rates of hydrodesulfurization are achieved while consuming less hydrogen per unit sulfur removed.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: January 17, 2012
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhihua Wu, Zhenhua Zhou, Bing Zhou
  • Patent number: 8083933
    Abstract: A process for removing organic sulfur from a fuel gas stream that further contains light olefins by catalytic hydrodesulfurization to yield a treated fuel gas having an very low concentration of organic sulfur. The effluent of the catalytic hydrodesulfurization reactor may be cooled with a portion thereof being recycled and introduced along with the fuel gas stream that is charged to the hydrodesulfurization reactor. The remaining, unrecycled portion of the effluent may further be treated to remove the hydrogen sulfide that is yielded from by the hydrodesulfurization of the fuel gas stream.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 27, 2011
    Assignee: Shell Oil Company
    Inventor: Gary Lee Ripperger
  • Patent number: 8066869
    Abstract: The invention relates to a treatment process of a sulphur-containing hydrocarbon fraction, comprising the following steps: a) a hydrodesulphurization step of said hydrocarbon fraction to produce a sulphur-depleted effluent, consisting of passing the hydrocarbon fraction mixed with hydrogen over at least one hydrodesulphurization catalyst. b) a step of separation of the partially desulphurized hydrocarbon fraction from the hydrogen introduced in excess, as well as the H2S formed in step a). c) a step of collecting both mercaptans and thiophenic compounds, consisting of placing the partially desulphurized hydrocarbon fraction originating in step b) in contact with an adsorbent comprising at least one element chosen from the group constituted by the elements of groups VIII, IB, IIB and IVA, the adsorbent being used in reduced form in the absence of hydrogen at a temperature above 40° C., the metal content in the reduced form of the adsorbent being above 25% by weight.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: November 29, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandre Nicolaos, Florent Picard, Quentin Debuisschert, Annick Pucci
  • Patent number: 8067331
    Abstract: The invention relates to a nickel tungsten bulk catalyst, to a process for the manufacture of said catalyst and to the use of said catalyst for the hydrotreatment, in particular the hydrodesulphurisation and hydrodenitrogenation of hydrocarbon feedstock. The catalyst comprises nickel tungsten metal oxidic particles obtainable by a process comprising forming a slurry of a first solid metal compound comprising Group VNI metal nickel and a second solid metal compound comprising Group VIB metal tungsten in a protic liquid, reacting the first and second solid metal compounds at elevated temperature whereby the first and second solid metal compounds remain at least partly in the solid state during the entire reaction to form the nickel tungsten oxidic bulk catalyst.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: November 29, 2011
    Assignee: Albemarle Netherlands B.V.
    Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Marinus Bruce Cerfontain, Frans L. Plantenga, Eelco Titus Carel Vogt, Jacobus Nicolaas Louwen, Stuart Leon Soled, Sabato Miseo, Kenneth L. Riley
  • Patent number: 8043495
    Abstract: A process for reducing the sulfur content of a hydrocarbon stream, including: feeding a hydrocarbon stream including sulfur compounds to a catalytic distillation reactor having one or more hydrodesulfurization reaction zones; feeding hydrogen to the catalytic distillation reactor; concurrently in the catalytic distillation reactor: fractionating the hydrocarbon stream into a heavy fraction and a light fraction; contacting hydrogen and the light fraction to form H2S and a light fraction of reduced sulfur content; recovering the light fraction, H2S, and hydrogen as an overheads; recovering the heavy fraction; heating the overheads to a temperature from 500 to 700° F.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 25, 2011
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary G. Podrebarac
  • Patent number: 8025793
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The iron oxide in the catalyst converts to catalytically active iron sulfide in the presence of hydrogen and sulfur.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: September 27, 2011
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza