Aerobic Treatment Patents (Class 210/620)
  • Patent number: 10696574
    Abstract: A method for treating reverse osmosis concentrated water, comprises adding precipitant and oxidant to reverse osmosis concentrated water for treatment, filtering to obtain clear liquid, and adding catalyst for water treatment to clear liquid for catalytic oxidation to obtain a first-stage treated water. Optionally, the liquid may be subjected after catalytic oxidation to an adsorption treatment; performing reverse osmosis treatment on first-stage treated water to obtain second-stage reverse osmosis product water and second-stage reverse osmosis concentrated water; and adding oxidant to second-stage reverse osmosis concentrated water for oxidation treatment to obtain directly discharged effluent water. The obtaining of effluent water may further comprise subjecting liquid after oxidation treatment to adsorption treatment. The above method can recycle 75-85 wt % of water, and operates easily.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: June 30, 2020
    Assignee: Wanhua Chemical Group Co., Ltd.
    Inventors: Hongke Zhang, Zhenlong Fan, Junjun Wang, Xiaogao Liu, Meirong Duan, Bo Zhou, Rui Wang, Hua Heng, Weiqi Hua
  • Patent number: 10584047
    Abstract: Processes are disclosed for the microbial nitritation of ammonia that attenuate the production of at least one of nitrate anion and nitrous oxide. The processes use an ME biocatalyst having a highly porous, hydrophilic polymeric structure with ammonia-oxidizing microorganisms substantially irreversibly retained therein. The processes are particularly useful for integration with anammox processes.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: March 10, 2020
    Inventors: Fatemeh Shirazi, Ameen Razavi, Allison Gregg, Casey McGrath
  • Patent number: 10501357
    Abstract: A mobile wastewater treatment system wherein a mobile carrier has mounted thereon a wastewater treatment plant. The wastewater treatment plant has a flow equalization tank, an aeration tank, a clarifying tank, a disinfection stage, and a pumping tank. The mobile carrier can be a trailer, a skid, a shipping container, or the like.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: December 10, 2019
    Inventor: Jerry L. McKinney
  • Patent number: 10370738
    Abstract: A system and method for recovering a metal value from a metal-bearing ore material are provided. A metal-bearing ore can be mixed with certain substances and to form an agglomerated ore. In an intermediate state, between agglomeration and heap formation, bacteria can be added to the metal-bearing ore material to produce an augmented ore. The augmented ore can then be formed into a heap. Bacteria from the heap may be fortified to assist in bacterial growth.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: August 6, 2019
    Inventors: Joanna M Robertson, Christine Rae Green, Gabriel Elias Bowman
  • Patent number: 10335760
    Abstract: The present invention provides a method for reducing or controlling wastewater and pollutant from emulsion polymerization resin production, comprising the following steps: (1) optimizing an emulsion polymerization reactor to lengthen a cleaning interval of the reactor so as to reduce the volumes of reactor cleaning wastewater and pollutant discharge; (2) demulsifying latex filter cleaning wastewater and removing a latex material so as to reduce the volume of the pollutant discharge; (3) demulsifying the highly concentrated reactor cleaning wastewater, then performing flotation recovery; (4) mixing graft polymerization wastewater and 1,3-diene polymerization wastewater, then performing demulsification; (5) mixing the demulsified latex wastewater and condensation and drying wastewater, then performing a coagulation and dissolved air flotation treatment; and (6) implementing a biological treatment process on the effluent from the coagulation and dissolved air flotation treatment to remove an organic material, ni
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: July 2, 2019
    Inventors: Yuexi Zhou, Yudong Song
  • Patent number: 10329175
    Abstract: A method for clarification of wastewater that operates at least two alternating and equal process cycles in two or more clarifiers (1a, 1b), each process cycle consisting of a feed period with concurrent feeding and discharging and a reset period in which excess sludge is removed into a thickener (2a, 2b) and the remaining sludge blanket gets homogenized and pre-settled, wherein at each point of time in at least one clarifier (1a, 1b) the feed period is performed.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: June 25, 2019
    Inventor: Bernhard Wett
  • Patent number: 10093569
    Abstract: A method for cleaning and preventing diffuser membrane fouling of an aeration system can include: transporting a liquid acidic solution into a downcomer pipe or a purge line positioned in a reservoir of an aeration system containing a body of water such that the liquid acidic solution flows into a manifold and air distribution pipes; allowing the liquid acidic solution to vaporize; and blowing the vaporized acidic solution into a plurality of diffusers supported by the air distribution pipes. An aeration system that can implement the method is also included.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: October 9, 2018
    Inventors: Joseph G. Krall, Scott Hatch, Jesse Jones
  • Patent number: 9919940
    Abstract: Sewage treatment is performed by using Sulphur to facilitate electron flow. A first cycle uses a sulphur composition having sulphur and/or sulphur compounds to transfer electrons from organic carbon to oxygen, nitrate and nitrite, and to convert phosphorus-containing compounds to solid material, which is retained in sewage sludge. The sulphur is further used to perform denitrification of nitrogen compounds. A further cycle uses oxygen to oxidize any ammonia present to nitrate and/or nitrite.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 20, 2018
    Inventors: Guanghao Chen, Di Wu, Ho Kwong Chui
  • Patent number: 9783436
    Abstract: A stream processing system, where the stream comprises a glycol based hydrate inhibitor and a kinetic hydrate inhibitor (KHI) is provided. The system comprises a thermal oxidation unit (31) and a processing unit comprising a stream inlet (9), a fluid inlet (11) and a mixture outlet (15) in fluid communication with the thermal oxidation unit.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: October 10, 2017
    Inventors: Kolbjorn Moen, Aitziber Sanchez Calvo
  • Patent number: 9758412
    Abstract: A device for purifying liquid wastewater, includes: a container suitable for retaining a granulate consisting of solid particles, and for enabling the contact between the solid particles of the granulate and the liquid wastewater flowing in the container between: an inlet for the liquid wastewater to flow into the container, and an outlet for substantially decontaminated water to flow out of the container; a community of microorganisms extending so as to be in contact with the solid particles of the granulate; at least one live benthic invertebrate whose mean size is greater than 250 ?m and which is distributed in the granulate; and at least one live benthic invertebrate whose mean size is from 50 ?m to 250 ?m and which is distributed in the granulate, characterized in that the community of macrobenthic organism and meiobenthic organism species includes a proportion of 60% to 80% of invertebrate detrivorous organisms.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: September 12, 2017
    Inventors: Magali Gerino, Philippe Vervier, Jose Miguel Sanchez Perez, Laury Gauthier
  • Patent number: 9758399
    Abstract: A process approach allows economical self-sustained operation of single vessel biotreatment systems for municipal wastewater treatment. The daytime solar powered treatment process is changed during darkness periods to operate the biotreatment system without electric grid powering.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 12, 2017
    Inventors: Kaspar A. Kasparian, Eric H. Verret
  • Patent number: 9683980
    Abstract: A method of detecting Hg2+ in an aqueous solution. The method includes contacting the aqueous solution with a composition containing a plant extract and biosynthesized silver nanoparticles. The composition has an average particle size of 30-50 nm. A color change following the contacting indicates the presence of Hg2+ in the aqueous solution. The composition is preferably synthesized by reduction of a silver salt with an extract of Ocimum basilicum.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 20, 2017
    Inventors: Chanbasha Basheer, Salawu Omobayo Adio
  • Patent number: 9567248
    Abstract: A flow equalization reactor for a multi-stage activated sludge process for treating industrial wastewater and/or municipal sewage is divided into two or more treatment zones. An outflow from a first treatment zone is mixed with an outflow from the second treatment zone in a mixer and conveyed to a third stage reactor containing anaerobic, autotrophic ammonia oxidizing anammox bacteria for converting nitrite nitrogen to nitrogen gas. The relative amounts of the outflows from the first and second treatment zones are controlled to promote and optimize the growth and accumulation of the anammox biomass in the third stage reactor.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: February 14, 2017
