With Group Viii Metal Or Compound Patents (Class 208/244)
  • Publication number: 20110220552
    Abstract: A method removes corrosive sulfur compounds from transformer oil. By adding a mixture of rare earths containing aluminum oxide and aluminum silicate to the transformer oil, and enriching the same with an aqueous solution of soluble metal salts, the corrosive sulfur compounds in the transformer oil are neutralized with defined heating and cooling phases. Advantageously, no additional chemical components, such as passivators, are added to the transformer oil. When using a tank for receiving the mixture of the rare earths containing aluminum oxide and aluminum silicate, the reaction can run in the tank. Any aging products that may be present, and the bonded corrosive sulfur compounds are effectively retained within the tank by a filter system, and can be disposed of with the tank.
    Type: Application
    Filed: October 20, 2008
    Publication date: September 15, 2011
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ivanka Atanasova-Hoehlein, Peter Heinzig, Vladyslav Mezhvynskiy, Uwe Thiess
  • Patent number: 8016999
    Abstract: Provided are processes for removing sulfur-containing compounds from fuel, comprising contacting the fuel in liquid phase with air to oxidize the sulfur-containing compounds, the contacting being carried out in the presence of at least one transition metal oxide catalyst, wherein the catalyst is supported on a porous support and wherein the porous support comprises a support material selected from the group consisting of a titanium oxide, a manganese oxide and a nanostructured material of the aforementioned support materials.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: September 13, 2011
    Assignee: Agency For Science, Technology and Research
    Inventors: Armando Borgna, Chuandayani Gunawan Gwie, Silvia Dewiyanti, Jeyagowry Thirugnanasampanthar
  • Patent number: 8012343
    Abstract: The present invention pertains to a process for the hydroprocessing of heavy hydrocarbon feeds, preferably in an ebullating bed process, by contacting the feed with a mixture of two hydroprocessing catalysts meeting specified pore size distribution requirements. The process combines high contaminant removal with high conversion, low sediment formation, and high process flexibility.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: September 6, 2011
    Inventors: Frans Lodewijk Plantenga, Katsuhisa Fujita, Satoshi Abe
  • Patent number: 8002971
    Abstract: Processes and systems associated with hydrodynamic cavitation-catalyzed oxidation of sulfur-containing substances in a fluid are described. In one example method, carbonaceous fluid is combined with at least one oxidant to form a mixture and then the mixture is flowed through at least one local constriction in a flow-through chamber at a sufficient pressure and flow rate to create hydrodynamic cavitation in the flowing mixture having a power density of between about 3,600 kWatts/cm2 and about 56,000 kWatts/cm2 measured at the surface of the local constriction normal to the direction of fluid flow. The creation of hydrodynamic cavitation in the flowing mixture initiates one or more chemical reactions that, at least in part, oxidize at least some of the sulfur-containing substances in the carbonaceous fluid.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 23, 2011
    Assignee: Arisdyne Systems, Inc.
    Inventor: Oleg V. Kozyuk
  • Patent number: 7981275
    Abstract: The present invention relates to the novel catalytic composition having a high specific activity in reactions involving hydroprocessing of light and intermediate petroleum fractions, and preferably in hydrodesulphurization and hydrodenitrogenation reactions. The inventive catalyst contains at least one element of a non-noble metal from group VIII, at least one element from group VIB and, optionally, a group one element of the VA group, which are deposited on a novel catalytic support comprising of an inorganic metal oxide from group IVB, consisting of an (1D) one-dimensional nanostructured material having nanofibers and/or nanotube morphology with high specific surface area of between 10 and 500 m2/g.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: July 19, 2011
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, José Escobar Aguilar, María Antonia Cortés Jacome, Maria de Lourdes Mosqueira Mondragon, Víctor Pérez Moreno, Carlos Angeles Chávez, Esteban López Salinas, Marcelo Lozada y Cassou
  • Publication number: 20110143229
    Abstract: A simple, compact process for cleansing hydrocarbon fuel such as jet fuel is disclosed. This process involves subjecting the fuel to an oxidative desulfurization process in a desulfurization reactor followed by passing the fuel through an adsorption bed. The cleansed desulfurized fuel may then be utilized directly in generation of hydrogen for fuel cell applications.
