Abstract: A method of recovering gold and copper from a sulfide ore includes (a) removing valuable fines from a product stream from a comminution circuit, such as a crushing and milling circuit, for run of mine ore and producing a valuable fines concentrate stream and (b) processing the remaining comminution product stream after valuable fines removal and producing a valuable coarse concentrate stream.
Abstract: A pre-cleaning system is provided. The pre-cleaning system is for providing purification of unshelled hazelnut at least partially from foreign substances before processing of unshelled hazelnut. The improvement of the pre-cleaning system is that the pre-cleaning system includes at least one first separation unit where the foreign substances, which are outside the acceptable dimensions of unshelled hazelnut, are sieved and separated, at least one second separation unit positioned in the vicinity of said first separation unit and which can provide separation of foreign substances, which have specific weight lower than the specific weight of acceptable unshelled hazelnut, by means of an artificial air flow provided in at least one flow path provided thereon, at least one third separation unit positioned in the vicinity of said second separation unit and which can provide separation of foreign substances, which have specific weight higher than the specific weight of unshelled hazelnut.
Type:
Grant
Filed:
January 19, 2022
Date of Patent:
February 6, 2024
Assignee:
BALSU GIDA SANAYI VE TICARET ANONIM SIRKETI
Abstract: This invention relates to a process for recovering value metals from sulphide ore, including steps of crushing ore in a primary crusher (14) to a size of about 40 cm and less, passing the crushed ore through one or more of the following pre-beneficiation processes such as bulk sorting (16) and screening (20) followed by coarse floatation (46/50), or gravity separation or magnetic separation. A waste stream (54) from the pre-beneficiation process/es with a particle size greater than 100 ?m is stacked in a heap (26) and subjected to a heap leach. This integrated process utilises the pre-beneficiation techniques best suited to the characteristics of a particular orebody; and during the pre-beneficiation simultaneously creating a low grade stream that yields significantly higher recoveries than achievable by normal heap leaching of low grade run of mine ore.
Type:
Grant
Filed:
May 15, 2018
Date of Patent:
December 21, 2021
Assignee:
ANGLO AMERICAN SERVICES (UK) LTD.
Inventors:
Anthony Owen Filmer, Daniel John Alexander
Abstract: This disclosure is generally drawn to systems, devices, apparatuses, and/or methods, related to monitoring a shaker used for separating solids from fluid. Specifically, the disclosed systems, devices, apparatuses, and/or methods relate to capturing infrared images of a shaker or components thereof (e.g., shaker baskets, decks, screens) and performing actions on the shaker, its components, and/or the its operation based at least in part on the captured infrared images.
Type:
Grant
Filed:
October 12, 2016
Date of Patent:
May 5, 2020
Assignee:
M-I L.L.C.
Inventors:
Benjamin Lanning Holton, Colin Stewart, Brian Neil Ligertwood
Abstract: A method for recycling electronic waste may method comprise receiving electronic waste from an electronic waste-generating entity, separating components of the electronic waste into valuable recyclable material, hazardous material, and disposable non-hazardous material, creating a plurality of building material units comprising the disposable non-hazardous material, and sending at least a portion of the plurality of building material units back to the electronic waste-generating entity.
Abstract: An apparatus for entrapping magnetic material comprising a magnetic sub-assembly and a retention trap removably attached thereto. The retention trap having an entrapment surface such that magnetic material drawn into the trap as a result of the magnetic influence of the magnetic sub-assembly, is magnetically held and mechanically trapped within said entrapment surface.
Abstract: Methods and systems for processing incineration byproduct from waste incinerators, ash purification and recovery of materials and metals. High levels of aggregate and metals recovery and ash purification are achieved for residual ash with reduced environmental contaminants.
Abstract: This disclosure is generally drawn to systems, devices, apparatuses, and/or methods, related to monitoring a shaker used for separating solids from fluid. Specifically, the disclosed systems, devices, apparatuses, and/or methods relate to controlling an actuated arm to inspect, remove, replace, repair, clean, and/or install screen assemblies based on monitoring the shaker and its screen assemblies. In some examples, a system may include an actuated arm, a monitoring tool, and a controller. The actuated arm may be adjacent a shaker for separating one or more solids from a fluid. The monitoring tool may be coupled to the actuated arm and may monitor a screen assembly in the shaker. The controller may be in electrical communication with the actuated arm and the monitoring tool, and may control the actuated arm based on the monitoring of the screen assembly.