    Inventor: John H. Reid
  • Patent number: 9404044
    Abstract: A selective removal of chlorine and phosphorus that are detrimental to subsequent hydrothermal hydrocatalytic conversion from the biomass feed prior to carrying out catalytic hydrogenation/hydrogenolysis/hydrodeoxygenation of the biomass in a manner that does not reduce the effectiveness of the hydrothermal hydrocatalytic treatment while minimizing the amount of water used in the process is provided.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: August 2, 2016
    Assignee: Shell Oil Company
    Inventors: Joseph Broun Powell, Juben Nemchand Chheda
  • Patent number: 9376501
    Abstract: Digestion of cellulosic biomass solids can be enhanced in the presence of a phenolic solvent. Methods for digesting cellulosic biomass solids can comprise providing cellulosic biomass solids in a digestion medium comprising water and an organic solvent; heating the cellulosic biomass solids and the digestion medium in a digestion unit in the presence of molecular hydrogen and a slurry catalyst capable of activating molecular hydrogen, thereby forming an alcoholic component and liberating lignin, the lignin forming a phenolics liquid phase partitioned from the digestion medium and at least a portion of the slurry catalyst accumulating in the phenolics liquid phase; removing at least a portion of the phenolics liquid phase and accumulated slurry catalyst from the digestion unit; converting at least a portion of the phenolics liquid phase into a phenolic solvent; and returning at least a portion of the phenolic solvent and the slurry catalyst to the digestion unit.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 28, 2016
    Assignee: Shell Oil Company
    Inventor: Joseph Broun Powell
  • Publication number: 20150144554
    Abstract: In a wastewater treatment system, feed water is processed by anaerobic digestion, preferably in an anaerobic moving bed bioreactor (AnMBBR). Effluent from the AnMBBR passes through one or more solid-liquid separation units. A solids portions is treated by hydrolysis or suspended growth anaerobic digestion. A liquid portion of the hydrolysis or suspended growth anaerobic digestion effluent is returned to the AnMBBR or blended with effluent from the AnMBBR. The AnMBBR effluent may be treated with an aerobic moving bed bioreactor (MBBR) before the one or more solid-liquid separation steps. Membrane filtration may provide a first solid-liquid separation step. A thickened waste stream may be withdrawn from a recirculation loop flowing from the first solid-liquid separation unit to the MBBR. Optionally, a solids portion separated from the feed water upstream of the AnMBBR may also be treated by hydrolysis or suspended growth anaerobic digestion.
    Type: Application
    Filed: May 28, 2013
    Publication date: May 28, 2015
    Inventors: Juan Carlos Josse, Michael David Theodoulou, Sasha Rollings-Scattergood
  • Publication number: 20150122732
    Abstract: A process for treating water containing dissolved organic compounds, including naphthenic acids, for example, oil sands process water, using petroleum coke is provided, comprising: removing petroleum coke from a coking operation; forming a petroleum coke/water slurry by adding the water containing dissolved organic compounds to the petroleum coke; adding a pH-lowering agent to the petroleum coke/water slurry either during slurry formation or after slurry formation to form a treated petroleum coke/water slurry; and allowing the treated petroleum coke/water slurry to mix for a sufficient time in a carbon adsorption reactor to allow the petroleum coke to adsorb a substantial portion of the dissolved organic compounds from the water.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
  • Patent number: 9017556
    Abstract: Ultrapure water of high purity having extremely low TOC concentration is produced by efficiently degrading urea in raw water by biological activated carbon treatment even when the raw water contains ammonium nitrogen. The ultrapure water production method, where raw water is treated in a primary pure water system, and then the resulting water is treated in a subsystem, contains a step of treating pretreated water with chlorine based oxidizer added by a biological treatment means installed upstream to the subsystem. Chlorine based oxidizer is added so that the chlorine based oxidizer concentration is 5 times or more than the ammonium nitrogen concentration of water treated in the biological treatment means in terms of Cl2.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 28, 2015
    Assignee: Kurita Water Industries Ltd.