    Type: Application
    Filed: August 24, 2007
    Publication date: June 16, 2011
    Inventors: Anand S. Chellappa, Donovan Pena, Zachary Wilson
  • Patent number: 7959795
    Abstract: The distillate catalytic hydrodesulfurization of hydrocarbon fuels wherein the optimum hydrogen treat gas rate to maximize desulfurization is determined and introduced into the reaction zone to maintain a controlled amount of hydrogen at the surface of the catalyst during hydrodesulfurization.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: June 14, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Teh C. Ho, Garland B. Brignac, Zhiguo Hou, Michael C. Kerby, Tahmid I. Mizan, William E. Lewis
  • Patent number: 7951290
    Abstract: A process is provided to produce high cetane quality and low or preferably ultra low sulfur diesel and a fluid catalytic cracker (FCC) quality feedstock from a processing unit including at least a hydrotreating zone and a hydrocracking zone. In one aspect, the processing unit includes reactor severity requirements in both the hydrotreating zone and the hydrocracking zone effective to produce the FCC feed quality and the diesel sulfur quality to permit a high quality hydrocracked product to be formed at lower pressures and conversion rates without overtreating the FCC quality feedstock stream. In another aspect, a portion of the hydrotreated effluent is selected for conversion in the hydrocracking and the remaining portion of the hydrotreated effluent is directed to subsequent processing, such as fluid catalytic cracking.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: May 31, 2011
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Douglas W. Kocher-Cowan
  • Publication number: 20110108465
    Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.
    Type: Application
    Filed: January 18, 2011
    Publication date: May 12, 2011
    Inventor: MARK CULLEN
  • Patent number: 7938955
    Abstract: Provided are a method for producing a super-low sulfur gas oil blending component or a super-low sulfur gas oil composition having a sulfur content of less than 5 mass ppm, under relatively mild conditions, without greatly increasing the hydrogen consumption and without remarkably decreasing the aromatic content; and a super-low sulfur gas oil composition having a sulfur content of less than 5 mass ppm which exhibits a high heating value, is excellent in fuel economy and output power, and is free from an adverse effect on a sealing rubber member or the like used in the fuel injection system and thus does not cause the leakage of a fuel. A method for producing a super-low sulfur gas oil blending component or a super-low sulfur gas oil composition having a sulfur content of less than 5 mass ppm is also disclosed.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: May 10, 2011
    Assignee: Japan Energy Corporation
    Inventors: Yasuhiro Araki, Katsuaki Ishida
  • Patent number: 7935248
    Abstract: The present invention provides adsorbents for deep denitrogenation/desulfurization of hydrocarbon oils, and more particularly to an adsorbent material that selectively adsorbs organonitrogen and organosulfur from transportation fuels at room temperature and atmospheric pressure.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 3, 2011
    Assignee: The University of New Brunswick
    Inventors: Ying Zheng, Lingjun Chou
  • Publication number: 20110084002
    Abstract: Described herein is a process for the removal of sulfones by mesoporous silica adsorbents having narrow pore size distribution which could be controlled to specification for the selective removal of sulfones from oxidised hydrocarbon fuels wherein the sulfones were present due to oxidative conversion of organo-sulfur compounds by a suitable oxidizing solution. The mesoporous adsorbents showed typically 2-18 times higher equilibrium loading capacity for sulfones in comparison to the commercially available adsorbents.
