Second Stage Is Cracking Patents (Class 208/54)
  • Patent number: 11618857
    Abstract: An electric cracking furnace system for converting a hydrocarbon feedstock into cracked gas includes a mixing device for mixing hydrocarbon feedstock with slightly superheated and/or saturated steam. The system includes a steam drum, an electric furnace, a primary transfer line exchanger (PTLE), a secondary transfer line exchanger (STLE), and a tertiary transfer line exchanger (TTLE). The electric furnace includes a feed inlet for a hydrocarbon feedstock-saturated steam mixture and an outlet for a cracked gas. The steam drum includes a saturated steam outlet connected to the mixing device, and a water outlet and a steam inlet both connected to the STLE. The PTLE is configured to preheat the hydrocarbon feedstock-saturated steam mixture before entry into the electric furnace and to cool the cracked gas provided by the electric furnace. The STLE is configured to generate steam and to cool the cracked gas provided by the PTLE.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: April 4, 2023
    Assignee: T.EN Process Technology Inc.
    Inventors: Qingqi Wang, Eric Stanley Wagner
  • Patent number: 10913901
    Abstract: An integrated method for mesophase pitch and petrochemicals production. The method including supplying crude oil to a reactor vessel; heating the crude oil in the reactor vessel to a predetermined temperature for a predetermined amount of time; reducing asphaltene content in the crude oil by allowing polymerization reactions to occur in the reactor vessel at an elevated pressure in the absence of oxygen; producing a three-phase upgraded hydrocarbon product comprising gas, liquid, and solid hydrocarbon components, where the liquid hydrocarbon component comprises deasphalted oil and the solid hydrocarbon component comprises mesophase pitch; separating the gas, liquid, and solid hydrocarbon components; directly utilizing the liquid hydrocarbon component for petrochemicals production; and directly utilizing the solid hydrocarbon component for carbon artifact production.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: February 9, 2021
    Assignees: SAUDI ARABIAN OIL COMPANY, KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Remi Mahfouz, Ola Ali, Isidoro Morales Osorio, Wei Xu, Xinglong Dong, Yu Han
  • Publication number: 20150076032
    Abstract: Heavy gas oil components, coking process recycle, and heavier hydrocarbons in the delayed coking process are cracked in the coking vessel by injecting a catalytic additive into the vapors above the gas/liquid-solid interface in the coke drum during the coking cycle. The additive comprises cracking catalyst(s) and quenching agent(s), alone or in combination with seeding agent(s), excess reactant(s), carrier fluid(s), or any combination thereof to modify reaction kinetics to preferentially crack these components. The quenching effect of the additive can be effectively used to condense the highest boiling point compounds of the traditional recycle onto the catalyst(s), thereby focusing the catalyst exposure to these target reactants. Exemplary embodiments of the present invention can also provide methods to (1) reduce coke production, (2) reduce fuel gas production, and (3) increase liquids production.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 19, 2015
    Inventor: Roger G. ETTER
  • Patent number: 8936715
    Abstract: Disclosed is a method of manufacturing high quality lube base oil (Group III) from unconverted oil having various properties obtained in a variety of hydrocrackers using improved catalytic dewaxing and hydrofinishing, the method including producing unconverted oil of at least one kind in the same or different hydrocrackers; subjecting the unconverted oil to vacuum distillation; supplying all or part of the distillate fractions to a catalytic dewaxing reactor; supplying the dewaxed oil fraction to a hydrofinishing reactor; and stripping the hydrofinished light oil fraction, wherein make-up hydrogen is supplied upstream of the hydrofinishing reactor to increase hydrogen partial pressure, thereby enabling high quality base oil to be manufactured at high yield under optimal process conditions using unconverted oil produced by hydrocracking under various conditions.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: January 20, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Kyung Seok Noh, Yong Woon Kim, Gyung Rok Kim, Jae Wook Ryu, Sun Hyuk Bae, Tae Young Jang, Sun Choi, Seung Hoon Oh
  • Patent number: 8888991
    Abstract: Heavy gas oil components, coking process recycle, and heavier hydrocarbons in the delayed coking process are cracked in the coking vessel by injecting a catalytic additive into the vapors above the gas/liquid-solid interface in the coke drum during the coking cycle. The additive comprises cracking catalyst(s) and quenching agent(s), alone or in combination with seeding agent(s), excess reactant(s), carrier fluid(s), or any combination thereof to modify reaction kinetics to preferentially crack these components. The quenching effect of the additive can be effectively used to condense the highest boiling point compounds of the traditional recycle onto the catalyst(s), thereby focusing the catalyst exposure to these target reactants. Exemplary embodiments of the present invention can also provide methods to (1) reduce coke production, (2) reduce fuel gas production, and (3) increase liquids production.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 18, 2014
    Inventor: Roger G. Etter
  • Patent number: 8394257
    Abstract: A reactor process added to a coking process to modify the quantity or yield of a coking process product and/or modify certain characteristics or properties of coking process products.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: March 12, 2013
    Inventor: Roger G. Etter
  • Patent number: 8372265
    Abstract: Undesirable gas oil components are selectively cracked or coked in a coking vessel by injecting an additive into the vapors of traditional coking processes in the coking vessel prior to fractionation. The additive contains catalyst(s), seeding agent(s), excess reactant(s), quenching agent(s), carrier(s), or any combination thereof to modify reaction kinetics to preferentially crack or coke these undesirable components that typically have a high propensity to coke. Exemplary embodiments of the present invention also provide methods to control the (1) coke crystalline structure and (2) the quantity and quality of volatile combustible materials (VCMs) in the resulting coke. That is, by varying the quantity and quality of the catalyst, seeding agent, and/or excess reactant the process may affect the quality and quantity of the coke produced, particularly with respect to the crystalline structure (or morphology) of the coke and the quantity & quality of the VCMs in the coke.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 12, 2013
    Inventor: Roger G. Etter
  • Patent number: 8372264
    Abstract: Heavy gas oil components, coking process recycle, and heavier hydrocarbons in the delayed coking process are cracked in the coking vessel by injecting a catalytic additive into the vapors above the gas/liquid-solid interface in the coke drum during the coking cycle. The additive comprises cracking catalyst(s) and quenching agent(s), alone or in combination with seeding agent(s), excess reactant(s), carrier fluid(s), or any combination thereof to modify reaction kinetics to preferentially crack these components. The quenching effect of the additive can be effectively used to condense the highest boiling point compounds of the traditional recycle onto the catalyst(s), thereby focusing the catalyst exposure to these target reactants. Exemplary embodiments of the present invention can also provide methods to (1) reduce coke production, (2) reduce fuel gas production, and (3) increase liquids production.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: February 12, 2013
    Inventor: Roger G. Etter
  • Patent number: 8361310
    Abstract: Gas oil components, coking process recycle, and heavier hydrocarbons are cracked or coked in the coking vessel by injecting an additive into the vapors of traditional coking processes in the coking vessel. The additive contains catalyst(s), seeding agent(s), excess reactant(s), quenching agent(s), carrier(s), or any combination thereof to modify reaction kinetics to preferentially crack or coke these components. Modifications of the catalysts in the additive improve performance for certain desired outcomes. One exemplary embodiment of the present invention uses the olefin production capabilities from newly developed catalysts to increase the production of light olefins (e.g. ethylene, propylenes, butylenes, pentenes) for alkylation process unit feed, the production of oxygenates, and petrochemical feedstocks, such as plastics manufacture. Another exemplary embodiment of the present invention is the use of the olefin production from newly developed catalysts to improve the coker naphtha quality.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: January 29, 2013
    Inventors: Roger G. Etter, Augusto Quinones
  • Patent number: 8206574
    Abstract: A reactor process added to a coking process to modify the quantity or yield of a coking process product and/or modify certain characteristics or properties of coking process products.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: June 26, 2012
    Inventor: Roger G. Etter
  • Patent number: 8168061
    Abstract: This invention relates to a process for the selective conversion of vacuum gas oil. The vacuum gas oil is treated in a two step process. The first is thermal conversion and the second is catalytic cracking of the products of thermal conversion. The product slate can be varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step. The combined products from thermal and catalytic cracking are separated in a divided wall fractionator.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: May 1, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Patent number: 8163168
    Abstract: The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: April 24, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Publication number: 20120006723
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. Dinicolantonio, John J. Waldrop
  • Patent number: 7833408
    Abstract: Systems and methods for staging an investment in hydrocarbon processing are provided. In a first stage, a hydrocarbon feed can be apportioned equally or unequally into first and second portions. The first portion can be mixed with one or more oxidants and gasified to provide a first effluent, at least a portion of which can be combusted to provide steam. The second portion can be mixed with one or more solvents to provide one or more fungible hydrocarbon products, at least a portion of which can be sold to generate capital. In a second stage, the hydrocarbon feed can be mixed with one or more solvents and one or more non-catalytic solids and the resultant mixture thermally cracked to provide one or more hydrocarbon products and coked non-catalytic solids. The coked, non-catalytic solids can be regenerated and recycled.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: November 16, 2010
    Assignee: Kellogg Brown & Root LLC
    Inventor: Pritham Ramamurthy
  • Publication number: 20080299019
    Abstract: A system and process for upgrading hydrocarbons such as heavy oils includes high temperature plasma reactor apparatus, in one or more vessels, into which the oils are introduced along with water, such as steam, to produce lighter hydrocarbon fractions, along with carbon monoxide and hydrogen, that flows to an additional stage where more hydrocarbons and water are introduced for further fractionating reactions facilitated by reaction of carbon monoxide and water to produce carbon dioxide and nascent, or prompt, free radicals of hydrogen. Heavy hydrocarbons upgraded can include heavy oils in the form of tar sands, oil shale, and oil residuals. The vessel or vessels can each contain a carbonaceous bed facilitating the described reactions and example embodiments include one vessel with the reactions performed in a single bed and, also, two vessels with the reactions performed in a carbonaceous bed portion in each vessel.
    Type: Application
    Filed: May 29, 2007
    Publication date: December 4, 2008
    Inventors: Shyam V. Dighe, Mark Anthony Montemurro, Richard Dale Bower, Aleksandr Gorodetsky, Mark F. Darr, Ivan A. Martorell
  • Patent number: 7404889
    Abstract: A method for thermally cracking a hydrocarbonaceous feed wherein the feed is first processed in an atmospheric thermal distillation step to form a light gasoline and atmospheric residuum mixture. The light gasoline/residuum combination is gasified at least in part in a vaporization step, and the gasified product of the vaporization step is thermally cracked.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: July 29, 2008
    Assignee: Equistar Chemicals, LP
    Inventor: Donald H. Powers
  • Patent number: 6410814
    Abstract: A process for synthesis of lower isoparaffins from synthesis gas that is a mixture of hydrogen and carbon monoxide, wherein straight chain hydrocarbons are synthesized while isoparaffins and isoolefins are also produced through decomposition of hydrocarbons having a higher carbon number by use of a solid acid catalyst in the first stage, and isoparaffins are synthesized in the second stage. The straight chain hydrocarbons are produced by contacting the synthesis gas with a Fischer-Tropsch synthesis catalyst that is mixed with a solid acid catalyst for mainly hydrocracking long chain hydrocarbons. The isoparaffins are produced by contacting the straight chain hydrocarbons synthesized in the first stage, with a mixture of a hydrogenation catalyst for hydrogenating olefins and a solid acid catalyst for hydrocracking and isomerizing the straight chain hydrocarbons.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: June 25, 2002
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Kaoru Fujimoto, Noritatsu Tsubaki
  • Patent number: 5780696
    Abstract: The invention relates to a process for recycling waste which consists essentially of one or more plastics comprising polyvinyl chloride (PVC), in which:the waste is mixed with a heavy oil, in a reactor under an inert atmosphere, at an internal temperature of at least 300.degree. C., and the hydrogen chloride (HCl) which is evolved is collected;the contents of the reactor are then cracked at a temperature of at least 400.degree. C., and at least part of the gases which are evolved are extracted from the reactor;the contents of the reactor are then cooled and the residual solid product is collected.HCl, coke, hydrocarbon gases and various oils are thus mainly obtained.