    Inventors: Nozomu Ikuno, Motomu Koizumi
  • Publication number: 20150108068
    Abstract: A device for mixing and aerating a body of water, the device includes a microbial fuel cell comprising an anode and a cathode; an electricity management subsystem electrically connecting the anode and the cathode; and a mixing subsystem electrically connected to the electricity management subsystem. The device can be used to mix or aerate a body of water containing organic material while simultaneously reducing the requirements for aeration. The body of water may provide organic material to the microbial fuel cell to produce electricity to power the mixing subsystem.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 23, 2015
    Inventors: Anthony Michaels, Kenneth Nealson, Patrick Michaels, Yuelong Huang
  • Patent number: 9005956
    Abstract: The present invention relates to a method of selectively obtaining phosphorus from solids containing heavy metals and phosphate. In this method, the solid is treated under acidic aerobic conditions using microorganisms comprising leaching microorganisms and polyphosphate-accumulating microorganisms, so that the heavy metals and the phosphates are released from the solid and the released phosphates may be taken up by the polyphosphate-accumulating microorganisms. The phosphorus-enriched biomass that is obtained in this manner is separated and may be utilized, e.g., as organic fertilizer.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 14, 2015
    Assignee: Georg Fritzmeier GmbH & Co. KG
    Inventors: Jennifer Zimmermann, Wolfgang Dott
  • Patent number: 8992776
    Abstract: A system of treating high nitrogen content waste water is disclosed, where the system includes a precipitation and conditioning subsystem, an ammonia stripper subsystem, and a denitrification subsystem. The system is adapted to reduce nitrogen contamination to level below about 10 ppm and in certain embodiments below 3 ppm.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 31, 2015
    Inventors: Randy A. Galgon, Allen Ray Stickney, Richard B. Steinberg
  • Publication number: 20150083661
    Abstract: The present invention provides methods for increasing soluble chemical oxygen demand (sCOD) in sewage sludge. These methods include passing the sewage sludge through one or more devices that contains (a) a hollow body provided with a straight-through passage of substantially constant cross-section, the passage having an inlet end and an outlet end for the entry and discharge respectively of the sewage sludge, (b) a transport fluid nozzle substantially circumscribing and opening into the passage intermediate the inlet and outlet ends thereof, (c) a transport fluid inlet communicating with the transport fluid nozzle for the introduction of a transport fluid, and (d) a mixing chamber being formed within the passage downstream of the transport fluid nozzle. The sewage sludge is then passed through a digester.
    Type: Application
    Filed: July 13, 2012
    Publication date: March 26, 2015
    Inventors: Bart Pieper, Michelle Gina Gothard
  • Patent number: 8980091
    Abstract: A method and system for controlling dissolved oxygen levels in a secondary treatment system of a wastewater treatment facility that can employ a membrane bioreactor in which oxygen introduction into mixed liquor is controlled to prevent bulking and minimize generation of extra cellular polymeric substances. The control is exercised by insuring that dissolved oxygen levels within the mixed liquor do not fall below a minimum system level at which microorganism stress would occur. This is done by setting a minimum dissolved oxygen level control point equal to a sum of the minimum system level and an adjustment factor determined on the basis of oxygen uptake rate and time delays inherent in sensing oxygen levels and changes thereof within the mixed liquor. The minimum system dissolved oxygen level can be continually calculated on the basis of an inferred food to mass ratio that would vary with sensed mixed liquor suspended solids.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 17, 2015
    Assignee: Praxair Technology, Inc.
    Inventor: Malcolm E. Fabiyi
  • Patent number: 8980092
    Abstract: A system and method includes an aeration subsystem that excites enzymes in the liquid waste passing through the septic system. The aeration subsystem includes a compressor section that compresses the liquid waste. The method includes mixing enzymes into the fluid waste material, compressing the fluid waste material with the compressor, injecting air into the compressed fluid waste material, and determining whether the fluid waste material is at a desired cleanliness, and if not, recirculating the fluid waste material through the compressor.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: March 17, 2015
    Inventors: Kenneth J. Kistner, Carolyn R. Kistner
  • Publication number: 20150068977
    Abstract: Integrated membrane treatment systems for treatment of an aqueous solution. In embodiments, components, such as an MBR, are integrated with means to recover energy from the system, for example from an RO concentrate, to operate the other components. In embodiments including biological treatment, RO is integrated with other components, such as an MBR with the ROs ability to remove inorganic nitrogen enabling biological treatment to be performed with only partial nitrification and the MBR operated without active pH control. In embodiments, RO is integrated with a chlorine generator to convert chlorides present in the RO concentrate for an in-situ source of oxidizing biocides for disinfection purposes. Chloramines may be generated in-situ from residual ammonia and chlorides in the RO reject. In embodiments, carrier media is employed in a membrane tank to enhance removal of residual organics by the MBR and to also improve effectiveness of membrane scouring.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Inventors: Vyacheslav Libman, Boris ELIOSOV
  • Patent number: 8974670
    Abstract: The present invention provides an aeration lateral system designed to be site specific for new septic disposal areas or retro fitting to existing septic disposal areas to break up the biological clogging sludge mat at the interface of the wastewater and imported sand or native soil fill under or adjacent to disposal areas of a typical septic system. The lateral system provides uniform or other site specific distribution of fluids about the bio-mat of a wastewater disposal area, with lateral spacing and hole spacing varying based on the type of disposal area being utilized. The lateral system can also be utilized to provide continuous low volume air supply system to a wastewater disposal area or peat filter module. The air lateral installation includes methods to minimize airflow disturbance of the soil and methods to prevent air leakage.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 10, 2015
    Assignee: JRL Innovations Inc.