    Type: Application
    Filed: December 9, 2009
    Publication date: April 14, 2011
    Inventors: ANSHU NANOTI, SOUMEN DASGUPTA, AMAR NATH GOSWAMI, BHAGAT RAM NAUTIYAL, TUMULA VENKATESHWAR RAO, BIR SAIN, YOGENDRA KUMAR SHARMA, SHRIKANT MADHUSUDAN NANOTI, MADHUKAR ONKARNATH GARG, PUSHPA GUPTA
  • Patent number: 7923410
    Abstract: A sorbent for use in removing sulfur contaminants from hydrocarbon feedstocks is provided, wherein the sorbent contains zinc aluminate in an amount of at least 40 wt % (calculated as ZnAl2O4); free alumina in an amount of from about 5 wt % to about 25 wt % (calculated as Al2O3); and iron oxide in an amount of from about 10 wt % to about 30 wt % (calculated as Fe2O3); wherein each of the free alumina and iron oxide are present in non-crystalline form as determined by X-ray diffraction analysis, and a method for producing the sorbent and method for using the sorbent to reduce sulfur contaminants in hydrocarbon feedstocks.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: April 12, 2011
    Assignee: Research Triangle Institute
    Inventors: Brian S. Turk, Santosh K. Gangwal, Raghubir P. Gupta
  • Patent number: 7914669
    Abstract: A process to substantially reduce the sulfur content of a liquid hydrocarbon stream by contacting the hydrocarbon stream with an aqueous stream containing a mixture of one or more extraction agents selected from hypochlorites, cyanurates and alkali metal and alkaline earth metal hydroxides, optionally in the presence of a catalyst, to remove sulfur compounds.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: March 29, 2011
    Assignee: Saudi Arabian Oil Company
    Inventors: Gary Dean Martinie, Farhan M. Al-Shahrani
  • Patent number: 7906013
    Abstract: A process is provided to produce an ultra low sulfur diesel with less than about 10 ppm sulfur using a two-phase or liquid-phase continuous reaction zone to convert a diesel boiling range distillate preferably obtained from a mild hydrocracking unit. In one aspect, the diesel boiling range distillate is introduced once-through to the liquid-phase continuous reaction zone over-saturated with hydrogen in an amount effective so that the liquid phase remains substantially saturated with hydrogen throughout the reaction zone as the reactions proceed.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 15, 2011
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Laura E. Leonard, Michael R. Smith
  • Patent number: 7901565
    Abstract: A method of reforming a sulfur containing hydrocarbon involves contacting the sulfur containing hydrocarbon with a sulfur tolerant catalyst containing a sulfur tolerant precious metal and a non-sulfating carrier so that the sulfur tolerant catalyst adsorbs at least a portion of sulfur in the sulfur containing hydrocarbon and a low sulfur reformate is collected, and contacting the sulfur tolerant catalyst with an oxygen containing gas to convert at least a portion of adsorbed sulfur to a sulfur oxide that is desorbed from the sulfur tolerant catalyst.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: March 8, 2011
    Assignee: BASF Corporation
    Inventors: Thomas Giroux, Earl Waterman, Robert Joseph Farrauto
  • Patent number: 7901566
    Abstract: A method of reforming a sulfur containing hydrocarbon involves contacting the sulfur containing hydrocarbon with a sulfur tolerant catalyst containing a non-sulfating carrier and one or more of a sulfur tolerant precious metal and a non-precious metal compound so that the sulfur tolerant catalyst adsorbs at least a portion of sulfur in the sulfur containing hydrocarbon and a low sulfur reformate is collected, and contacting the sulfur tolerant catalyst with an oxygen containing gas to convert at least a portion of adsorbed sulfur to a sulfur oxide that is desorbed from the sulfur tolerant catalyst.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: March 8, 2011
    Assignee: BASF Corporation
    Inventors: Thomas Giroux, Earl Waterman, Robert Joseph Farrauto
  • Patent number: 7875167
    Abstract: A low hydrogen partial pressure process for desulfurizing naphtha in the presence of a hydrodesulfurization catalyst which catalyst is selective for suppressing hydrogenation of olefins and in the presence. This invention also relates to the use of optimum metals loading for achieving a high level of hydrodesulfurization with a low level of olefin saturation.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland Brignac, Thomas R. Halbert, John P. Greeley
  • Publication number: 20110011772