Type:
Grant
Filed:
June 16, 2014
Date of Patent:
March 13, 2018
Assignee:
M-I L.L.C.
Inventors:
Thomas Geehan, Bradley Jones, Eric Cady
Abstract: A method of recycling a filler included in artificial turf by sorting the filler into two or more materials, including: a first sorting operation of sorting the two or more materials based on a grain size; and a second sorting operation of sorting the materials, which are sorted by the first sorting operation and have grain sizes belonging to a predetermined range, based on specific gravity.
Abstract: A system is disclosed for auditing waste retrieved by a service vehicle. The system may have an optical sensor mountable onboard the service vehicle and configured to capture image data associated with the waste as the waste falls into the service vehicle during completion of a waste service activity. The system may also have at least one controller in communication with the optical sensor and being configured to generate at least one of an alert and a recommendation regarding a mix of the waste based on the image data.
Abstract: A technology for material separation is provided. The technology enables an output of a first material from a rotary lifter. The technology enables a direction of a fluid stream onto the first material in flight based on the output of the first material such that the first material is separated into at least a second material and a third material. The technology enables a conveyance of the second material away from the rotary lifter. The technology enables a removal of the third material via a vacuum port.
Abstract: Processing excavated ASR from an ASR landfill. The processing includes excavating the ASR and co-mingled material, sizing the excavated material, separating the excavated, sized material into a heavy and light fraction, and further processing the heavy fraction to recover ferrous and non-ferrous metals.
Abstract: The invention relates to a method for processing waste incineration ashes (A), in particular domestic waste incineration ashes (HMVA), in which the ashes are classified into a plurality of fractions of different grain size distributions in a processing plant (11) separated from the actual waste incineration process. The ashes (A) are classified exclusively using a wet classification process in the processing plant (11), only wet classification processes that are gentle to the grains being used, and the wet classification process is performed in such a way that all of the ashes (A) are classified into at least one fine fraction (I) loaded with harmful substances and at least one coarse fraction (II, III) that contains only a small amount of harmful substances or no harmful substances at all.
Type:
Application
Filed:
January 21, 2015
Publication date:
May 14, 2015
Inventors:
Friedrich-Wilhelm Evers, Alexandra Beckmann
Abstract: A process for concentrating manganese from the tailing of a manganese-carrying mineral including removing a coarse particle size fraction from the tailing, desliming and conducting an acidic or a basic reverse cationic flotation. The manganese-carrying minerals are typically minerals with low manganese content from the lithologies “Tabular Pelite” (or PETB), Pelite Siltite (or PEST), Detritic (or DETR), Rich Pelite (or PERC) and Metallurgical Bioxide (or BXME). In another aspect, the present invention also relates to a reverse cationic flotation used to concentrate manganese which is carried out using depressor agents and collector agents as flotation reagents.
Type:
Grant
Filed:
February 4, 2014
Date of Patent:
April 14, 2015
Assignee:
Vale S.A.
Inventors:
Laurindo de Salles Leal Filho, Helder Silva Souza, André Soares Braga
Abstract: A method obtains non-magnetic ores from a suspension containing ore particle-magnetic particle agglomerates. The method involves dividing ore particle-magnetic particle agglomerates precipitated from the suspension into a mixture of separately present ore particles and magnet particles, separating the magnetic particles from the mixture, forming a first mass flow containing magnetic particles and a second mass flow containing ore particles. At least one information describing a measure of the content of ore particles in the first mass flow and being associated with the first mass flow and/or at least one information describing a measure of the portion of magnetic particles in the second mass flow and being associated with the second mass flow are determined in order to determine the efficiency of at least one of the separation processes described above.