    Inventor: Roy Emr
  • Patent number: 8961793
    Abstract: A rapidly installed intermittent flow and storm water treatment method and apparatus employing rapid solids separation and sulfur dioxide chemical dewatering technology to produce disinfected reclaimed storm water with heavy metals removed and diluted nutrients suitable for open stream or land application.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: February 24, 2015
    Assignee: Earth Renaissance Technologies, LLC
    Inventors: Terry R. Gong, Marcus G. Theodore
  • Patent number: 8956540
    Abstract: A process for treating water that includes ammonium. The water is directed to a biological reactor and the quantity of nitrates formed in the reactor and the quantity of ammonium reduced in the reactor is determined. A ratio of the quantity of nitrates formed to the quantity of ammonium reduced is determined. Further, the percentage of ammonium reduced is also determined. The water in the biological reactor is aerated by injecting oxygen into the reactor where the amount of oxygen injected is a function of the ratio and the percentage of ammonium reduced in the reactor.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: February 17, 2015
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Romain LeMaire, Daniel Olivier
  • Patent number: 8940171
    Abstract: A system for treating wastewater including at least one water-treatment pathway having at least one wastewater inlet, at least one oxygen-permeable, water-impermeable wall, separating an interior of the pathway from outside air, and at least one treated wastewater outlet and arranged for at least aerobic treatment of the wastewater as it flows from the at least one wastewater inlet to the at least one treated wastewater outlet, at least one wastewater supply conduit, supplying the wastewater to the at least one wastewater inlet of the water-treatment pathway and at least one treated wastewater conduit, supplying treated wastewater from the at least one treated wastewater outlet of the at least one water-treatment pathway.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: January 27, 2015
    Assignee: Emefcy Limited
    Inventors: Ronen Itzhak Shechter, Lior Eshed, Eytan Baruch Levy, Tamar Ashlagi Amiri
  • Publication number: 20150021264
    Abstract: A plant effluent treatment method includes a mixing treatment step that mixes a microorganism activating agent into plant effluent containing organic compounds as discharged from a chemical plant, petroleum plant or petrochemical plant and discharges it as mixing treatment effluent, and an aerobic treatment step that subjects the mixing treatment effluent to aerobic biological treatment and solid-liquid separation treatment in a membrane bioreactor tank.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 22, 2015
    Applicants: Chiyoda Corporation, Toray Industries, Inc.
    Inventors: Kanako Tsuda, Yusuke Shinoda, Masayo Shinohara, Kazuyuki Tejima, Atsushi Kitanaka, Masahide Taniguchi
  • Patent number: 8920651
    Abstract: In some embodiments, a wastewater treatment system may reduce contaminants in water. A system may include one or more bioreactors which include a substrate that supports a biofilm. The bacteria used to form the biofilm may be selected to maximize the reduction of contaminants in water. Various components of the wastewater treatment system may be optimized to improve the efficiency and energy consumption of the wastewater system.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 30, 2014
    Assignee: Sam Houston University
    Inventor: Michael D. Rainone
  • Patent number: 8920652
    Abstract: A lagoon batch wastewater treatment system for a wastewater treatment lagoon wherein a containment tank expands and contracts during a sewage treatment process reducing erosion of the berm or bank of the lagoon.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 30, 2014
    Assignee: JPS Industries, Inc.
    Inventor: Joseph Santamaria
  • Patent number: 8916047
    Abstract: A method for bioremediation of contaminants, comprising contacting a contaminant with composite particles including at least one microbial available nutrient species and at least one fatty acid species, and contacting the contaminant with oxygenated water including greater than about 4 parts per million dissolved oxygen. Water may be oxygenated on-site using various oxygenating devices, such as an aspirator, aerator, impeller and diffuser. Optionally, the oxygenated water may be prepared with wastewater that is being remediated. The method may be used to maintain a dissolved oxygen concentration of greater than a setpoint concentration, such as at least 4 ppm. A preferred oxygenated water stream or source has a dissolved oxygen concentration of greater than 50 ppm. Where the contaminant is in a wastewater, the dissolved oxygen concentration in the remediation zone or the oxygenated water stream may be measured with a dissolved oxygen sensor.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: December 23, 2014
    Assignee: Bionutratech, Inc.