    Abstract: Novel nickel and/or cobalt plated sponge based catalysts are disclosed. The catalyst have an activity and/or selectivity comparable to conventional nickel and/or cobalt sponge catalysts, e.g., Raney® nickel or Raney® cobalt catalysts, but require a reduced content of nickel and/or cobalt. Catalysts in accordance with the invention comprise nickel and/or cobalt coated on at least a portion of the surface of a sponge support. Preferably, the sponge support comprises at least one metal other than or different from the metal(s) contained in the coating. The method of preparing the plated catalysts, and the method of using the catalysts in the preparation of organic compounds are also disclosed.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 20, 2011
    Inventor: Stephen Raymond Schmidt
  • Patent number: 7871512
    Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: January 18, 2011
    Assignee: Petrosonics, LLC
    Inventor: Mark Cullen
  • Patent number: 7842181
    Abstract: A composition and process for removing sulfur from middle distillate petroleum hydrocarbon fuels. The composition includes an alumina component and a carbon component. The composition is present in an amount effective to adsorb sulfur compounds from the fuel. The alumina component and the carbon component preferably collectively comprise a composite material. The composition can further include a sulfur component, preferably a metal sulfide or sulfur oxide. The composition can also further include at least one compound having a Group VI or Group VIII metal from the periodic table.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: November 30, 2010
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Patent number: 7824541
    Abstract: Described is a catalyst and process useful in the hydrodesulfurization of a distillate feedstock to manufacture a low-sulfur distillate product. The catalyst comprises a calcined mixture of inorganic oxide material, a high concentration of a molybdenum component, and a high concentration of a Group VIII metal component. The mixture that is calcined to form the calcined mixture comprises molybdenum trioxide, a Group VIII metal compound, and an inorganic oxide material. The catalyst is made by mixing the aforementioned starting materials and forming therefrom an agglomerate that is calcined to yield the calcined mixture that may be used as the catalyst or catalyst precursor.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: November 2, 2010
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Publication number: 20100270211
    Abstract: This invention relates to a process for the desulfurization and denitrogenation of petroleum based hydrocarbon feeds with a mixture of at least one ionic liquid and at least one metal salt. Liquid or gas phase hydrocarbons contacted with the mixture to allow complexation of the sulfur and nitrogen species that are present in the processed stream.
    Type: Application
    Filed: April 27, 2009
    Publication date: October 28, 2010
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventor: Ryszard A. Wolny
  • Patent number: 7820037
    Abstract: A desulfurizing agent is produced by mixing a copper compound, a zinc compound and an ammonium compound with an aqueous solution of an alkali substance to prepare or precipitate followed by calcitrating the resulting precipitate to form a calcined precipitate into a shape form of a copper oxide-zinc oxide-aluminum oxide mixture. The shaped form is impregnated with iron or nickel and calcined to produce a calcined oxide and reduced with hydrogen to form a sulfur-absorption desulfurizing agent.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 26, 2010
    Assignee: Osaka Gas Company Limited
    Inventors: Masataka Masuda, Shin-ichi Nagase, Susumu Takami, Osamu Okada
  • Patent number: 7815792
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: October 19, 2010
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Leonard, Peter Kokayeff
  • Publication number: 20100243531
    Abstract: Provided are methods of reducing a sulfur concentration in a liquid fuel and methods of forming a thiophene/metal complex in a liquid fuel. The method can involve combining a liquid fuel and at least one metal acetate to form a thiophene/metal complex and substantially removing the thiophene/metal complexes from the liquid fuel. A thiophene concentration in a liquid fuel is reduced by the formation of an insoluble complex salt, which can be removed by, for example, centrifuge, filtration, decantation, and/or distillation.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Richard William Tock, James Kenneth Sanders, Duck Joo Yang
  • Patent number: 7803270