Type:
Grant
Filed:
May 31, 2012
Date of Patent:
March 31, 2015
Assignee:
Siemens Aktiengesellschaft
Inventors:
Michael Diez, Argun Gökpekin, Wolfgang Krieglstein
Abstract: A method obtains non-magnetic ores from a suspension-like mass flow containing non-magnetic ore particles. The method involves mixing the mass flow with magnetic particles in a mixing device and forming ore particle-magnetic particle agglomerates, feeding the mass flow as a separator feed flow to a magnetic separator for separating the ore particle-magnetic particle agglomerates from the mass flow, forming a separator concentrate flow containing ore particle-magnetic particle agglomerates and a separator residual flow containing the remaining constituents of the mass flow, and separating the ore particles from the ore particle-magnetic particle agglomerates contained in the separator concentrate flow.
Type:
Grant
Filed:
May 31, 2012
Date of Patent:
March 31, 2015
Assignee:
Siemens Aktiengesellschaft
Inventors:
Michael Diez, Argun Gökpekin, Wolfgang Krieglstein
Abstract: In a method and an arrangement for treating a light fraction that is produced during the treatment of plastic-rich waste that is low in metal, at least the following steps are carried out consecutively: the light fraction is stressed by percussion and/or bashing, the light fraction is classified into at least two light fraction classes, at least one light fraction class is separated into at least one light material fraction and a heavy material fraction, at least one light material fraction is cleaned. The cleaning of the light material fraction (fibrous material), obtained after the separation, provides a very clean initial substance to be obtained, resulting in clearly improved material recycling and energy recovery.
Abstract: Inorganic fiber having the following composition ratio and comprising 40 wt % or less of shots each having a diameter of 45 ?m or more: [Composition ratio of inorganic fiber] SiO2 66 to 82 wt %; CaO 10 to 34 wt %; MgO 0 to 3 wt %; Al2O3 0 to 5 wt %; and the total of SiO2, CaO, MgO and Al2O3 is 98 wt % or more.
Type:
Application
Filed:
November 13, 2012
Publication date:
December 18, 2014
Inventors:
Takashi Nakajima, Ken Yonaiyama, Tetsuya Mihara, Tomohiko Kishiki
Abstract: Methods and systems for incineration ash such as ash from municipal waste incineration plants, purification and recovery of materials and metals. Increased levels of aggregate and metals recovery and purification are achieved and production of residual ash with less environmental contaminants.
Abstract: A method for separating a mixture of solid materials can includes a sorting step based on differences in X-Ray transmission of different materials and a density sorting step at an elevated density. The mixture of solid materials can be a plastic-rich mixture recovered from waste electrical and electronic equipment. The mixture of solid materials can include plastics that contain brominated flame retardants. In some cases, a XRT or DEXRT sorter is used to remove the majority of plastics that contain brominated flame retardants from the mixture.
Type:
Grant
Filed:
June 29, 2012
Date of Patent:
December 2, 2014
Assignee:
MBA Polymers, Inc.
Inventors:
Brian L. Riise, Martin Starchl, John Gysbers
Abstract: A process for the recovery of bottom ash is characterized by shredding and physical separation phases. The bottom ash undergoes an oxidation treatment of the amphoteric metals contained therein. After the process, the treated bottom ash can be employed as mineral additive for concretes or hydraulic bonding agents.
Abstract: At least one froth receiving device may be positioned in a slurry retained in a tank of a flotation cell of a flotation machine. Each of the froth receiving devices may be positioned adjacent to froth formed in the slurry by being positioned in the tank at a height that positions the froth receiving device in the froth or near the froth. Each froth receiving device may receive froth to extract the froth from the tank. In some embodiments, the extracted froth may be sent to at least one particle separation device so at least a portion of solid material in the froth is separated from liquid of the froth. The separated solid material may be moved to another machine for further processing for recovering the desirable material while any remaining solid material and liquid may be sent to another device for being utilized in further material processing.
Type:
Application
Filed:
December 21, 2011
Publication date:
November 6, 2014
Applicant:
FLSmidth A/S
Inventors:
Timothy J. Olson, Ronney Rogerio Rodrigues Silva
Abstract: Processing waste materials to recover valuable metals, such as copper, from the materials. Waste materials are further refined to concentrate the metallic material after the waste materials are initially processed. Processes include employing air separation and screening. Processes also include employing a dynamic sensor and a vacuum pressure separator to separate metals from other materials. A central processing facility may process metal concentrate from multiple concentration facilities.