    Type: Grant
    Filed: February 24, 1997
    Date of Patent: July 14, 1998
    Assignee: Solvay (Societe Anonyme)
    Inventor: Siegfried Bauer
  • Patent number: 4954240
    Abstract: A hydrocarbonaceous feed, such as petroleum vacuum distillation bottoms, is upgraded by a combination coking and catalytic slurry hydroconversion process wherein a bottoms fraction from coking is passed to a slurry hydroconversion zone, and the bottoms fraction from the slurry hydroconversion zone is also passed thorugh a microfiltration system to remove catalyst particles.
    Type: Grant
    Filed: December 19, 1988
    Date of Patent: September 4, 1990
    Assignee: Exxon Research & Engineering Company
    Inventors: Clarence M. Eidt, Jr., Clyde L. Aldridge, Roby Bearden, Jr.
  • Patent number: 4882036
    Abstract: A hydrocarbonaceous feed, such as petroleum vacuum distillation bottoms, is upgraded by a combination coking and catalytic slurry hydroconversion process wherein a bottoms fraction from coking is passed through a microfiltration system to remove coke fines, the filtrate passed to a slurry hydroconversion zone, and the bottoms fraction from the slurry hydroconversion zone is also passed through a microfiltration system to remove catalyst particles.
    Type: Grant
    Filed: December 27, 1988
    Date of Patent: November 21, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Clarence M. Eidt, Jr., Clyde L. Aldrige, Roby Bearden, Jr.
  • Patent number: 4839023
    Abstract: Disclosed is a process for converting heavy hydrocarbonaceous feedstock to more valuable products. The feedstock is introduced into a coking unit containing a coking zone and a scrubbing zone. The bottoms fraction from the scrubbing zone is passed through a microfiltration unit, thus removing fine coke particles which are recycled to the coking zone. The substantially solids-free filtrate is hydrotreated, then passed to a catalytic cracking unit.
    Type: Grant
    Filed: September 16, 1987
    Date of Patent: June 13, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Francis X. Mayer, William E. Lewis, Joseph P. Matula, David W. Staubs
  • Patent number: 4834864
    Abstract: Disclosed is a process wherein a scrubber bottom stream from a fluid coker is departiculated by passing it through a microfiltration system. The substantially solids-free filtrate is then upgraded by hydrotreating.
    Type: Grant
    Filed: September 16, 1987
    Date of Patent: May 30, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Francis X. Mayer, William E. Lewis, Joseph P. Matula, David W. Staubs
  • Patent number: 4750985
    Abstract: A carbonaceous feed, such as a heavy hydrocarbonaceous oil or coal and mixtures thereof, is upgraded by a combination coking and catalytic slurry hydroconversion process which may be integrated with a deasphalting process.
    Type: Grant
    Filed: December 6, 1985
    Date of Patent: June 14, 1988
    Assignee: Exxon Research and Engineering Company
    Inventors: Clyde L. Aldridge, Roby Bearden, Jr., Clarence M. Eidt, Jr.
  • Patent number: 4569752
    Abstract: A carbonaceous feed, such as a heavy hydrocarbonaceous oil or coal, and mixtures thereof, is upgraded by a combination coking and catalytic slurry hydroconversion process in which a catalyst precursor is added to the feed of the hydroconversion zone as a catalyst precursor concentrate prepared from a virgin hydrocarbonaceous oil and a thermally decomposable or oil dispersible metal compound.
    Type: Grant
    Filed: November 30, 1984
    Date of Patent: February 11, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Clyde L. Aldridge, Roby Bearden, Jr.
  • Patent number: 4569751
    Abstract: A carbonaceous feed, such as a heavy hydrocarbonaceous oil or coal and mixtures thereof, is upgraded by a combination coking and catalytic slurry hydroconversion process.
    Type: Grant
    Filed: November 30, 1984
    Date of Patent: February 11, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Clarence M. Eidt, Jr., Clyde L. Aldridge, Roby Bearden, Jr.