    Abstract: A process is described for the extractive oxidation of contaminants present in raw fuel streams rich in heteroatomic polar compounds and catalyzed by iron oxides contained in natural limonitic goethite, said process comprising contacting said streams with an oxidation pair which is a peroxide in solution/organic acid in amount of at least 3 and an amount between 0.01 and 10 wt % of an iron oxide, both based on the feed, the iron oxide being made up of a reduced natural limonitic goethite. The goethite reduction by a hydrogen stream has the advantage of lowering the migration of non-contaminating polar hydrocarbons from the fuel stream to the aqueous phase, at the same time obtaining higher mass yield of final product fuel while the level of target contaminants to be removed is maintained relative to the state-of-the-art process. Process yields attain 98% weight/weight.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: September 28, 2010
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Wladmir Ferraz de Souza, Lilian Ernst
  • Patent number: 7803267
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: September 28, 2010
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Terry G. Roberie, Hye Kyung C. Timken, Michael S. Ziebarth
  • Publication number: 20100206774
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Publication number: 20100206776
    Abstract: The present invention provides a high capacity adsorbent for removing sulfur from hydrocarbon streams. The adsorbent comprises a composite material containing particles of a nickel phosphide complex NixP. The adsorbent is utilized in a sulfur removal process that does not require added hydrogen, and run at relatively low temperatures ranging from about 150° C. to about 400° C. The process of this invention enables “ultra-deep” desulfurization down to levels of about 1 ppm and less.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 19, 2010
    Inventors: Miron V. Landau, Mordechay Herskowitz, Iehudit Reizner, Yaron Konra, Himanshu Gupta, Rajeev Agnihotri, Paul J. Berlowitz, James E. Kegerreis
  • Publication number: 20100200458
    Abstract: One exemplary embodiment can be a process for improving a hydrotreated stream for lubricating a machine. The hydrotreated stream can include an effective amount of one or more saturated hydrocarbons. Generally, the process includes hydrogenating the hydrotreated stream having no more than about 300 ppm, by weight, sulfur based on the weight of the stream in a hydrogenation reaction zone to produce a product stream having no more than about 5 ppm, by weight, sulfur.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Inventor: Tom N. Kalnes
  • Patent number: 7763164
    Abstract: This invention focuses on the specialized catalyst and/or additive for lower FCCU gasoline and diesel blendstock component sulfur content. This invention utilizes a specified ratio of the transition metal oxides of cobalt and molybdenum to accomplish gasoline and diesel blendstock sulfur reduction. This is accomplished by minimizing sulfur compound formation in the FCCU riser. The cobalt and molybdenum oxides in the presence of H2S from cracked organic sulfur compounds are converted to metal sulfides. A portion of the overall sulfur reduction in the gasoline and diesel blendstock occurs emitted NOx also is reduced.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: July 27, 2010
    Assignee: Marathon Petroleum Company LLC
    Inventors: William Jay Turner, Ronald Lee Cordle, David J. Zalewski, Jeffrey A. Sexton
  • Publication number: 20100147749
    Abstract: The present invention relates to multi-metallic catalyst compositions for improved coke resistance in a hydrocarbon feed pre-reformer unit that comprises nickel and an enhancing component selected from at least one member of the group consisting of ruthenium, palladium, platinum, rhodium, cobalt, gold and silver on a support. The present invention further relates to a catalyst system for improved coke and sulfur resistance in a hydrocarbon feed pre-reformer unit that comprises at least one multi-metallic catalyst composition comprising nickel and an enhancing component selected from at least one member of the group consisting of ruthenium, palladium, platinum, rhodium, cobalt, gold and silver on a support used in conjunction with at least one sulfur capturing component selected from the group comprising copper oxide and zinc oxide. Finally the present invention relates to the use of this catalyst system in a process for pre-reforming a hydrocarbon feed stream.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 17, 2010
    Applicant: American Air Liquide, Inc.