Abstract: A mined ore processing apparatus to process mined ores, such as oil sands ore, into granular material is disclosed. An ore processor bed receives the ore to be processed. The ore processor bed has a frame supporting several rotating elements each separately driven to provide independent rotation rate and direction from the other. The ore processing bed is operable as a sizing device to decimate mined ore supply into granular material and separating it from rocks and other large lump mineral materials found in situ. The ore processing bed may be oriented to provide an upward inclination, which, when combined with alternating rotating element rotation directions, provides a crushing action to the ore material to crush larger rock. Alternately, a rock crusher is also provided to disintegrate oversized materials.
Type:
Grant
Filed:
March 9, 2012
Date of Patent:
October 7, 2014
Assignee:
Suncor Energy, Inc.
Inventors:
Brad Bjornson, Doug Cox, Paul MacDougall, Garth Booker
Abstract: A system and method directed to the economical recovery of valuable iron constituents from iron blast furnace and steel-making slag fines wherein the slag is obtained and subjected to a series of classification steps which progressively sort the slag fines by various physical characteristics, including magnetism, size, and density, into relatively iron-rich and relatively iron-poor classifications, resulting in the isolation of iron-rich commercial byproduct at one or more of the classification steps.
Abstract: A method for solid waste separation and processing (10) comprising the method steps of: (a) Passing a municipal solid waste (12) to a first size based separation step (14) producing at least a fine organic fraction(16) and a coarse fraction (18); (b) Passing the fine organic fraction (16) to a digestion process (20) by way of a glass and grit separation step (24); and (c) Recirculating the coarse fraction (18) of step (a) through the first size based separation step (14) at least once.
Type:
Application
Filed:
September 6, 2012
Publication date:
September 4, 2014
Applicant:
ANAECO LIMITED
Inventors:
Martin Richard Gravett, Janusz Krzysztof Fulara
Abstract: An apparatus (25) for use in screening a liquid and solids mixture feed (2) comprises a conduit (18), including a screening portion (22) that is formed and arranged to divide a liquid and solids mixture feed flowing through the conduit. The feed (2) is divided into a first, cleaned stream (C1) comprising liquid and solid particles of below a selected size limit, and a second, concentrated, stream (24) comprising liquid, and particles above the selected size limit. The apparatus (25) may be a stand alone module, part of a system with other solids and liquids separating equipment or an integral part of a solids and liquid separator such as a shale shaker. Methods of using the apparatus (25) are also described.
Abstract: The invention relates to a method for treating materials containing a mixture of plastic materials and metal materials, said method including: —crushing the material to be treated; pyrolysis of the crushed material; a first magnetic separation performed on the pyrolysed material providing, on the one hand, a ferrous metal fraction and, on the other hand, non-ferrous residue; —a second magnetic separation performed on the non-ferrous residue providing, on the one hand, a non-ferrous metal fraction and, on the other hand, non-magnetic residue. The invention also relates to a facility for implementing said method.
Type:
Grant
Filed:
November 13, 2009
Date of Patent:
August 12, 2014
Assignee:
Terra Nova
Inventors:
Christian Thomas, Joël Menuet, Gervais Vanhelle
Abstract: Non-limiting exemplary embodiment(s) of apparatus(es) and method(s) are described for the conveyance of fluid media and entrained materials between two or more locations, each possessing a different cross-sectional area. Equidistant pathways incorporated into uniquely designed conduits enable this transference to occur with minimal band spreading and separation resolution loss due to undesirable flow patterns that arise from end effects. The design enables the conduits to be employed with locations of almost any description including process channels, surfaces, or even open volume of any size and used for almost any purpose. The conduits and/or associated locations may be empty of any contents or filled with gelatinous, porous, granular, or particulated material. The design of non-limiting exemplary embodiment(s) of apparatus(es) and method(s) may be easily adapted or configured as necessary.