  • Patent number: 4411769
    Abstract: The invention relates to an improvement in an integrated, two stage coking and steam cracking process for the production of unsaturated light hydrocarbons. A heavy hydrocarbonaceous oil is first coked in a fluidized bed coking zone. The vaporous conversion product is passed to a dilute phase. High temperature cracking in the presence of steam is carried out on the vaporous coker conversion product by injecting into the vapors a stream of hot coke particles at a sufficient temperature and in sufficient amount to raise the coker vapors to steam cracking temperature and supply the endothermic heat of reaction. Solids are separated from product gas in a gas-solids separation zone such as one or more cyclones and sent to the fluid coking zone and the gas is quenched to stop olefin degradation reactions. According to the improvement, relatively low temperature steam is introduced into contact with the separated solids to superheat the steam and cool the solids.
    Type: Grant
    Filed: March 23, 1982
    Date of Patent: October 25, 1983
    Assignee: Exxon Research & Engineering Co.
    Inventor: Morey E. Oldweiler
  • Patent number: 4379046
    Abstract: The invention relates to an improvement in an integrated, two stage coking and steam cracking process for the production of unsaturated light hydrocarbons. A heavy hydrocarbonaceous oil is first coked in a fluid coking zone. High temperature cracking in the presence of steam is carried out on the vaporous coker conversion product by injecting into the vapors a stream of hot coke particles at a sufficient temperature and in sufficient amount to raise the coker vapors to steam cracking temperature and supply the endothermic heat of reaction. Solids are separated from gas in a gas-solids separation zone such as one or more cyclones and sent to the fluid coking zone and the gas is quenched to stop olefin degradation reactions. According to the improvement, a portion of the separated solids is diverted from entering the fluid coking zone so that the amount of separated solids it receives is only sufficient to satisfy its heat requirement. Solids may be diverted via the cyclone dipleg.
    Type: Grant
    Filed: June 11, 1981
    Date of Patent: April 5, 1983
    Assignee: Exxon Research & Engineering Co.
    Inventor: Morey E. Oldweiler
  • Patent number: 4297202
    Abstract: Unsaturated light hydrocarbons are produced by coking a heavy hydrocarbonaceous oil in a conventional fluid coking zone and subsequently heating the vaporous coker product to a higher temperature in a gas-solids separation zone, such as the coking reactor's cyclone separator, with hot solids derived from a coke gasification zone.
    Type: Grant
    Filed: July 5, 1978
    Date of Patent: October 27, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventor: Don E. Blaser
  • Patent number: 4235700
    Abstract: A low metals coke is produced in a two-stage coking process in which the first coking stage is once-through fluid coking, and the heavy oil separated from the fluid coking zone effluent is coked in a second coking stage, which is delayed coking.
    Type: Grant
    Filed: October 12, 1979
    Date of Patent: November 25, 1980
    Assignee: Exxon Research & Engineering Co.
    Inventor: William J. Metrailer
  • Patent number: 4130475
    Abstract: A process for producing premium delayed petroleum coke suitable for manufacture of graphite electrodes for use in electric arc steel furnaces. The process requires a fresh feedstock having specific characteristics, and incorporates an internally produced thermal tar as a supplement to the fresh feed. The fresh feedstock is an atmospheric reduced crude petroleum oil having a specified gravity, carbon residue and boiling distribution.
    Type: Grant
    Filed: November 10, 1977
    Date of Patent: December 19, 1978
    Assignee: Continental Oil Company
    Inventors: Daniel F. Cameron, Gary C. Hughes, Harry R. Janssen
  • Patent number: 4040943
    Abstract: A combination thermal cracker and coker for making specialty coke which permits high combined feed ratios necessary for total conversion to normally gaseous hydrocarbons, gasoline and coke without overloading the coke chamber with vapors. The process permits the use of smaller diameter coke chambers and/or lower pressure coke chambers.
    Type: Grant
    Filed: June 30, 1976
    Date of Patent: August 9, 1977
    Assignee: UOP Inc.
    Inventor: Frank Stolfa