    Inventors: Pascal Tromeur, Pavol Pranda, Wei Huang, Jingguang G. Chen
  • Publication number: 20100140142
    Abstract: A crude oil which contains at least 0.1 wt % unstable sulfur compounds is treated in a reaction zone at low temperature to convert at least 50 wt % of the unstable sulfur compounds contained therein. The reaction and removal of sulfur from the crude may be facilitated by contacting the crude oil with a catalytic material in the presence of a stripping fluid.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Inventors: Huping Luo, Zhen Zhon, Lin Li, Alice He, Daniel Chinn, Graham Forder, Lyman Young, Shabbir Husain, William Schinski
  • Patent number: 7731837
    Abstract: Compositions and processes are disclosed for removing sulfur and sulfur compounds from hydrocarbon fuel feedstocks. The feedstock is contacted with a regenerable sorbent such as a compound of the formula TixCeyO2 where 0<x/y?1 and where 0<x?1 and 0<y?1 capable of selectively adsorbing sulfur compounds present in the hydrocarbon feedstock at about 0° C. to about 100° C. such as at about 25° C.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 8, 2010
    Assignee: The Penn State Research Foundation
    Inventors: Chunshan Song, Xiaoliang Ma, Shingo Watanabe, Fuxia Sun
  • Patent number: 7731836
    Abstract: The invention relates to a process for the desulfurization of gasolines comprising a stage for fractionation of said gasoline into a light fraction that comprises thiophenic compounds such as thiophene or methylthiophenes, and a heavy fraction that concentrates the heaviest aromatic sulfur-containing compounds. The heavy fraction is treated by hydrodesulfurization, while the light fraction is brought into contact with a solid adsorbent that makes it possible to eliminate at least partially said light thiophenic compounds, whereby said adsorbent solid is regenerated by a flow internal to the process.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: June 8, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Alexandre Nicolaos, Florent Picard
  • Publication number: 20100116717
    Abstract: A highly active nickel carrier catalyst based on aluminium oxide has a nickel content of approximately 20 to 70 wt.-% (as Ni) and optionally comprises a bonding agent and optionally a promoter, selected from the compounds of Mg, Ti, Pb, Pt, Ba, Ca and/or Cu, wherein the size of the Ni crystallites in the reduced state is in the range of approximately 3.5 to 4.5 nm and the distortion factor of the Ni crystallites is approximately 2 to 5%. In a method for the reduction of the content of sulphur compounds in hydrocarbon-based fuels by selective adsorption of the sulphur compounds on a nickel catalyst, a nickel catalyst based on aluminium oxide is used, particularly the nickel catalyst described above. A nickel catalyst based on aluminium oxide may be used for reducing the sulphur compound content in hydrocarbon-based fuels by selective adsorption of the sulphur compounds on said catalyst and/or for the hydrogenation of aromatic compounds.