Abstract: Methods and systems for processing an iron ore tailings byproduct are described. In one embodiment, a method for processing an iron ore tailings byproduct includes sizing particles within a slurry of the iron ore tailings byproduct to separate particles from the slurry having a dimension less than a predetermined size. After sizing, the method may further include centrifugating the particles less than the predetermined size into centrifugated concentrate and tails portions. The centrifugated concentrate portion may be separated into separated concentrate and tails portions. Finally, in certain embodiments, the separated concentrate portion may be de-watered to a remaining composition of matter comprising iron in greater proportion than in the iron ore tailings byproduct. Generally, using the systems and methods described herein, iron that would have otherwise been un-recovered is extracted from the iron ore tailings byproduct.
Abstract: A method and apparatus for dewatering a mixture of granulate and water are disclosed. In accordance with one example of the system described herein, the apparatus includes a casing as well as hollow sieve body with side walls formed as a sieve, the sieve body being arranged in the casing and suspended thereto. The sieve body tapers towards the bottom, and a clearance is formed between the casing and sieve body. For delivering the granulate-water mixture an inlet is arranged in the upper part of the sieve body. A corresponding outlet for the dewatered granulate is located at the bottom of the sieve body. The inlet is arranged in the sieve body and the sieve is formed such that the water laterally escapes through the sieve into the clearance due to centrifugal and gravitational forces when passing through the sieve body from top to bottom.
Abstract: A method and system for controlled fractionation of particles. A sample having a plurality of particles of different size distributions. A uniform array for the preparing of optical traps having a selected array lattice constant. The plurality of particles for inputting the plurality of particles to the uniform array of optical traps at a driving direction angle ? and the plurality of particles separating along different directions ?v based on variable particle attributes.
Abstract: A separation system for separating a fluid mixture includes a uniaxial cyclonic separator (2) having a first inlet (16) for receiving a fluid mixture, a separation chamber (18) for separating the fluid mixture by cyclonic action into a dense first fluid and a less dense second fluid, a first outlet (22) for the first fluid and a second outlet (26) for the second fluid. The system further includes a reverse flow cyclonic separator (32) having a second inlet (30) for receiving the first fluid from the first outlet (22), a separation chamber for separating the first fluid by cyclonic action into a dense third fluid and a less dense fourth fluid, a third outlet (34) for the third fluid and a fourth outlet (36) for the fourth fluid. A method for the bulk separation of water from an oil/water mixture is also provided.
Type:
Grant
Filed:
August 5, 2013
Date of Patent:
June 10, 2014
Assignee:
Caltec Limited
Inventors:
Mir Mahmood Sarshar, Mirza Najam Ali Beg, Carl Wordsworth
Abstract: A variety of improved hydroclone based fluid filtering systems are described. The hydroclones generally include a tank having an internal chamber and a filter (preferably a surface filter) that is positioned within the internal chamber. The filter defines a filtered fluid chamber within the internal chamber of the tank. The hydroclone may be operated such that a vortex of flowing fluid is formed between the chamber wall and the filter with the filter being located in the center of the vortex. With this arrangement, the filter acts as a cross-flow filter. In one aspect of the invention, a circulating cleaning assembly is provided in the hydroclone region. In yet another aspect of the invention, improved hydroclone intake structures are described.
Abstract: Disclosed herein are methods of processing municipal solid waste in order to isolate a compostable product. The methods and system disclosed allow for municipal solid waste to be separated into an organic fraction and an inorganic fraction. The purity of the organic fraction may be enhanced in certain methods. The overall yield of organic material may be increased by subjecting inorganic material to further separation steps.
Type:
Application
Filed:
March 6, 2013
Publication date:
March 20, 2014
Applicant:
NATIONAL RECOVERY TECHNOLOGIES, LLC
Inventors:
Edward J. Sommer, JR., Dane H. Campbell, Robert H. Parrish
Abstract: Monodisperse metal oxide nanopowders are prepared by treating a dispersion of crude metal oxide nanopowder with ultrasonication, allowing the dispersion to settle, and subjecting the remaining suspended portion to centrifugation to obtain a supernatant comprising metal oxide nanopowder.