    Inventor: Sandra L. Hruza
  • Publication number: 20140360934
    Abstract: Aerator kit comprising a body defining a fluid-flow channel, and a nozzle insert disposed inside said body as such forming together a venturi aerator which is useful for aerating aqueous waste. The aerator can be used submerged as a part of an aerobic digester, in which gas or air flow into the nozzle inlet while drawing liquid through a peripheral hole in the aerators body and cause mixing. The aerator can be also used as an above ground aerator in which liquid is pumped into the nozzle inlet while drawing air through said peripheral hole. In an another embodiment the aerator could be also used for adding additive to a gas or liquid.
    Type: Application
    Filed: December 19, 2012
    Publication date: December 11, 2014
    Inventors: Yaakov Anker, Adi Nocham
  • Publication number: 20140353252
    Abstract: A method of supplying engineered water for drilling or hydraulic fracturing of wells, where the water comes from either fresh sources or is recycled from drilling or hydraulic fracturing operations whereby the water is treated for example with a mechanical vapor recompression unit or other treating apparatuses and methods to significantly reduce the concentration of constituents that are deleterious to drilling or hydraulic fracturing chemistries while keeping desirable constituents, such as semi-volatile antimicrobial constituents. The final composition of the engineered water is designed to contain constituents that are optimal for drilling or hydraulic fracturing operations.
    Type: Application
    Filed: September 12, 2012
    Publication date: December 4, 2014
    Applicant: 212 Resources
    Inventors: Stephen Earl Hester, Leslie Douglas Merrill, Christopher R. Lloyd
  • Publication number: 20140339158
    Abstract: A method of treating wastewater includes removing BOD and ammonium from the wastewater. The wastewater is directed into a tank where it is mixed with mixed liquor or activated sludge from an activated sludge wastewater treatment system. The mixture of wastewater and mixed liquor or activated sludge forms a mixed liquor stream. The mixed liquor stream is directed to a ballasted flocculation system where suspended solids is removed from the wastewater. This produces a clarified effluent that is directed to a zeolite tank. Clarified wastewater from the ballasted flocculation system is directed into the zeolite tank and mixed with zeolite. Zeolite is effective to remove ammonium from the wastewater. Thus, the process as a whole is effective in removing suspended solids, soluble BOD as a result of mixing the mixed liquor or activated sludge with the wastewater, and ammonium.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 20, 2014
    Applicant: Veolia Water Solutions & Technologies Support
    Inventors: Richard W. DiMassimo, Michael L. Gutshall, Abdelkader Gaid, Sandra Bernard
  • Publication number: 20140339157
    Abstract: Methods of controlling a nitrification reaction in a biological nitrogen removal reactor to favor partial nitrification of ammonia to nitrite instead of complete oxidation of ammonia to nitrate are disclosed. In some embodiments, the methods include the following: maintaining a pH in the reactor within a range that promotes growth of ammonia oxidizing bacteria; maintaining a concentration of dissolved oxygen in the reactor within a range that limits the ammonia oxidizing bacteria from completing nitrification; selecting an operational solids retention time within a range suitable for maintaining increasing concentrations of the ammonia oxidizing bacteria in the reactor while reducing concentrations of nitrite oxidizing bacteria in the reactor; and increasing a concentration of free ammonia in the reactor thereby inhibiting growth of the nitrite oxidizing bacteria in the reactor.
    Type: Application
    Filed: November 19, 2013
    Publication date: November 20, 2014
    Inventors: Kartik Chandran, Ran Yu, Joon Ho Ahn
  • Publication number: 20140332465
    Abstract: It relates to a treatment of oil-containing waste water using a membrane biological reactor membrane biological reactor biological reactor (MBR), and it is to provide a new treatment apparatus which is capable of suppressing a reduction in biological treatment activity and suppressing an effect on a separation membrane. Provided is a membrane biological reactor having a biological reaction chamber and a membrane separation chamber, in which the it has a configuration that, within the biological reaction chamber, at least one partition is installed to have a first reaction chamber, a second reaction chamber, and if necessary, an additional reaction chamber so as to form an upflow and downflow flow path, an aeration device and a scum/oil skimmer are installed at least in the first reaction chamber, and a mixture liquid containing activated sludge is withdrawn from the membrane separation chamber and distributed and returned at least to the first reaction chamber and the second reaction chamber.