    Type: Application
    Filed: March 13, 2008
    Publication date: May 13, 2010
    Applicant: SUD-CHEMIE AG
    Inventors: Jurgen Ladebeck, Tiberius Regula, Klaus Wanninger, Wolfgang Gabriel, Frank Grossmann, Jürgen Koy
  • Patent number: 7708956
    Abstract: A method and an apparatus for removing sulfur hydrocarbon compounds from a naphtha stream and for simultaneously removing sulfur hydrocarbon compounds from two streams is described. A separator vessel having a top, a bottom, a primary feed inlet and a co-feed inlet is disposed vertically above the primary feed inlet. The separator vessel further includes a catalyst bed disposed between the co-feed inlet and the top. A primary feed stream comprising sulfur hydrocarbon compounds is delivered through the effluent inlet and a vaporized co-feed stream that also comprises sulfur hydrocarbon compounds is delivered through the co-feed inlet. Vaporized sulfur hydrocarbon compounds from the primary feed stream with the vaporized co-feed stream pass upwardly through the desulfurization catalyst bed. Sulfur hydrocarbon compounds from both primary feed and co-feed stream are at least partially converted to hydrogen sulfide and non-sulfur containing hydrocarbons in the catalyst bed.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: May 4, 2010
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Giles R. Maddox, David A. Lindsay
  • Patent number: 7686943
    Abstract: The invention relates to a process for upgrading hydrocarbonaceous feedstreams by hydroprocessing using bulk bimetallic catalysts. More particularly, the invention relates to a catalytic hydrotreating process for the removal of sulfur and nitrogen from a hydrocarbon feed such as a fuel or a lubricating oil feed. The catalyst is a bulk catalyst containing at leas one Group VIII metal and at least one Group VIB metal. The catalyst is prepared hydrothermally.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Sonja Eijsbouts, Frans L. Plantenga
  • Patent number: 7678264
    Abstract: Methods and systems for contacting of a crude feed with one or more catalysts produces a total product that includes a crude product are described. At least one of the catalysts is an uncalcined catalyst. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has a nitrogen content of at most 90% of the nitrogen content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: March 16, 2010
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 7670477
    Abstract: A process and the use of a process for desulphurizing a hydrocarbon feed is described which comprises at least one of the following steps: A a step for selective hydrogenation of diolefins present in said initial hydrocarbon feed, in the presence of a catalyst comprising a metal from group VIII of the periodic table on an inert support based on metal oxides, in the presence of a quantity of hydrogen which is in excess with respect to the stoichiometric value necessary for hydrogenating all of said diolefins, the mole ratio between the hydrogen and the diolefins being in the range 1 to 5; b) Extraction, using an appropriate solvent, of said hydrogenated fraction to obtain at least two cuts including: a raffinate comprising the majority of the olefins, paraffins and naphthenes and a reduced quantity of sulphur-containing compounds contained in the initial feed; a heavy fraction containing the heavy aromatic hydrocarbons and the majority of the sulphur-containing compounds contained in the initial feed; C
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: March 2, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Sylvain Louret, Florent Picard
  • Publication number: 20100044275
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Application
    Filed: October 26, 2009
    Publication date: February 25, 2010
    Applicant: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Leonard, Peter Kokayeff
  • Publication number: 20100025301
    Abstract: A process for removing sulfur-containing compounds from fuel, said process comprising contacting the fuel in liquid phase with air to oxidize the sulfur-containing compounds, said contacting being carried out in the presence of at least one transition metal oxide catalyst, wherein the catalyst is supported on a porous support and wherein the porous support comprises a support material selected from the group consisting of a titanium oxide, a manganese oxide and a nanostructured material of the aforementioned support materials.
    Type: Application
    Filed: June 4, 2009
    Publication date: February 4, 2010
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Armando Borgna, Chuandayani Gunawan Gwie, Silvia Dewiyanti, Jeyagowry Thirugnanasampanthar
  • Patent number: 7641789
    Abstract: Process to prepare a base oil having a viscosity index of between 80 and 140 starting from a distillate or a de-asphalted oil by (a) contacting the feedstock in the presence of hydrogen with a sulphided hydrodesulphurization catalyst comprising nickel and tungsten on an acid amorphous silica-alumina carrier and (b) performing a pour point reducing step on the effluent of step (a) to obtain the base oil.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: January 5, 2010