Type:
Grant
Filed:
March 19, 2012
Date of Patent:
February 11, 2014
Assignee:
The United States of America, as represented by the Secretary of the Navy
Inventors:
Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
Abstract: In a method and equipment for conditioning low-metal scrap high in plastics, which contains at least partially scrap high in plastics from shredder processes, especially of scrap vehicles, the method includes: splitting up ferromagnetic components from the scrap that is high in plastics; separating a first raw sand fraction from the scrap high in plastics that has been reduced in metals; reducing in size the fraction high in plastics that remains after the isolation of the first raw sand fraction; separating a second raw sand fraction after reducing in size the remaining fraction high in plastics; and splitting up the remaining fraction, that is high in plastics, into a light fraction and a heavy fraction. The equipment has the appropriate device for carrying out the individual method steps.
Type:
Grant
Filed:
March 18, 2008
Date of Patent:
January 7, 2014
Assignees:
Volkswagen AG, Sicon GmbH
Inventors:
Bram den Dunnen, Michael Knust, Heiner Guschall
Abstract: Systems and methods for recovering materials from soil are disclosed. In one embodiment, a system for recovering materials from soil comprises a size separation system, a first magnetic separator, a second magnetic separator, an air classifier/scrubber system, and a non-ferrous metal separator. The system for recovering materials from soil can be configured to separate soil from other recoverable materials, including, for example, rock and gravel aggregates, and/or metals.
Abstract: The apparatus is for sorting a range of machine-identifiable items received in random order such as meat products or cuts produced at an abattoir. In one example, the items are allocated into high, medium and low priority types (total 205 types). High priority items are allowed a smaller range of types than are low-priority items. Items are recirculated automatically for re-sorting once, twice or three times respectively into fully sorted sets of products. Preferably a freezing chamber surrounds the sorting apparatus so that the items become chilled or frozen while being sorted.
Abstract: A device for reprocessing used plastic containers including a system for analyzing the degree of contamination of the plastic, a system for determining decontamination process parameters as a function of the degree of contamination thus detected, and a system for controlled decontamination of the plastic according to the decontamination process parameters thus determined. The system for determining decontamination process parameters provides determined decontamination process parameters to corresponding decontamination control elements that are automatically adjusted depending on the degree of contamination.
Type:
Grant
Filed:
August 30, 2012
Date of Patent:
June 25, 2013
Assignee:
Krones AG
Inventors:
Thomas Friedlaender, Maren Hofferbert, Hans-Jurgen Straubinger
Abstract: Methods and apparatuses for separating metal values, such as nickel and nickel compounds, from mineral ores, including lateritic ores are disclosed. The method includes providing a mixture of particles (e.g., crushed and sized ore) that is composed of at least a first group of particles and a second group of particles. Group members have similar chemical composition, while particles belonging to different groups have dissimilar chemical compositions. The mixture of particles is concurrently, or generally concurrently, heated (using microwave/millimeter wave energy) and exposed to a reactant. The wave energy and the reactant act to increase the difference in either the magnetic susceptibility or other separation properties between the first and second group of particles. The mixture of particles is then passed through an appropriate separator to separate the particles of interest. Optional steps are disclosed for purifying selected particles.
Abstract: Systems and methods for sorting a plurality of recyclable items in a single-stream materials recovery facility (SSMRF) are provided. In some embodiments, a system includes an infeed conveying system, a fiber transfer conveyor, a container transfer conveyor, and a glass sorting and conveying system. The system further includes a controller configured to obtain total weight and volume of recyclable items at the infeed conveying system. The controller estimates a percent weight of fiber items and a percent weight of non-fiber items relative to the total weight. Based on the estimates, the controller controls speed of at least one of the infeed conveying system, the fiber transfer conveyor, the container transfer conveyor, and the glass sorting and conveying system.
Abstract: Apparatuses and methods are described for the discrimination of particles using sedimentation field-flow fractionation operating without the use of rotating seals. Multiple lines of fluid and electrical communication are provided through a centrifugation unit comprising a fishhook-shaped umbilical conduit traveling from a stationary frame through a rotating guide frame to the separation channel. Twisting and tangling of the umbilical conduit enclosed communication lines are prevented by rotating the guide frame and separation channel in the same direction about an axis at an angular velocity ratio of 1:2. The design eliminates maintenance problems associated with rotating seals, simplifies channel installation and adjustment, and enables the use of multiple channels and the simultaneous application of multiple modes of field-flow fractionation either in concert or in a two-dimensional format.