    Type: Application
    Filed: February 20, 2013
    Publication date: November 13, 2014
    Inventors: Masayoshi Kitagawa, Takashi Matsumura, Hirokazu Isozaki, Masahide Suzuki
  • Patent number: 8883009
    Abstract: A process for the treatment of water comprising at least the steps of: (a) providing the water in laminar flow; and (b) providing bubblefree aeration to the water. The present invention introduces aerobic treatment into wastewater settlement without any hindrance to the settlement process. The present invention is useable for any settlement step or stage, without limitation, the commonest being primary settlement or final settling.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 11, 2014
    Assignee: The Queen's University of Belfast
    Inventors: Elaine Groom, Simon Murray, Joel Ferguson
  • Publication number: 20140311973
    Abstract: A lightweight, bioplastic, mobile, floating oil spill mechanical/biological recovery system is dimensionally compact, and quick to assemble. The floating platform can be readily positioned within any waterborne oil/contaminant spill area. After assembly, this platform or apparatus can be directed by either a hand-held digital radio control transmitter or GPS directed mechanism. A lower, multi-roller slip-on belt is designed to be mounted over a circular base support aeration hub assembly with alternating/spaced slotted ring water drainage separators. The belt and aeration assemblies dip bioaugmentation product into the contaminant site thereby exposing microorganisms to both oxygen and target contaminant for treatment and metabolism. Various mechanisms for enhancing metabolic activity of the bioaugmentation product operate in tandem with the primary belt and aeration assemblies to promote effective contaminant metabolism and overall treatment regimes.
    Type: Application
    Filed: November 27, 2012
    Publication date: October 23, 2014
    Inventor: Walter J. Wasseluk
  • Publication number: 20140311972
    Abstract: A method and nitrification system for nitrifying a centrate stream produced from dewatering sludge within a wastewater treatment facility in which the centrate stream into a nitrification reactor containing accumulated centrate with a bacterial population of AOB and NOB nitrifying bacteria to the ammonia content within the centrate stream into nitrates and an oxygen containing gas is introduced into the accumulated centrate to support bacterial activity of the AOB and NOB nitrifying bacteria. Additionally, a conditioning method is obtained in which the bacterial population is grown within the nitrification reactor in conditioning stages that involve the introduction of incoming centrate into the reactor with a successively decreasing degree of dilution.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 23, 2014
    Inventors: Malcolm Fabiyi, Asun Larrea, Monica de Gracia
  • Publication number: 20140315716
    Abstract: In one aspect, the present invention relates to novel Bacillus strains ENV 734 (NRRL B-50800), ENV 735 (NRRL B-50801), ENV 736 (NRRL B-50802), and ENV 737 (NRRL B-50803). These strains possess a high degree of homology with both Bacillus simplex and Bacillus butanolivorans, but unexpectedly exhibit desirable high salt tolerance as well as low temperature growth and urease production. In another aspect, the present invention relates to compositions comprising at least one of such strains and an acceptable carrier, and methods of preparing the compositions. Such compositions are suitable for use in industrial, agricultural, aquacultural, environmental, wastewater treatment and/or probiotic applications. Methods for enhancing the growth of a plant propagative material and methods for treating wastewater are also provided.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 23, 2014
    Applicant: Envera, LLC
    Inventors: Michael Matheny, Zivile Panaviene
  • Publication number: 20140305866
    Abstract: Disclosed an aerobic system for decomposition of aqueous organic waste, which comprises at least a first processing container including sides, an upper opening, a substantially horizontal floor, an inlet, an outlet, at least one channel arranged at the floor having an upwardly opening mouth, a ventilating pipe extending above the mouth, and a pump connected to the pipe and arranged to provide a supply of a gas to the ventilating pipe.