    Assignee: Shell Oil Company
    Inventors: Patrick Moureaux, Johannes Anthonius Robert Van Veen
  • Publication number: 20090321321
    Abstract: The invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel, which adsorbent comprises: (1) a carrier consisting of a source of silica, an inorganic oxide binder, and at least one oxide of metal selected from Groups IIB, VB and VIB; (2) at least one accelerant metal which is capable of reducing the sulfur in oxidized state to hydrogen sulfide and has a ?<0.5, wherein ?=(the amount in percentage of accelerant metal in crystal phase)/(the amount in percentage of accelerant metal in the adsorbent). The active components in the adsorbent can be evenly dispersed on the carrier in a matter close to monolayer dispersion, and which greatly improves the activity of the adsorbent. The preparation method and the use of the above adsorbent are provided.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 31, 2009
    Applicants: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Publication number: 20090308792
    Abstract: Oil soluble catalysts are used in a process to hydrodesulfurize petroleum feedstock having a high concentration of sulfur-containing compounds and convert the feedstock to a higher value product. The catalyst complex includes at least one attractor species and at least one catalytic metal that are bonded to a plurality of organic ligands that make the catalyst complex oil-soluble. The attractor species selectively attracts the catalyst to sulfur sites in sulfur-containing compounds in the feedstock where the catalytic metal can catalyze the removal of sulfur. Because the attractor species selectively attracts the catalysts to sulfur sites, non-productive, hydrogen consuming side reactions are reduced and greater rates of hydrodesulfurization are achieved while consuming less hydrogen per unit sulfur removed.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 17, 2009
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Zhihua Wu, Zhenhua Zhou, Bing Zhou
  • Publication number: 20090288993
    Abstract: An adsorbent for desulfurizing cracking gasoline or diesel fuel comprising 1) pillared clay, (2) inorganic oxide binder, (3) an oxide of one or more metals selected from Groups IIB, VB and VIB, and (4) at least one metal accelerant selected from cobalt, nickel, iron and manganese. The adsorbent exhibits excellent abrasion-resistant strength and desulfurization performance.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 26, 2009
    Applicants: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun LONG, Huiping TIAN, Wei LIN
  • Publication number: 20090283448
    Abstract: A hydrocarbon desulfurization system that circulates fluidizable solid particles through a fluidized bed reactor, a fluidized bed regenerator, and a fluidized bed reducer to thereby provide for substantially continuous desulfurization of a hydrocarbon-containing fluid stream and substantially continuous regeneration of the solid particles. A novel transport system is employed for transporting the solid particles between the reactor, the regenerator, and the reducer. The transport system uses close-coupled vessels and gravity flow between various vessels to minimize equipment cost and particle attrition.
    Type: Application
    Filed: October 2, 2006
    Publication date: November 19, 2009
    Applicant: ConocoPhillips Company
    Inventors: Victor G. Hoover, Max W. Thompson, Darrin D. Barnes, Joe D. Cox, Philip L. Collins, Christopher J. Lafrancois, Ricky E. Snelling, Jean B. Thesee, Robert Zapata
  • Patent number: 7615145
    Abstract: The present invention relates to a process of reducing sulfur- or nitrogen-containing compounds and producing oxygenates, and in particular to a one-pot process of reducing sulfur- or nitrogen-containing compounds and also producing oxygenates in the presence of a homogeneous catalyst such as Mn+/a first solvent or M1n+/a second solvent/M2m+/a third solvent or a mixture thereof, the process herein being useful as an excellent octane booster in the reformulated gasoline and as a cetane booster for the future oxygenated diesel in a one-pot reaction.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: November 10, 2009
    Assignee: Kocat Inc.
    Inventors: Jin S. Yoo, Sang-Chul Lee, Ho Dong Kim
  • Publication number: 20090272675
    Abstract: A method for producing a substantially desulfurized a hydrocarbon fuel stream at temperatures less than 100° C. The method includes providing a nondesulfurized fuel cell hydrocarbon fuel stream that may include water and passing the fuel stream sequentially through a zeolite Y adsorbent and a selective sulfur adsorbent. The zeolite Y adsorbent may be exchanged with copper ions. The method produces a substantially desulfurized hydrocarbon fuel stream containing less than 50 ppb sulfur.
    Type: Application
    Filed: June 5, 2009
    Publication date: November 5, 2009
    Applicant: SUD-CHEMIE INC.
    Inventors: Chandra C Ratnasamy, Jon P. Wagner, R. Steve Spivey, Hans-Georg Anfang