Abstract: A printing ink includes a micrometer-sized or nanometer-sized coal material. The micrometer-sized or nanometer-sized coal material is produced using a method of providing a controlled batch of micrometer-sized or nanometer-sized coal material. This method includes the steps of: (a) specifying at least one desired physical and/or chemical parameter of the controlled batch of coal material; (b) specifying the desired range of the physical and/or chemical parameter in the controlled batch of coal material; (c) obtaining a feedstock batch of coal material; and (d) processing a feedstock batch of coal material to obtain the controlled batch of coal material having the at least one specified physical and/or chemical parameter in the specified range thereof. In a further step, the controlled batch of coal material can be activated.
Abstract: A separation method for extracting a target 1 from a separation subject (101) in which the target (1) to be extracted and a non-target (2) are mixed. The method includes the steps of distinguishing the target (1) from the non-target (2); obtaining positional information of the target (1) distinguished; attaching a liquid to the target (1) based on the positional information; and extracting the target (1) from the separation subject (101) by bringing a catch member (140) into contact with the separation subject (101) such that viscosity of the liquid causes the target (1) to adhere to the catch member.
Abstract: For processing of noble metal-containing, moist recycling materials with an unknown noble metal content (hereinafter called “batch”), a moisture-binding agent is added for homogenisation and the batch is mixed with comminution of optionally pre-sent agglomerates to form a free-flowing and homogenous powder. Optionally, the following takes place subsequently for analysis: A at least one representative, volume-reduced sample is taken first of all, B the sample is dried, C the sample is optionally divided further and D the sample is analyzed and the noble metal content of the batch is calculated on the basis of the data a previously known or pre-calculated quantity of the moisture-binding agent being added before sampling (step A).
Type:
Grant
Filed:
September 7, 2006
Date of Patent:
March 19, 2013
Assignee:
W.C. Heraeus GmbH
Inventors:
Christian Mock, Horst Meyer, Matthias Grehl, Jochen Schleβmann, Martin Stettner
Abstract: The embodiments of the present invention are characterized by degasifying a portion of a gas and slurry mixture in a three-phase slurry process and lowering the solids content of the degassed slurry portion to below about 20 wt %. The degassed and lowered solids content slurry portion is then introduced into a fines separation device for separation and removal of fines. The foregoing procedure has been found to increase the effectiveness of the fines separation device.
Type:
Grant
Filed:
January 26, 2010
Date of Patent:
March 5, 2013
Assignee:
ExxonMobil Research and Engineering Company
Inventors:
David G. Hammond, Jorge L. Soto, F. Craig Moates
Abstract: A method for separating and recovering silicon debris from sawing waste is characterized in that it includes the following steps: —treating the sawing waste so as to deoxidize the silicon debris in a manner that reduces their surface energy, —applying to the sawing waste thus treated a flotation method using a flotation liquid and a nonoxidizing flotation gas, and —recovering the silicon debris at the surface of the flotation liquid.
Type:
Grant
Filed:
December 4, 2008
Date of Patent:
February 26, 2013
Assignee:
Ecole Polytechnique Federale de Lausanne (EPFL)
Abstract: The invention relates to an equipment and method for flotating mineral slurry (4) in a flotation cell provided with a flotation mechanism (3), comprising at least a drive shaft (6), a rotor (5) and a stator (7), and at least one inlet (11) for feeding mineral slurry (4), a froth launder system (8) for removing mineral enriched froth, at least two discharge outlets (28, 12) for removing two material flows with two different grain sizes from the flotation cell, in which case the flotation cell (2) is provided with a classifying equipment (1) including means for setting the mineral slurry (24) to be classified, separated from the mineral slurry, in an essentially upwardly moving rotary motion in the flotation cell, as well as means for separating coarser material (25) from finely divided material (26).