    Type: Application
    Filed: July 10, 2012
    Publication date: October 16, 2014
    Inventor: Kwok Ki Lo
  • Publication number: 20140284273
    Abstract: A wastewater treatment system is provided having a reactor, first and second bio media and an aeration system. The first bio medium is located proximate an inlet end of the reactor and extends vertically between a top water level and the reactor's floor. The second bio medium is located proximate an outlet end of the reactor and extends vertically between a bottom water level and the reactor's floor. The media are adapted for retaining solids within the reactor as clarified water is withdrawn after treatment. The first bio media is further adapted to act as a baffle thereby causing wastewater to flow generally uniformly into a primary reactor zone. The aeration system includes a plurality of diffusers, some of which may be located adjacent or underneath the bio media and are adapted for promoting the shaking the bio media when activated in order dislodge excessive biomass therefrom.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 25, 2014
    Applicant: Environmental Dynamics International, Inc.
    Inventors: Charles E. Tharp, Randall C. Chann
  • Patent number: 8840783
    Abstract: A method of cleaning a membrane surface immersed in a liquid medium with a fluid flow, including the steps of providing a randomly generated intermittent or pulsed fluid flow along the membrane surface to dislodge fouling materials therefrom. A membrane module is also disclosed comprising a plurality of porous membranes (6) or a set of membrane modules (5) and a device (11) for providing a generally randomly generated, pulsed fluid flow such that, in use, said fluid flow moves past the surfaces of said membranes (6) to dislodge fouling materials therefrom.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: September 23, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventors: Fufang Zha, Gerin James, Joseph Edward Zuback, Peter Zauner, Roger William Phelps
  • Publication number: 20140263045
    Abstract: In one embodiment, a method includes gasifying a fuel source using a first oxygen stream supplied from an air separation unit (ASU), discharging a gasifier blowdown from a gasification and scrubbing system configured to gasify the fuel source, generating a grey water from the gasifier blowdown, and biologically treating the grey water in a reactor using a second oxygen stream supplied by the ASU.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Anindra Mazumdar, Dinh-Cuong Vuong, James Scott Kain, Paul Roberts Scarboro
  • Patent number: 8828230
    Abstract: A method of conditioning, separating, drying, and comminuting sulfurous acid treated wastewater suspended solids for addition to aerobic and anaerobic digesters to provide electron donor carbon and sulfur compounds to increase the removal rate of ammonia, nitrates/nitrites, and BOD compounds.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 9, 2014
    Assignee: Earth Renaissance Technologies, LLC
    Inventor: Marcus G. Theodore
  • Publication number: 20140246369
    Abstract: A process and system for treating wastewater is described. The invention degrades sludge produced by treatment of the wastewater to reduce or eliminate the need for sludge dewatering and disposal. The invention also reduces the amount of nutrient additives required to sustain the aerobic wastewater treatment process. In one embodiment the invention includes the steps of (a) providing an aerobic treatment system receiving a supply of the wastewater; (b) treating a supply of the sludge to rupture microbial cells present therein to produce treated sludge having an increased liquid:solid ratio and an increased degradation potential in comparison to untreated sludge; (c) conveying a supply of the treated sludge to the aerobic treatment system; and (d) substantially degrading the supply of treated sludge in the aerobic treatment system. The treated sludge may optionally be subjected to anaerobic digestion prior to delivery to the aerobic treatment system.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Inventors: Robert John Stephenson, Scott Christopher Laliberte, Preston Yee Ming Hoy, Patrick William George Neill
  • Patent number: 8821729
    Abstract: The invention relates to a carrier element for an aerobic biological water treatment system. The carrier element has a first end and a second end at a distance from each other, the maximum diameter of the first end being larger than the maximum diameter of the second end. It also has biofilm growing surface structures that extend from the first end to the second end and from inner part of the element towards periphery of the element and at least two support structures that encircle the growing surface structures at the periphery of the element and connect the growing surface structures to each other. The support structures define the outer boundary surface of the carrier element, whereby the support structures are spaced from each other so that apertures allowing access to the biofilm growing surface structures are formed between the support structures. The invention relates also to a water treatment system employing the carrier elements.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: September 2, 2014
    Assignee: Flootech Oy
    Inventors: Petri Pajuniemi, Mikko Siivonen
  • Patent number: 8821728
    Abstract: A system of treating high nitrogen content waste water is disclosed, where the system includes a precipitation and conditioning subsystem, an ammonia stripper subsystem, and a denitrification subsystem. The system is adapted to reduce nitrogen contamination to level below about 10 ppm and in certain embodiments below 3 ppm.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: September 2, 2014
    Inventors: Randy A. Galgon, Allen Ray Stickney, Richard B. Steinberg